首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Semi-purified DEN-4 envelope protein, obtained in Pichia pastoris, was capable of generating neutralising and protecting antibodies after immunisation in mice. Here we compared two purification processes of this recombinant protein using two chromatographic steps: immune-affinity chromatography and immobilised metal ion adsorption chromatography (IMAC). The protein purified by both methods produced functional antibodies reflected by titres of haemagglutination inhibition and neutralisation. IMAC could be used as an alternative for high scale purification.  相似文献   

2.
de Marco A 《Nature protocols》2006,1(3):1538-1543
The present purification protocol applies to target proteins that are fused to a double tag, such as NusA-His6, through a linker that includes a protease-recognition sequence. It involves two steps of immobilized metal ion affinity chromatography (IMAC). NusA stabilizes the passenger protein during translation, whereas the His-tag enables affinity purification of the fusion. The eluate resulting from the first IMAC is buffer-exchanged to remove the imidazole and to achieve optimal conditions for the enzymatic cleavage performed by a His-tagged recombinant protease. The digested sample is loaded directly for a second IMAC step and the target protein is selectively recovered in the flow-through. The resin binds residual non-digested fusion protein, double-tagged moiety, protease and any contaminant that bound the affinity resin and was eluted from the first IMAC. The purity of the target protein usually makes a further purification step unnecessary for most of the lab applications. It takes less than 5 hours to purify the protein from a 5 g pellet.  相似文献   

3.
Aprotinin, a bovine protease inhibitor currently also produced in recombinant bacteria, yeast, and corn, has valuable applications as a human therapeutic and in tissue culture. The objective of this work was to develop the basis of a large-scale aprotinin purification process centered on immobilized metal ion affinity chromatography (IMAC). This technique uses ligands—metal ions—of a lower cost and higher stability than those traditionally used in affinity chromatography. Since aprotinin does not interact with IMAC ligands, collection is from the nonretained fractions (negative chromatography). Stirred-tank batch IMAC adsorption experiments indicated that one-step aprotinin purification could not be successful. Immobilized chymotrypsin chromatography was then used as a prepurification step, yielding a suitable feed for IMAC (with purification factors as high as 476). IMAC column fed with these prepurified materials produced purified aprotinin in the nonretained fractions with purification factors as high as 952.  相似文献   

4.
This report describes a procedure for purification of large conductance calcium-activated potassium (BK, maxi-K) channels using immobilised metal affinity chromatography (IMAC) under non-denaturing conditions. An amino-terminal histidine fusion tag was added to hSlo, the human BK channel, and expressed in Sf9 insect cells. Following IMAC purification and production of proteoliposomes, protein function was assessed electrophysiologically in planar bilayer lipid membranes. Single channel openings had conductances of 250-300 pS and were inhibited by paxilline, demonstrating that the BK channels remained functional following IMAC purification. This method to obtain functional human ion channels will be useful in assays to screen potential pharmaceuticals.  相似文献   

5.
The fusion protein of green fluorescent protein (GFP) and human interleukin-2 (hIL-2) was produced in insect Trichoplusia ni larvae infected with recombinant baculovirus derived from the Autographa californica nuclear polyhedrosis virus (AcNPV). This fusion protein was composed of a metal ion binding site (His)6 for rapid one-step purification using immobilized metal affinity chromatography (IMAC), UV-optimized GFP (GFPuv), enterokinase cleavage site for recovering hIL-2 from purified fusion protein, and hIL-2 protein. The additional histidine residues on fusion protein enabled the efficient purification of fusion protein based on immobilized metal affinity chromatography. In addition to advantages of GFP as a fusion marker, GFP was able to be used as a selectable purification marker; we easily determined the correct purified fusion protein sample fraction by simply detecting GFP fluorescence.  相似文献   

