首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Rvi15 (Vr2) apple scab resistance locus found in the GMAL 2473 accession has been previously mapped to the top of the Linkage Group 2 (LG2) by analyzing 89 progeny plants of a cross between ‘Idared’ and GMAL 2473. A new population of 989 progeny plants, derived from a cross between ‘Golden Delicious’ and GMAL 2473, has been analyzed with the two SSR markers CH02c02a and CH02f06, previously found to be associated with Rvi15 (Vr2), and with two published markers derived from NBS sequences (ARGH17 and ARGH37) estimated to map close to the Rvi15 (Vr2) locus. ARGH17 and ARGH37, were found to be the closest markers to the resistance locus, bracketing it within an interval of 1.5 cM. The SSRs mapped one on each side of Rvi15 (Vr2). CH02f06 mapped at 2.9 cM from ARGH37 while CH02a02a mapped at 1.7 from ARGH17. The position of Rvi15 (Vr2) respect to CH02a02a indicates that Rvi15 (Vr2) and Rvi4 (Vh4), a second apple scab gene mapped on the top of LG2, are two different resistance genes. In order to develop even more tightly linked markers to Rvi15 (Vr2), ARGH17 was used as the starting point for chromosome walking through the Rvi15 (Vr2) homolog region of the cv. ‘Florina’. A single ‘Florina’ BAC clone, 36I17, was sufficient to span the homologous locus in the new population’s recombinant progeny. Sequencing of the 36I17 BAC clone allowed identifying seven putative ORFs, including two showing a TIR-NBS-LRR structure. Ten additional markers could be developed mapping within a 1.8 cM interval around the Rvi15 (Vr2) resistance gene. ARGH17 and GmTNL1 markers, the latter also derived from NBS-LRR resistance gene homolog sequence, are the closest markers to Rvi15 (Vr2) bracketing it within a 0.5 cM interval. The availability of 12 markers within the Rvi15 (Vr2) region, all within a small physical distance (kbp) in ‘Florina’, suggests that cloning of the Rvi15 (Vr2) apple scab resistance gene from GMAL 2473 will be possible.  相似文献   

2.
Breeding for scab-resistant apple cultivars by pyramiding several resistance genes in the same genetic background is a promising way to control apple scab caused by the fungus Venturia inaequalis. To achieve this goal, DNA markers linked to the genes of interest are required in order to select seedlings with the desired resistance allele combinations. For several apple scab resistance genes, molecular markers are already available; but until now, none existed for the apple scab resistance gene Vbj originating from the crab apple Malus baccata jackii. Using bulk segregant analysis, three RAPD markers linked to Vbj were first identified. These markers were transformed into more reliable sequence-characterised amplified region (SCAR) markers that proved to be co-dominant. In addition, three SSR markers and one SCAR were identified by comparing homologous linkage groups of existing genetic maps. Discarding plants showing genotype–phenotype incongruence (GPI plants) plants, a linkage map was calculated. Vbj mapped between the markers CH05e03 (SSR) and T6-SCAR, at 0.6 cM from CH05e03 and at 3.9 cM from T6-SCAR. Without the removal of the GPI plants, Vbj was placed 15 cM away from the closest markers. Problems and pitfalls due to GPI plants and the consequences for mapping the resistance gene accurately are discussed. Finally, the usefulness of co-dominant markers for pedigree analysis is also demonstrated.  相似文献   

3.
The Pl Arg locus in the sunflower (Helianthus annuus L.) inbred line Arg1575-2 conferring resistance to at least four tested races (300, 700, 730, 770) of downy mildew (Plasmopara halstedii) was localized by the use of simple sequence repeat (SSR) markers. Bulked segregant analysis (BSA) was conducted on 126 individuals of an F2 progeny from a cross between a downy mildew susceptible line, CmsHA342, and Arg1575-2. Twelve SSR markers linked to the Pl Arg locus were identified. All markers were located proximal to Pl Arg on linkage group LG1 based on the map of Yu et al. (2003) in a window of 9.3 cM. Since Pl Arg was mapped to a linkage group different from all other Pl genes previously mapped with SSRs, it can be concluded that Pl Arg provides a new source of resistance against P. halstedii in sunflower.  相似文献   

