首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regulatory proteins Nef, Rev, and Tat of human immunodeficiency virus type 1 (HIV-1) are attractive targets for vaccine development, since induction of effective immune responses targeting these early proteins may best control virus replication. Here we investigated whether vaccination with biologically active Tat or inactive Tat toxoid derived from HIV-1(IIIB) and simian-human immunodeficiency virus (SHIV) strain 89.6p would induce protective immunity in rhesus macaques. Vaccination induced high titers of anti-Tat immunoglobulin G in all immunized animals by week 7, but titers were somewhat lower in the 89.6p Tat group. Dominant B-cell epitopes mapped to the amino terminus, the basic domain, and the carboxy-terminal region. Tat-specific T-helper responses were detected in 50% of immunized animals. T-cell epitopes appeared to map within amino acids (aa) 1 to 24 and aa 37 to 66. In addition, Tat-specific gamma interferon responses were detected in CD4+ and/or CD8+ T lymphocytes in 11 of 16 immunized animals on the day of challenge. However, all animals became infected upon intravenous challenge with 30 50% minimal infective doses of SHIV 89.6p, and there were no significant differences in viral loads or CD4+ T-cell counts between immunized and control animals. Thus, vaccination with HIV-1(IIIB) or SHIV 89.6p Tat or with Tat toxoid preparations failed to confer protection against SHIV 89.6p infection despite robust Tat-specific humoral and cellular immune responses in some animals. Given its apparent immunogenicity, Tat may be more effective as a component of a cocktail vaccine in combination with other regulatory and/or structural proteins of HIV-1.  相似文献   

2.
Transmission of human immunodeficiency virus type 1 (HIV-1) occurs primarily via the mucosal route, suggesting that HIV-1 vaccines may need to elicit mucosal immune responses. Here, we investigated the immunogenicity and relative efficacy of systemic immunization with two human ALVAC-HIV-1 recombinant vaccines expressing Gag, Pol, and gp120 (vCP250) or Gag, Pol, and gp160 (vCP1420) in a prime-boost protocol with their homologous vaccine native Env proteins. The relative efficacy was measured against a high-dose mucosal exposure to the pathogenic neutralization-resistant variant SHIV(KU2) (simian-human immunodeficiency virus). Systemic immunization with both vaccine regimens decreased viral load levels not only in blood but unexpectedly also in mucosal sites and protected macaques from peripheral CD4+ T-cell loss. This protective effect was stronger when the gp120 antigen was included in the vaccine. Inclusion of recombinant Tat protein in the boosting phase along with the Env protein did not contribute further to the preservation of CD4+ T cells. Thus, systemic immunization with ALVAC-HIV-1 vaccine candidates elicits anti-HIV-1 immune responses able to contain virus replication also at mucosal sites in macaques.  相似文献   

3.
Immature dendritic cells are among the first cells infected by retroviruses after mucosal exposure. We explored the effects of human immunodeficiency virus-1 (HIV-1) and its Tat transactivator on these primary antigen-presenting cells using DNA microarray analysis and functional assays. We found that HIV-1 infection or Tat expression induces interferon (IFN)-responsive gene expression in immature human dendritic cells without inducing maturation. Among the induced gene products are chemokines that recruit activated T cells and macrophages, the ultimate target cells for the virus. Dendritic cells in the lymph nodes of macaques infected with simian immunodeficiency virus (SIV) have elevated levels of monocyte chemoattractant protein 2 (MCP-2), demonstrating that chemokine induction also occurs during retroviral infection in vivo. These results show that HIV-1 Tat reprograms host dendritic cell gene expression to facilitate expansion of HIV-1 infection.  相似文献   