6.
Fusion of peptide‐based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram‐range amounts of proteins. IMAC‐Ni(II) columns have become the natural partners of 6xHis‐tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His‐tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur‐containing molecules. In this work, we evaluated two different cysteine‐ and histidine‐containing six amino acid tags linked to the N‐terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine‐containing tagged GFPs were able to bind to IMAC‐Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC‐Ni(II) system reaches less than 20% recovery of the cysteine‐containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC‐Pd(II) yields a recovery of 45% with a purification factor of 13. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Immobilized metal affinity chromatography (IMAC) is widely used for the production of recombinant proteins for a variety of applications; however, a number of challenges are typically encountered by researchers depending on the properties of the specific proteins in question. Here, we describe technical issues we have encountered in production of recombinant zinc finger nucleic acid-binding proteins by IMAC intended for detailed and accurate in vitro analysis. The process encountered leading to a modified IMAC protocol for effective production of high-purity, native zinc finger nucleic acid-binding proteins is described in detail. The parameters with respect to solubility, lysis and redox conditions, removal of residual metal ions with chelating agents, and renaturation in the presence of divalent metal cations are described. These procedures have been extended to production of a wide array of RNA-binding proteins in our laboratory and would be relevant to a number of protein purification applications.  相似文献   

8.
This article describes the technique of immobilized metal ion affinity chromatography (1MAC). The IMAC stationary phases are designed to chelate certain metal ions that have selectivity for specific groups in peptides and on protein surfaces. The number of stationary phases that can be synthesized for efficient chclation of metal ions is unlimited, but the critical consideration is that there is enough exposure of the metal ion to interact with the proteins, preferably in a biospecific manner. The versatility of IMAC is one of its greatest assets. An important contribution to the correct use of IMAC for protein purification is a simplified presentation of the various sample elution procedures.  相似文献   

9.
After 35?years of development, immobilized metal ion affinity chromatography (IMAC) has evolved into a popular protein purification technique. This review starts with a discussion of its mechanism and advantages. It continues with its applications which include the purification of histidine-tagged proteins, natural metal-binding proteins, and antibodies. IMAC used in conjunction with mass spectroscopy for phosphoprotein fractionation and proteomics is also covered. Finally, this review addresses the developments, limitations, and considerations of IMAC in the biopharmaceutical industry.  相似文献   

10.
The chromatographic behavior of monoclonal antibodies (MAbs) of immunoglobulin (Ig) M class against mutant (T103I) amidase from Pseudomonas aeruginosa was investigated on immobilized metal chelates. The effect of ligand concentration, the length of spacer arm, and the nature of metal ion were investigated in immobilized metal affinity chromatography (IMAC). The MAbs against mutant amidase adsorbed to Cu(II), Ni(II), Zn(II), Co(II), and Ca(II)-iminodiacetic acid (IDA) agarose columns. The increase in ligand concentration (epichlorohydrin: 30-60 and 1,4-butanediol-diglycidyl ether: 16-36) resulted in higher adsorption to IgM into immobilized metal chelates. The length of spacer arm was found to affect protein adsorption, as longer spacer arm (i.e., 1,4-butanediol-diglycidyl ether) increased protein adsorption of immobilized metal chelates. The adsorption of IgM onto immobilized metal chelates was pH dependent because an increase in the binding of IgM was observed as the pH varied from 6.0 to 8.0. The adsorption of IgM to immobilized metal chelates was the result of coordination of histidine residues to metal chelates that are available in the third constant domain of heavy chain (CH3) of immunoglobulins, as the presence of imidazole (5 mM) in the equilibration buffer abolished the adsorption of IgM to the column. The combination of tailor-made stationary phases for IMAC and a correct design of the adsorption parameters permitted to devise a one-step purification procedure for IgM. Culture supernatants containing IgM against mutant amidase (T103I) were purified either by IMAC on EPI-60-IDA-Co (II) column or by gel filtration chromatography on Sephacryl S-300HR. The specific content of IgM and final recovery of antibody activity exhibited similar values for both purification schemes. The purified preparations of IgM obtained by both schemes were apparently homogeneous on native polyacrylamide gel electrophoresis with a Mr of 851,000 Da. The results presented in this work strongly suggest that one-step purification of IgM by IMAC is a cost-effective and processcompatible alternative to other types of chromatography.  相似文献   