4.
Simple sequence repeat (SSR) markers developed from Malus, as well as Prunus, Pyrus and Sorbus, and some other sequence-tagged site (STS) loci were analysed in an interspecific F1 apple progeny from the cross ‘Fiesta’ × ‘Totem’ that segregated for several agronomic characters. A linkage map was constructed using 259 STS loci (247 SSRs, four SCARs and eight known-function genes) and five genes for agronomic traits—scab resistance (Vf), mildew resistance (Pl-2), columnar growth habit (Co), red tissues (Rt) and green flesh background colour (Gfc). Ninety SSR loci and three genes (ETR1, Rt and Gfc) were mapped for the first time in apple. The transferability of markers from other Maloideae to Malus was found to be around 44%. The loci are spread across 17 linkage groups, corresponding to the basic chromosome number of Malus and cover 1,208 cM, approximately 85% of the estimated length of the apple genome. Interestingly, we have extended the top of LG15 with eight markers covering 25 cM. The average map density is 4.7 cM per marker; however, marker density varies greatly between linkage groups, from 2.5 in LG14 to 8.9 in LG7, with some areas of the genome still in need of further STS markers for saturation.  相似文献   

5.
Blast, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. The Chinese native cultivar (cv.) Q15 expresses the broad-spectrum resistance to most of the isolates collected from China. To effectively utilize the resistance, three rounds of linkage analysis were performed in an F2 population derived from a cross of Q15 and a susceptible cv. Tsuyuake, which segregated into 3:1 (resistant/susceptible) ratio. The first round of linkage analysis employing simple sequence repeat (SSR) markers was carried out in the F2 population through bulked-segregant assay. A total of 180 SSR markers selected from each chromosome equally were surveyed. The results revealed that only two polymorphic markers, RM247 and RM463, located on chromosome 12, were linked to the resistance (R) gene. To further define the chromosomal location of the R gene locus, the second round of linkage analysis was performed using additional five SSR markers, which located in the region anchored by markers RM247 and RM463. The locus was further mapped to a 0.27 cM region bounded by markers RM27933 and RM27940 in the pericentromeric region towards the short arm. For fine mapping of the R locus, seven new markers were developed in the smaller region for the third round of linkage analysis, based on the reference sequences. The R locus was further mapped to a 0.18 cM region flanked by marker clusters 39M11 and 39M22, which is closest to, but away from the Pita/Pita 2 locus by 0.09 cM. To physically map the locus, all the linked markers were landed on the respective bacterial artificial chromosome clones of the reference cv. Nipponbare. Sequence information of these clones was used to construct a physical map of the locus, in silico, by bioinformatics analysis. The locus was physically defined to an interval of ≈37 kb. To further characterize the R gene, five R genes mapped near the locus, as well as 10 main R genes those might be exploited in the resistance breeding programs, were selected for differential tests with 475 Chinese isolates. The R gene carrier Q15 conveys resistances distinct from those conditioned by the carriers of the 15 R genes. Together, this valuable R gene was, therefore, designated as Pi39(t). The sequence information of the R gene locus could be used for further marker-based selection and cloning. Xinqiong Liu and Qinzhong Yang contributed equally to this work.  相似文献   

6.
Major gene inheritance of resistance to Potato leafroll virus (PLRV) was demonstrated in a parthenogenic population derived from the highly resistant tetraploid andigena landrace, LOP-868. This major gene or chromosome region seems to control a single mechanism for resistance to infection and virus accumulation in this source. About 149 dihaploid lines segregated in a ratio of 107 resistant to 32 susceptible, fitting the expected ratio for inheritance of a duplex gene under random chromatid segregation. A tetraploid AFLP map was constructed using as reference the ultra high density (UHD) map. All AFLP markers associated with PLRV resistance mapped to the same linkage group. Map position was confirmed by analysis of previously-mapped SSR markers. Rl adg is located on the upper arm of chromosome V, at 1 cM from its most closely linked AFLP marker, E35M48.192. This marker will be used to develop allele-specific primers or a pair of flanking PCR-based markers for their use in marker assisted selection.  相似文献   