4.
5.
The human immunodeficiency virus-1 (HIV-1) regulatory protein Tat plays an important role during HIV-1-associated neurocognitive disorders (HAND) by inducing neuronal autophagy. In this study, we used immunohistochemistry, immunofluorescence, western blot, qRT-PCR, and RNA interference to elucidate the involvement of Bcl-2-associated athanogene 3 (BAG3) in the pathogenesis of HIV-1 Tat-induced autophagy during HAND. We found that BAG3 expression is elevated in astrocytes in frontal cortex of macaques infected with simian immunodeficiency virus-human immunodeficiency chimeric virus (SHIV). In addition, in human primary glioblastoma cells (U87), HIV-1 Tat upregulated BAG3 in an NF-κB-dependent manner to induce autophagy. Importantly, suppression of BAG3 or inhibition of NF-κB activity reversed the HIV-1 Tat-induced autophagy. These results indicate that HIV-1 Tat induces autophagy by upregulating BAG3 via NF-κB signaling, which suggests BAG3 and NF-κB could potentially serve as novel targets for HAND therapies.  相似文献   

6.
7.
8.
A safe, efficacious vaccine is required to stop the AIDS pandemic. Disappointing results from the STEP trial implied a need to include humoral anti-HIV-1 responses, a notion supported by RV144 trial data even though correlates of protection are unknown. We vaccinated rhesus macaques with recombinant simian immunodeficiency virus (SIV) Gag-Pol particles, HIV-1 Tat and trimeric clade C (HIV-C) gp160, which induced cross-neutralizing antibodies (nAbs) and robust cellular immune responses. After five low-dose mucosal challenges with a simian-human immunodeficiency virus (SHIV) that encoded a heterologous R5 HIV-C envelope (22.1% divergence from the gp160 immunogen), 94% of controls became viremic, whereas one third of vaccinees remained virus-free. Upon high-dose SHIV rechallenge, all controls became infected, whereas some vaccinees remained aviremic. Peak viremia was inversely correlated with both cellular immunity (p<0.001) and cross-nAb titers (p<0.001). These data simultaneously linked cellular as well as humoral immune responses with the degree of protection for the first time.  相似文献   

9.
Human immunodeficiency virus type 1 (HIV-1) Vpu enhances the release of viral particles from infected cells by targeting BST-2/tetherin, a cellular protein inhibiting virus release. The widely used HIV-1(NL4-3) Vpu functionally inactivates human BST-2 but not murine or monkey BST-2, leading to the notion that Vpu antagonism is species specific. Here we investigated the properties of the CXCR4-tropic simian-human immunodeficiency virus DH12 (SHIV(DH12)) and the CCR5-tropic SHIV(AD8), each of which carries vpu genes derived from different primary HIV-1 isolates. We found that virion release from infected rhesus peripheral blood mononuclear cells was enhanced to various degrees by the Vpu present in both SHIVs. Transfer of the SHIV(DH12) Vpu transmembrane domain to the HIV-1(NL4-3) Vpu conferred antagonizing activity against macaque BST-2. Inactivation of the SHIV(DH12) and SHIV(AD8) vpu genes impaired virus replication in 6 of 8 inoculated rhesus macaques, resulting in lower plasma viral RNA loads, slower losses of CD4(+) T cells, and delayed disease progression. The expanded host range of the SHIV(DH12) Vpu was not due to adaptation during passage in macaques but was an intrinsic property of the parental HIV-1(DH12) Vpu protein. These results demonstrate that the species-specific inhibition of BST-2 by HIV-1(NL4-3) Vpu is not characteristic of all HIV-1 Vpu proteins; some HIV-1 isolates encode a Vpu with a broader host range.  相似文献   