11.
Although immobilized metal affinity chromatography (IMAC) offers high capacity and protein selectivity it is not typically used commercially for the capture of native proteins from mammalian cell culture harvest. This is due mainly to the potential for low target recovery due to the presence of strong metal ion chelating species in the harvest that compete for the metal immobilized on the resin. To address this issue a buffer exchange step, such as tangential flow filtration (TFF), is added after harvest clarification and prior to IMAC to remove the interfering harvest components. The addition of a TFF step adds process time and cost and reduces target protein recovery. The elimination of the TFF might make IMAC competitive with other orthogonal methods of protein capture. In this study, we developed a modified IMAC method to allow the direct loading of clarified mammalian harvest without prior buffer exchange (direct IMAC). Although the target enzyme recovery was lower than that from standard IMAC the elimination of the buffer exchange step resulted in a 19% increase in overall enzyme recovery. The target enzyme capacity in direct IMAC was higher, in our experience, than the capacity of hydrophobic interaction (HIC) and ion-exchange (IEX) for protein capture. An economic evaluation of using direct IMAC as a capture step in manufacturing is also discussed.  相似文献   

12.
The chromatographic behaviour of monoclonal antibodies (MAbs) of IgM class against mutant (T103I) amidase from Pseudomonas aeruginosa was investigated. The effect of ligand concentration, the length of spacer arm and the nature of metal ion were investigated on immobilized metal ion affinity chromatography (IMAC). MAbs against mutant amidase adsorbed to Cu (II), Ni (II), Zn (II), Co (II) and Ca (II)-IDA agarose columns. The adsorption of MAbs onto immobilized metal chelates was pH dependent because an increase in the binding of MAbs was observed as the pH was raised from 6.0 to 8.0. The adsorption of MAbs to metal chelates was due to coordination of histidine residues which are available in the 3rd constant domain of heavy chain (CH3) of immunoglobulins since the presence of imidazole in the equilibration buffer abolished the adsorption of MAbs to the column packed with commercial IDA-Zn(II) agarose at pH 8.0. The combination of tailor-made stationary phases for IMAC and a correct choice of the adsorption conditions permitted to design a one-step purification procedure for MAbs of IgM class. Culture supernatants containing MAbs of IgM class against mutant amidase (T103I) were chromatographed by IMAC Co (II) column at pH 8.0. The results strongly suggest that one-step purification of MAbs of IgM class by IMAC is a cost-effective and process-compatible alternative to the other purification procedures.  相似文献   

13.
The chromatographic behavior of monoclonal antibodies (MAbs) of immunoglobulin (Ig) M class against mutant (T103I) amidase from Pseudomonas aeruginosa was investigated on immobilized metal chelates. The effect of ligand concentration, the length of spacer arm, and the nature of metal ion were investigated in immobilized metal affinity chromatography (IMAC). The MAbs against mutant amidase adsorbed to Cu(II), Ni(II), Zn(II), Co(II), and Ca(II)-iminodiacetic acid (IDA) agarose columns. The increase in ligand concentration (epichlorohydrin: 30–60 and 1,4-butanediol-diglycidyl ether: 16–36) resulted in higher adsorption to IgM into immobilized metal chelates. The length of spacer arm was found to affect protein adsorption, as longer spacer arm (i.e., 1,4-butanediol-diglycidyl ether) increased protein adsorption of immobilized metal chelates. The adsorption of IgM onto immobilized metal chelates was pH dependent because an increase in the binding of IgM was observed as the pH varied from 6.0 to 8.0. The adsorption of IgM to immobilized metal chelates was the result of coordination of histidine residues to metal chelates that are available in the third constant domain of heavy chain (CH3) of immunoglobulins, as the presence of imidazole (5 mM) in the equilibration buffer abolished the adsorption of IgM to the column. The combination of tailor-made stationary phases for IMAC and a correct design of the adsorption parameters permitted to devise a one-step purification procedure for IgM. Culture supernatants containing IgM against mutant amidase (T103I) were purified either by IMAC on EPI-60-IDA-Co (II) column or by gel filtration chromatography on Sephacryl S-300HR. The specific content of IgM and final recovery of antibody activity exhibited similar values for both purification schemes. The purified preparations of IgM obtained by both schemes were apparently homogeneous on native polyacrylamide gel electrophoresis with a M r of 851,000 Da. The results presented in this work strongly suggest that one-step purification of IgM by IMAC is a cost-effective and process-compatible alternative to other types of chromatography.  相似文献   

