首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Competition for RISC binding predicts in vitro potency of siRNA   总被引:4,自引:3,他引:1  
Short interfering RNAs (siRNA) guide degradation of target RNA by the RNA-induced silencing complex (RISC). The use of siRNA in animals is limited partially due to the short half-life of siRNAs in tissues. Chemically modified siRNAs are necessary that maintain mRNA degradation activity, but are more stable to nucleases. In this study, we utilized alternating 2′-O-methyl and 2′-deoxy-2′-fluoro (OMe/F) chemically modified siRNA targeting PTEN and Eg5. OMe/F-modified siRNA consistently reduced mRNA and protein levels with equal or greater potency and efficacy than unmodified siRNA. We showed that modified siRNAs use the RISC mechanism and lead to cleavage of target mRNA at the same position as unmodified siRNA. We further demonstrated that siRNAs can compete with each other, where highly potent siRNAs can compete with less potent siRNAs, thus limiting the ability of siRNAs with lower potency to mediate mRNA degradation. In contrast, a siRNA with low potency cannot compete with a highly efficient siRNA. We established a correlation between siRNA potency and ability to compete with other siRNAs. Thus, siRNAs that are more potent inhibitors for mRNA destruction have the potential to out-compete less potent siRNAs indicating that the amount of a cellular component, perhaps RISC, limits siRNA activity.  相似文献   

3.
4.
Stierlé V  Laigle A  Jollès B 《Biochimie》2007,89(8):1033-1036
Effective silencing of MDR1, one of the genes involved in the multidrug resistance phenotype, can be achieved by the use of an efficient siRNA transfected into the doxorubicin-selected MCF7-R human cell line, alone or combined with a moderately efficient siRNA. On the contrary, there is no MDR1 silencing when it is co-transfected with a control siRNA that does not target the human genome. This results from the limited amount of RISC (RNA-Induced Silencing Complex) in human cells, leading to competition between siRNAs. In the case where the energy difference between the extremities of one of the siRNAs is largely superior to that of the other one, competition between the siRNAs appear to be favorable for the former. It is suggested that designing efficient siRNAs from thermodynamic characteristics is favored when siRNAs are incorporated into the RISC Loading Complex (RLC) rather than directly loaded into RISC.  相似文献   

5.
6.
Walton SP  Wu M  Gredell JA  Chan C 《The FEBS journal》2010,277(23):4806-4813
The discovery of RNA interference (RNAi) generated considerable interest in developing short interfering RNAs (siRNAs) for understanding basic biology and as the active agents in a new variety of therapeutics. Early studies showed that selecting an active siRNA was not as straightforward as simply picking a sequence on the target mRNA and synthesizing the siRNA complementary to that sequence. As interest in applying RNAi has increased, the methods for identifying active siRNA sequences have evolved from focusing on the simplicity of synthesis and purification, to identifying preferred target sequences and secondary structures, to predicting the thermodynamic stability of the siRNA. As more specific details of the RNAi mechanism have been defined, these have been incorporated into more complex siRNA selection algorithms, increasing the reliability of selecting active siRNAs against a single target. Ultimately, design of the best siRNA therapeutics will require design of the siRNA itself, in addition to design of the vehicle and other components necessary for it to function in vivo. In this minireview, we summarize the evolution of siRNA selection techniques with a particular focus on one issue of current importance to the field, how best to identify those siRNA sequences likely to have high activity. Approaches to designing active siRNAs through chemical and structural modifications will also be highlighted. As the understanding of how to control the activity and specificity of siRNAs improves, the potential utility of siRNAs as human therapeutics will concomitantly grow.  相似文献   

7.
Small interfering RNAs (siRNAs) are widely used for analyzing gene function and have the potential to be developed into human therapeutics. However, persistent siRNA expression in normal cells may cause toxic side effects. Therefore, the therapeutic applications of RNAi in cancer require either the specific delivery of synthetic siRNAs into cancer cells or the control of siRNA expression. Accordingly, we have developed a cancer-specific vector that expresses siRNAs from the human survivin promoter. A plasmid vector expressing siRNAs under this promoter enabled efficient gene silencing of gene expression in different cancer cell lines. The levels of inhibition were comparable to that obtained with the constitutively active U6 promoter. By contrast to U6 promoter, no significant gene silencing was obtained with the Survivin promoter in normal mammary epithelial cells. Collectively, these data indicate that the survivin promoter is suitable for directing siRNA expression in cancer cells, but not normal cells.  相似文献   