7.
Apple (Malus × domestica) is the third important fruit in terms of production and consumption worldwide. Apple scab caused by Venturia inaequalis is the most devastating disease of apple. In the apple-growing regions, many fungicides are sprayed to control the disease leading to increase in the production cost. Development of scab-resistant cultivars is the long-lasting solution to control the disease. In apples, more than 20 major scab resistance genes have been identified in various cultivars and few wild relatives. Of all these genes, Rvi6 derived from Malus floribunda has been most extensively used in different breeding programs. Gene for gene interactions of these resistance genes with the avirulence genes from V. inaequalis have been understood in many cases. QTL-based polygenic resistance has also been characterized in apple. Nucleotide Binding Site Leucine-Rich Repeats (NBS-LRR) have been identified from the apple genome and many of them have been characterized from the scab resistance region. Molecular markers associated with most of the major scab resistance genes have been identified and their position has been mapped on different linkage groups. Marker-assisted selection (MAS) can be helpful in speeding up and accurately identifying the scab-resistant parents and progeny. Pyramiding of several major resistance genes can be undertaken for more durable resistance against apple scab. The present paper reviews the Malus-Venturia pathosystem, current status of knowledge about scab resistance genes, and their application in breeding against apple scab.  相似文献   

8.
Plum pox virus (sharka; PPV) can cause severe crop loss in economically important Prunus species such as peach, plum, apricot, and cherry. Of these species, certain apricot cultivars (‘Stark Early Orange’, ‘Goldrich’, ‘Harlayne’) display significant levels of resistance to the disease and are the genetic substrate for studies of several xlaboratories working cooperatively to genetically characterize and mark the resistance locus or loci for marker-assisted breeding. The goals of the work presented in this communication are the characterization of the genetics of PPV resistance in ‘Stark Early Orange’ and the development of co-dominant molecular markers for marker-assisted selection (MAS) in PPV resistance breeding. We present the first genetic linkage map for an apricot backcross population of ‘Stark Early Orange’ and the susceptible cultivar ‘Vestar’ that segregates for resistance to PPV. This map is comprised of 357 loci (330 amplified fragment length polymorphisms (AFLPs), 26 simple sequence repeats (SSRs), and 1 morphological marker for PPV resistance) assigned to eight linkage groups. Twenty-two of the mapped SSRs are shared in common with genetic reference map for Prunus (T × E; Joobeur et al. 1998) and anchor our apricot map to the general Prunus map. A PPV resistance locus was mapped in linkage group 1 and four AFLP markers segregating with the PPV resistance trait, identified through bulk segregant analysis, facilitated the development of SSRs in this region. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Lalli, D.A. and Salava, J. contributed equally to this work.  相似文献   

9.
Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a devastating disease in rice worldwide. The resistance gene Xa7, which provides dominant resistance against the pathogen with avirulence (Avr) gene AvrXa7, has proved to be durably resistant to BB. A set of SSR markers were selected from the “gramene” database based on the Xa7 gene initial mapping region on chromosome 6. These markers were used to construct a high-resolution genetic map of the chromosomal region surrounding the Xa7 gene. An F2 mapping population with 721 highly susceptible individuals derived from a cross between the near isogenic lines (NILs) IRBB7 and IR24 were constructed to localize the Xa7 gene. In a primary analysis with eleven polymorphic SSR markers, Xa7 was located in approximately the 0.28-cM region. To walk closer to the target gene, recombinant F2 individuals were tested using newly developed STMS (sequence tagged microsatellite) markers. Finally, the Xa7 gene was mapped to a 0.21-cM interval between the markers GDSSR02 and RM20593. The Xa7-linked markers were landed on the reference sequence of cv. Nipponbare through bioinformatics analysis. A contig map corresponding to the Xa7 gene was constructed. The target gene was assumed to span an interval of approximately 118.5-kb which contained a total of fourteen genes released by the TIGR Genome Annotation Version 5.0. Candidate-gene analysis of Xa7 revealed that the fourteen genes encode novel domains that have no amino acid sequence similar to other cloned Xa(xa) genes. Shen Chen and Zhanghui Huang are contributed equally to this work.  相似文献   