14.
Protein purification development is the bottleneck of recombinant protein production therefore there is a need to shorten process development and monitoring. Surface enhanced laser desorption/ionization-mass spectrometry (SELDI-MS) was evaluated to optimize the expression and to develop the purification of a recombinant mouse protein: a transmembrane adaptor involved in T cell receptor signaling named "linker for activation of T cells" (LAT). The protein was expressed as a soluble form (S-LAT) in three strains of Escherichia coli: BL21 (DE3), Rosetta (DE3), and BL21 (DE3) pLys S. The expression of S-LAT was monitored on immobilized metal affinity chromatography (IMAC) ProteinChip arrays. The highest level of expression was found in Rosetta (DE3) with a C-terminal construct after induction at 37 degrees C. The purification scheme was elucidated using SELDI-MS: S-LAT was efficiently captured on an IMAC ProteinChip array saturated with nickel ions (Ni(2+)) and then fractionated on a Q ProteinChip array. These conditions were directly transferred to IMAC-Ni(2+) HyperCel and Q Ceramic HyperD F chromatography sorbents. After these two purification steps, S-LAT was estimated to be more than 80% pure, confirming a very good match between array and sorbent. Finally, a peptide mapping was performed on a hydrophobic array after in gel trypsin digest, verifying that the purified protein was the mouse LAT. This is the first report of a protocol for the production and purification of S-LAT. The selection of the best expression and purification strategy along with the identification were enabled in 5 days with less than 5 mL of soluble fraction of crude culture samples.  相似文献   

15.
Arginine hydrochloride (ArgHCl) is a versatile solvent additive, as it suppresses protein aggregation. ArgHCl has been used for protein refolding and to solubilize proteins from loose inclusion bodies. Immobilized metal affinity chromatography (IMAC) is one of the most commonly used technologies for purification of recombinant proteins. Here we have evaluated compatibility of ArgHCl with IMAC purification for his-tag proteins. ArgHCl clearly interfered with protein binding to Ni-columns. Nevertheless, such interference was greatly reduced at ArgHCl concentration below 200 mM, demonstrating that IMAC purification can be done even in the presence of ArgHCl.  相似文献   

16.
Immobilized metal ion affinity chromatography.   总被引:14,自引:0,他引:14  
The introduction of immobilized metal ion affinity chromatography, directed toward specific protein side chains, has opened a new dimension in protein purification. This review covers the principles and practice of IMAC that can be performed under very mild, nondenaturing conditions. IMAC is particularly suitable for preparative group fractionation of complex extracts and biofluids, but can also be used in high-performance mode: "HP-IMAC." Single-step purifications of 1000-fold or more may allow isolation of a particular protein from crude extracts on a milligram or gram scale. With respect to separation efficiency, IMAC compares well with biospecific affinity chromatography, and the immobilized metal ion ligand complexes are more likely to withstand wear and tear than are antibodies or enzymes. The enormous potential of IMAC and related metal affinity techniques is only in the initial stages of being explored and exploited. Synthesis of IMA adsorbents, and various modes of performing IMAC are discussed and exemplified with selected applications. Advantages and disadvantages are listed. Effective means of counteracting the few undesirable effects that can occur are suggested.  相似文献   

17.
Immobilized metal ion affinity chromatography (IMAC) is now a widely accepted technique for the purification of natural and recombinant therapeutic products and is beginning to find industrial applications. The design, optimization, and scale-up of a chromatographic process using IMAC demands a thorough understanding to be developed regarding the fundamental factors governing the various interactions between immobilized metal ions and proteins. Consequently, there is an immediate need to find out a theory that is able to account for these interactions most efficiently in a qualitative as well as a quantitative manner. In view of this requirement, the interactions of several model proteins (lysozyme, ovalbumin, bovine serum albumin, conalbumin, and wheat germ agglutinin) with metal (Cu(II), Ni(II))-chelated IDA (iminodiacetate) and tris(2-aminoethyl)amine were investigated. The adsorption data were analyzed using four isotherm models, viz., the general affinity interaction theory/Langmuir model, the Freundlich model, the Temkin model, and the Langmuir-Freundlich model, and the sorption parameters were computed. Although the first three models were applicable to some protein-IMA-M(II) systems, the Langmuir-Freundlich model appeared to be the most efficient model for explaining the interactions of proteins with IMA-M(II) gels. Also, this model was able to explain cooperativity and binding heterogeneity in quantitative terms. It is envisaged that this analysis would be useful in developing an improved understanding of protein-immobilized metal ion interactions and providing guidelines for designing preparative-scale separations using IMAC.  相似文献   