8.
9.
10.
11.
The efficiency with which small interfering RNAs (siRNAs) down-regulate specific gene expression in living cells is variable and a number of sequence-governed, biochemical parameters of the siRNA duplex have been proposed for the design of an efficient siRNA. Some of these parameters have been clearly identified to influence the assembly of the RNA-induced silencing complex (RISC), or to favour the sequence preferences of the RISC endonuclease. For other parameters, it is difficult to ascertain whether the influence is a determinant of the siRNA per se, or a determinant of the target RNA, especially its local structural characteristics. In order to gain an insight into the effects of local target structure on the biological activity of siRNA, we have used large sets of siRNAs directed against local targets of the mRNAs of ICAM-1 and survivin. Target structures were classified as accessible or inaccessible using an original, iterative computational approach and by experimental RNase H mapping. The effectiveness of siRNA was characterized by measuring the IC50 values in cell culture and the maximal extent of target suppression. Mean IC50 values were tenfold lower for accessible local target sites, with respect to inaccessible ones. Mean maximal target suppression was improved. These data illustrate that local target structure does, indeed, influence the activity of siRNA. We suggest that local target screening can significantly improve the hit rate in the design of biologically active siRNAs.  相似文献   

12.
13.
14.
Luo Q  Kang Q  Song WX  Luu HH  Luo X  An N  Luo J  Deng ZL  Jiang W  Yin H  Chen J  Sharff KA  Tang N  Bennett E  Haydon RC  He TC 《Gene》2007,395(1-2):160-169
  相似文献   

15.
16.
Small-interfering RNAs (siRNAs) assemble into RISC, the RNA-induced silencing complex, which cleaves complementary mRNAs. Despite their fluctuating efficacy, siRNAs are widely used to assess gene function. Although this limitation could be ascribed, in part, to variations in the assembly and activation of RISC, downstream events in the RNA interference (RNAi) pathway, such as target site accessibility, have so far not been investigated extensively. In this study we present a comprehensive analysis of target RNA structure effects on RNAi by computing the accessibility of the target site for interaction with the siRNA. Based on our observations, we developed a novel siRNA design tool, RNAxs, by combining known siRNA functionality criteria with target site accessibility. We calibrated our method on two data sets comprising 573 siRNAs for 38 genes, and tested it on an independent set of 360 siRNAs targeting four additional genes. Overall, RNAxs proves to be a robust siRNA selection tool that substantially improves the prediction of highly efficient siRNAs.  相似文献   

17.
18.
Within the recent years, RNA interference (RNAi) has become an almost-standard method for in vitro knockdown of any target gene of interest. Now, one major focus is to further explore its potential in vivo, including the development of novel therapeutic strategies. From the mechanism, it becomes clear that small interfering RNAs (siRNAs) play a pivotal role in triggering RNAi. Thus, the efficient delivery of target gene-specific siRNAs is one major challenge in the establishment of therapeutic RNAi. Numerous studies, based on different modes of administration and various siRNA formulations and/or modifications, have already accumulated promising results. This applies to various animal models covering viral infections, cancer and multiple other diseases. Continuing efforts will lead to the development of efficient and “double-specific” drugs, comprising of siRNAs with high target gene specificity and of nanoparticles enhancing siRNA delivery and target organ specificity.  相似文献   

19.
In this study, dimerized siRNAs linked by a cleavable disulfide bond were synthesized for efficient intracellular delivery and gene silencing. The reducible dimerized siRNAs showed far enhanced complexation behaviors with cationic polymers as compared to monomeric siRNA at the same N/P ratio, as demonstrated by microscopic techniques and gel characterization. Dimerized siRNAs targeting green fluorescent protein (GFP) or vascular endothelial growth factor (VEGF) were complexed with linear polyethylenimine (LPEI), and treated to various cell lines to examine gene transfection efficiencies. In comparison to monomer siRNA/LPEI complexes, dimeric siRNA/LPEI complexes showed greatly enhanced cellular uptake and gene silencing effects in vitro. These results were mainly due to the higher charge density and promoted chain flexibility of the dimerized siRNAs, providing more compact and stable siRNA complexes. In addition, the conjugation strategy of reducible siRNA dimers was further extended: poly(ethylene glycol) (PEG)-modified dimerized siRNAs and heterodimers of siRNAs targeting two different genes (e.g., GFP and VEGF) were synthesized, and their gene silencing efficiencies were characterized. The dimerized siRNA complex system holds great potential for in vivo systemic gene therapy.  相似文献   

20.
Improvement in the pharmacokinetic properties of short interfering RNAs (siRNAs) is a prerequisite for the therapeutic application of RNA interference technology. When injected into mice as unmodified siRNAs complexed to DOTAP/Chol-based cationic liposomes, all 12 tested siRNA duplexes caused a strong induction of cytokines including interferon alpha, indicating that the immune activation by siRNA duplexes is independent of sequence context. When modified by various combinations of 2'-OMe, 2'-F, and phosphorothioate substitutions, introduction of as little as three 2'-OMe substitutions into the sense strand was sufficient to suppress immune activation by siRNA duplexes, whereas the same modifications were much less efficient at inhibiting the immune response of single stranded siRNAs. It is unlikely that Toll-like receptor 3 (TLR3) signaling is involved in immune stimulation by siRNA/liposome complexes since potent immune activation by ds siRNAs was induced in TLR3 knockout mice. Together, our results indicate that chemical modification of siRNA provides an effective means to avoid unwanted immune activation by therapeutic siRNAs. This improvement in the in vivo properties of siRNAs should greatly facilitate successful development of siRNA therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号