10.
Powdery mildew is an important foliar disease in wheat, especially in areas with a cool or maritime climate. A dominant powdery mildew resistance gene transferred to the hexaploid germplasm line NC99BGTAG11 from T. timopheevii subsp. armeniacum was mapped distally on the long arm of chromosome 7A. Differential reactions were observed between the resistance gene in NC99BGTAG11 and the alleles of the Pm1 locus that is also located on chromosome arm 7AL. Observed segregation in F2:3 lines from the cross NC99BGTAG11 × Axminster (Pm1a) demonstrate that germplasm line NC99BGTAG11 carries a novel powdery mildew resistance gene, which is now designated as Pm37. This new gene is highly effective against all powdery mildew isolates tested so far. Analyses of the population with molecular markers indicate that Pm37 is located 16 cM proximal to the Pm1 complex. Simple sequence repeat (SSR) markers Xgwm332 and Xwmc790 were located 0.5 cM proximal and distal, respectively, to Pm37. In order to identify new markers in the region, wheat expressed sequence tags (ESTs) located in the distal 10% of 7AL that were orthologous to sequences from chromosome 6 of rice were targeted. The two new EST-derived STS markers were located distal to Pm37 and one marker was closely linked to the Pm1a region. These new markers can be used in marker-assisted selection schemes to develop wheat cultivars with pyramids of powdery mildew resistance genes, including combinations of Pm37 in coupling linkage with alleles of the Pm1 locus.  相似文献   

11.
Powdery mildew resistance from Thinopyrum intermedium was introgressed into common wheat (Triticum aestivum L.). Genetic analysis of the F1, F2, F3 and BC1 populations from powdery mildew resistant line CH5025 revealed that resistance was controlled by a single dominant allele. The gene responsible for powdery mildew resistance was mapped by the linkage analysis of a segregating F2 population. The resistance gene was linked to five co-dominant genomic SSR markers (Xcfd233, Xwmc41, Xbarc11, Xgwm539 and Xwmc175) and their most likely order was Xcfd233Xwmc41Pm43Xbarc11Xgwm539Xwmc175 at 2.6, 2.3, 4.2, 3.5 and 7.0 cM, respectively. Using the Chinese Spring nullisomic-tetrasomic and ditelosomic lines, the polymorphic markers and the resistance gene were assigned to chromosome 2DL. As no powdery mildew resistance gene was previously assigned to chromosome 2DL, this new resistance gene was designated Pm43. Pm43, together with the identified closely linked markers, could be useful in marker-assisted selection for pyramiding powdery mildew resistance genes. Runli He and Zhijian Chang contributed equally to this work.  相似文献   

12.

Key message

A new downy mildew resistance gene, Pl 19 , was identified from wild Helianthus annuus accession PI 435414, introduced to confection sunflower, and genetically mapped to linkage group 4 of the sunflower genome.