18.
The major capsid protein L1 of the human papillomavirus type 16 (HPV16) has been previously expressed recombinantly in Escherichia coli cells as inclusion bodies (IBs). The HPV16 L1 protein offers potential as a vaccine candidate against cervical cancer, but the reported E. coli process is limited in its ability to economically produce significant quantities of material. In this study, a scaleable laboratory process for the purification of recombinant His-tagged L1 protein and its processing to give an immunogenic product is developed. The performances of ion-exchange chromatography (IEX) and immobilised metal affinity chromatography (IMAC) for the purification of L1 protein in the presence of concentrated denaturant are compared. IEX was found to be superior to IMAC when taking into account the complexity of operation, cost of adsorbent, selectivity and purity of the final product. Following purification, reduction of denaturant concentration was performed by dilution to yield a product suitable for formulation. The simplicity and ease of scale-up of dilution makes it an attractive option for process scale production and superior to the existing approach employing dialysis. It was found that direct dilution of denaturant into suitable buffer can give rise to products which have neutralising conformational epitopes identified by strong antibody-binding properties, as assessed by ELISA with a conformational monoclonal antibody. Analysis of the results showed negative main effects of protein concentration and PEG addition on antibody-binding yields, but positive main effects of the addition of detergent and L-arginine to the buffer. The diluted product had antigenic properties as assessed by ELISA and may be formulated easily for use by diafiltration and the addition of adjuvant. This work demonstrates the feasibility of producing viral vaccines using E. coli and scaleable unit operations.  相似文献   

19.
Serum amyloid P component (SAP) has been purified from human serum by means of immobilized metal ion affinity chromatography (IMAC). It was selectively concentrated on carboxymethylated aspartic acid agarose (CM-Asp-agarose) loaded with calcium and, employing very mild conditions, purified to electrophoretical and immunological homogeneity in a single step amounting to about 1900-fold purification. As a purification method our procedure thus compares well with bio-specific affinity chromatography.  相似文献   

20.
We report our experimental results supporting the hypothesis that a specific metal-chelating peptide (CP) on the NH2 terminus of a protein can be used to purify that protein using immobilized metal ion affinity chromatography (IMAC). The potential utility of this approach resides with recombinant proteins since the nucleotide sequence that codes for the protein can be extended to include codons for the chelating peptide and thereby generate the gene for a chimeric CP-protein that can be cloned, expressed, and affinity-purified with immobilized metal ions. The chelating peptide purification handle could then be removed chemically or enzymatically after purification has been achieved to generate a protein with the natural amino acid sequence. The feasibility of using a chelating peptide as a purification handle has been demonstrated using a leuteinizing hormone-releasing hormone (LHRH) analog, 2-10 LHRH, which contains the previously identified chelating peptide, His-Trp, on the NH2 terminus. 2-10 LHRH had a high affinity for a Ni(II) IMAC column due to the NH2-terminal dipeptide sequence His-Trp, forming a coordination complex with Ni(II), whereas the controls, 3-10 LHRH and 4-10 LHRH, lacking the CP sequence, did not bind. Furthermore, 2-10 LHRH could be purified from a mixture of histidine-containing peptides on a Ni(II) IMAC column in one step. His-Trp proinsulin was used as a model of a recombinant CP-protein. The S-sulfonates of His-Trp-proinsulin and proinsulin were isolated from Escherichia coli engineered to overproduce these proteins as trpLE' fusion proteins. His-Trp-proinsulin(SSO3-)6 had a higher affinity for immobilized Ni(II) than proinsulin (SSO3-)6. Both proteins were eluted by decreasing the pH or by introducing a displacing ligand into the buffer. Ni(II) eluted from the column with much higher concentrations of displacing ligand than the proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号