Abstract

Wild Helianthus annuus accession PI 435414 exhibited resistance to downy mildew, which is one of the most destructive diseases to sunflower production globally. Evaluation of the 140 BC1F2:3 families derived from the cross of CMS CONFSCLB1 and PI 435414 against Plasmopara halstedii race 734 revealed that a single dominant gene controls downy mildew resistance in the population. Bulked segregant analysis conducted in the BC1F2 population with 860 simple sequence repeat (SSR) markers indicated that the resistance derived from wild H. annuus was associated with SSR markers located on linkage group (LG) 4 of the sunflower genome. To map and tag this resistance locus, designated Pl 19 , 140 BC1F2 individuals were used to construct a linkage map of the gene region. Two SSR markers, ORS963 and HT298, were linked to Pl 19 within a distance of 4.7 cM. After screening 27 additional single nucleotide polymorphism (SNP) markers previously mapped to this region, two flanking SNP markers, NSA_003564 and NSA_006089, were identified as surrounding the Pl 19 gene at a distance of 0.6 cM from each side. Genetic analysis indicated that Pl 19 is different from Pl 17 , which had previously been mapped to LG4, but is closely linked to Pl 17 . This new gene is highly effective against the most predominant and virulent races of P. halstedii currently identified in North America and is the first downy mildew resistance gene that has been transferred to confection sunflower. The selected resistant germplasm derived from homozygous BC2F3 progeny provides a novel gene for use in confection sunflower breeding programs.
  相似文献   

13.
Apple scab resistance genes, HcrVf1 and HcrVf2, were isolated including their native promoter, coding and terminator sequences. Two fragment lengths (short and long) of the native gene promoters and the strong apple rubisco gene promoter (PMdRbc) were used for both HcrVf genes to test their effect on expression and phenotype. The scab susceptible cultivar ‘Gala’ was used for plant transformations and after selection of transformants, they were micrografted onto apple seedling rootstocks for scab disease tests. Apple transformants were also tested for HcrVf expression by quantitative RT-PCR (qRT-PCR). For HcrVf1 the long native promoter gave significantly higher expression that the short one; in case of HcrVf2 the difference between the two was not significant. The apple rubisco gene promoter proved to give the highest expression of both HcrVf1 and HcrVf2. The top four expanding leaves were used initially for inoculation with monoconidial isolate EU-B05 which belongs to race 1 of V. inaequalis. Later six other V. inaequalis isolates were used to study the resistance spectra of the individual HcrVf genes. The scab disease assays showed that HcrVf1 did not give resistance against any of the isolates tested regardless of the expression level. The HcrVf2 gene appeared to be the only functional gene for resistance against Vf avirulent isolates of V. inaequalis. HcrVf2 did not provide any resistance to Vf virulent strains, even not in case of overexpression. In conclusion, transformants carrying the apple-derived HcrVf2 gene in a cisgenic as well as in an intragenic configuration were able to reach scab resistance levels comparable to the Vf resistant control cultivar obtained by classical breeding, cv. ‘Santana’.  相似文献   

14.
Scab, caused by Cladosporium cucumerinum, is an important disease of cucumber, Cucumis sativus. In this study, we conducted fine genetic mapping of the single dominant scab resistance gene, Ccu, with 148 F9 recombinant inbred lines (RILs) and 1,944 F2 plants derived from the resistant cucumber inbred line 9110Gt and the susceptible line 9930, whose draft genome sequence is now available. A framework linkage map was first constructed with simple sequence repeat markers placing Ccu into the terminal 670 kb region of cucumber Chromosome 2. The 9110Gt genome was sequenced at 5× genome coverage with the Solexa next-generation sequencing technology. Sequence analysis of the assembled 9110Gt contigs and the Ccu region of the 9930 genome identified three insertion/deletion (Indel) markers, Indel01, Indel02, and Indel03 that were closely linked with the Ccu locus. On the high-resolution map developed with the F2 population, the two closest flanking markers, Indel01 and Indel02, were 0.14 and 0.15 cM away from the target gene Ccu, respectively, and the physical distance between the two markers was approximately 140 kb. Detailed annotation of the 180 kb region harboring the Ccu locus identified a cluster of six resistance gene analogs (RGAs) that belong to the nucleotide binding site (NBS) type R genes. Four RGAs were in the region delimited by markers Indel01 and Indel02, and thus were possible candidates of Ccu. Comparative DNA analysis of this cucumber Ccu gene region with a melon (C. melo) bacterial artificial chromosome (BAC) clone revealed a high degree of micro-synteny and conservation of the RGA tandem repeats in this region.  相似文献   

15.
Rust is a serious fungal disease in the sunflower growing areas worldwide with increasing importance in North America in recent years. Several genes conferring resistance to rust have been identified in sunflower, but few of them have been genetically mapped and linked to molecular markers. The rust resistance gene R 4 in the germplasm line HA-R3 was derived from an Argentinean open-pollinated variety and is still one of most effective genes. The objectives of this study were to determine the chromosome location of the R 4 gene and the allelic relationship of R 4 with the R adv rust resistance gene. A total of 63 DNA markers previously mapped to linkage group (LG) 13 were used to screen for polymorphisms between two parental lines HA 89 and HA-R3. A genetic map of LG 13 was constructed with 21 markers, resulting in a total map length of 93.8 cM and an average distance of 4.5 cM between markers. Two markers, ZVG61 and ORS581, flanked the R 4 gene at 2.1 and 0.8 cM, respectively, and were located on the lower end of LG 13 within a large NBS-LRR cluster identified previously. The PCR pattern generated by primer pair ZVG61 was unique in the HA-R3 line, compared to lines HA-R1, HA-R4, and HA-R5, which carry other R 4 alleles. A SCAR marker linked to the rust resistance gene R adv mapped to LG 13 at 13.9 cM from the R 4 locus, indicating that R adv is not an allele of the R 4 locus. The markers tightly linked to the R 4 gene will facilitate gene pyramiding for rust resistance breeding of sunflower.  相似文献   

16.
The multifoliate pinna (mfp) mutation alters the leaf-blade architecture of pea, such that simple tendril pinnae of distal domain are replaced by compound pinna blades of tendrilled leaflets in mfp homozygotes. The MFP locus was mapped with reference to DNA markers using F2 and F2:5 RIL as mapping populations. Among 205 RAPD, 27 ISSR and 35 SSR markers that demonstrated polymorphism between the parents of mapping populations, three RAPD markers were found linked to the MFP locus by bulk segregant analyses on mfp/mfp and MFP/MFP bulks assembled from the F2:5 population. The segregational analysis of mfp and 267 DNA markers on 96 F2 plants allowed placement of 26 DNA markers with reference to MFP on a linkage group. The existence of common markers on reference genetic maps and MFP linkage group developed here showed that MFP is located on linkage group IV of the consensus genetic map of pea.  相似文献   

17.
Simple sequence repeats (SSRs) in the NCBI dbEST database were surveyed to identify potential SSR markers for Quercus mongolica. In total, 2,691 gene sequences, mainly from expressed sequence tags (ESTs) for Q. robur and Q. petraea had been registered. Twenty-two PCR primers were designed for SSRs in these sequences and screened for polymorphisms in 16 Q. mongolica trees. Ten loci were easily genotyped and showed polymorphism, with numbers of alleles and expected heterozygosity ranging from 3 to 15 and 0.28 to 0.94, respectively. These EST-SSR markers should be useful for studying the genetic diversity of Quercus species.  相似文献   

18.
Rusts and barley yellow dwarf virus (BYDV) are among the main diseases affecting wheat production world wide for which wild relatives have been the source of a number of translocations carrying resistance genes. Nevertheless, along with desirable traits, alien translocations often carry deleterious genes. We have generated recombinants in a bread wheat background between two alien translocations: TC5, ex-Thinopyrum (Th) intermedium, carrying BYDV resistance gene Bdv2; and T4m, ex-Th. ponticum, carrying rust resistance genes Lr19 and Sr25. Because both these translocations are on the wheat chromosome arm 7DL, homoeologous recombination was attempted in the double hemizygote (TC5/T4m) in a background homozygous for the ph1b mutation. The identification of recombinants was facilitated by the use of newly developed molecular markers for each of the alien genomes represented in the two translocations and by studying derived F2, F3 and doubled haploid populations. The occurrence of recombination was confirmed with molecular markers and bioassays on families of testcrosses between putative recombinants and bread wheat, and in F2 populations derived from the testcrosses. As a consequence it has been possible to derive a genetic map of markers and resistance genes on these previously fixed alien linkage blocks. We have obtained fertile progeny carrying new tri-genomic recombinant chromosomes. Furthermore we have demonstrated that some of the recombinants carried resistance genes Lr19 and Bdv2 yet lacked the self-elimination trait associated with shortened T4 segments. We have also shown that the recombinant translocations are fixed and stable once removed from the influence of the ph1b. The molecular markers developed in this study will facilitate selection of individuals carrying recombinant Th. intermediumTh. ponticum translocations (Pontin series) in breeding programs. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Malus sieversii is a progenitor species of domestic apple M. × domestica. Using population “GMAL 4595” of 188 individuals derived from a cross of Royal Gala × PI 613988 (apple scab resistant, M. sieversii), 287 SSR (simple sequence repeats) loci were mapped. Of these SSRs, 80 are published anchors and 207 are newly developed EST (expressed sequence tag) contig-based SSRs, representing 1,630 Malus EST accessions in GenBank. Putative gene functions of these EST contigs are diverse, including regulating plant growth, development and response to environmental stresses. Among the 80 published SSRs, 18 are PI 613988 specific, 38 are common and 24 are Royal Gala specific. Out of the 207 newly developed EST contig-based SSRs, 79 are PI 613988 specific, 45 are common and 83 are Royal Gala specific. These results led to the construction of a M. sieversii map (1,387.0 cM) of 180 SSR markers and a Royal Gala map (1,283.4 cM) of 190 SSR markers. Mapping of scab resistance was independently conducted in two subsets of population “GMAL 4595” that were inoculated with Ventura inaequalis races (1) and (2), respectively. In combination with the two major resistance reactions Chl (chlorotic lesions) and SN (stellate necrosis) to each race, four subsets of resistance data, i.e., Chl/race (1), SN/race (1), Chl/race (2) and SN/race (2), were constituted and analyzed, leading to four resistance loci mapped to the linkage group 2 of PI 613988; SNR1 (stellate necrosis resistance to race (1)) and SNR2 are tightly linked in a region of known scab resistance genes, and ChlR1 (Chlorotic lesion resistance to race (1)) and ChlR2 are also linked tightly but in a region without known scab resistance genes. The utility of the two linkage maps, the new EST contig-based markers and M. sieversii as sources of apple scab resistance are discussed.  相似文献   

20.
Grapevine molecular maps based on microsatellites, AFLP and RAPD markers are now available. SSRs are essential to allow cross-talks between maps, thus upgrading any growing grapevine maps. In this work, single nucleotide polymorphisms (SNPs) were developed from coding sequences and from unique BAC-end sequences, and nested in a SSR framework map of grapevine. Genes participating to flavonoids metabolism and defence, and signal transduction pathways related genes were also considered. Primer pairs for 351 loci were developed from ESTs present on public databases and screened for polymorphism in the “Merzling” (a complex genotype Freiburg 993–60 derived from multiple crosses also involving wild Vitis species) × Vitis vinifera (cv. Teroldego) cross population. In total 138 SNPs, 108 SSR markers and a phenotypic trait (berry colour) were mapped in 19 major linkage groups of the consensus map. In specific cases, ESTs with putatively related functions mapped near QTLs previously identified for resistance and berry ripening. Genes related to anthocyanin metabolism mapped in different linkage groups. A myb gene, which has been correlated with anthocyanin biosynthesis, cosegregated with berry colour on linkage group 2. The possibility of associating candidate genes to known position of QTL is discussed for this plant. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Marzia Salmaso and Giulia Malacarne contributed equally to the present work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号