10.
We previously demonstrated that replication-competent adenovirus (Ad)-simian immunodeficiency virus (SIV) recombinant prime/protein boost regimens elicit potent immunogenicity and strong, durable protection of rhesus macaques against SIV(mac251). Additionally, native Tat vaccines have conferred strong protection against simian/human immunodeficiency virus SHIV(89.6P) challenge of cynomolgus monkeys, while native, inactivated, or vectored Tat vaccines have failed to elicit similar protective efficacy in rhesus macaques. Here we asked if priming rhesus macaques with replicating Ad-human immunodeficiency virus (HIV) tat and boosting with the Tat protein would elicit protection against SHIV(89.6P). We also evaluated a Tat/Env regimen, adding an Ad-HIV env recombinant and envelope protein boost to test whether envelope antibodies would augment acute-phase protection. Further, expecting cellular immunity to enhance chronic viremia control, we tested a multigenic group: Ad-HIV tat, -HIV env, -SIV gag, and -SIV nef recombinants and Tat, Env, and Nef proteins. All regimens were immunogenic. A hierarchy was observed in enzyme-linked immunospot responses (with the strongest response for Env, followed by Gag, followed by Nef, followed by Tat) and antibody titers (with the highest titer for Env, followed by Tat, followed by Nef, followed by Gag). Following intravenous SHIV(89.6P) challenge, all macaques became infected. Compared to controls, no protection was seen in the Tat-only group, confirming previous reports for rhesus macaques. However, the multigenic group blunted acute viremia by approximately 1 log (P = 0.017), and both the multigenic and Tat/Env groups reduced chronic viremia by 3 and 4 logs, respectively, compared to controls (multigenic, P = 0.0003; Tat/Env, P < 0.0001). The strikingly greater reduction in the Tat/Env group than in the multigenic group (P = 0.014) was correlated with Tat and Env binding antibodies. Since prechallenge anti-Env antibodies lacked SHIV(89.6P)-neutralizing activity, other functional anti-Env and anti-Tat activities are under investigation, as is a possible synergy between the Tat and Env immunogens.  相似文献   

11.
The low density lipoprotein receptor-related protein (LRP) is a scavenger receptor that binds several ligands including the activated form of the pan-proteinase inhibitor alpha(2)-macroglobulin (alpha(2)M*) and amyloid precursor protein, two ligands genetically linked to Alzheimer's disease. To delineate the contribution of LRP to this disease, it will be necessary to identify the sites on this receptor which are responsible for recognizing these and other ligands to assist in the development of specific inhibitors. Structurally, LRP contains four clusters of cysteine-rich repeats, yet studies thus far suggest that only two of these clusters (clusters II and IV) bind ligands. Identifying binding sites within LRP for certain ligands, such as alpha(2)M*, has proven to be difficult. To accomplish this, we mapped the binding site on LRP for two inhibitors of alpha(2)M* uptake, monoclonal antibody 8G1 and an amino-terminal fragment of receptor-associated protein (RAP D1D2). Surprisingly, the inhibitors recognized different clusters of ligand binding repeats: 8G1 bound to repeats within cluster I, whereas the RAP fragment bound to repeats within cluster II. A recombinant LRP mini-receptor containing the repeats from cluster I along with three ligand binding repeats from cluster II was effective in mediating the internalization of (125)I-labeled alpha(2)M*. Together, these studies indicate that ligand binding repeats from both cluster I and II cooperate to generate a high affinity binding site for alpha(2)M*, and they suggest a strategy for developing specific inhibitors to block alpha(2)M* binding to LRP by identifying molecules capable of binding repeats in cluster I.  相似文献   

12.
A series of 5-amino derivatives of 8-hydroxy[1,6]-naphthyridine-7-carboxamide exhibiting sub-micromolar potency against replication of HIV-1 in cell culture was identified. One of these analogs, compound 12, displayed excellent pharmacokinetic properties when dosed orally in rats and in monkeys. This compound was demonstrated to be efficacious against replication of simian-human immunodeficiency virus (SHIV) 89.6P in infected rhesus macaques.  相似文献   

13.
The Epstein-Barr virus latent membrane protein (LMP) is an integral membrane protein that is expressed in cells latently infected with the virus. LMP is believed to play an important role in Epstein-Barr virus transformation and has been shown to induce expression of several cellular proteins. We performed a series of experiments that demonstrated that LMP is an efficient transactivator of expression from the human immunodeficiency virus type 1 long terminal repeat (HIV-1 LTR). Mutation or deletion of the NF-kappa B elements in the LTR abolished the transactivation, indicating that the LMP effect on HIV expression was due to induction of NF-kappa B activity. Experiments in which the HIV-1 Tat protein was coexpressed in cells together with LMP showed that Tat was able to potentiate the transactivation. Surprisingly, a synergistic effect of the two proteins was observed even in the absence of the recognized target region for Tat (TAR) in the HIV-1 LTR.  相似文献   

14.
The adenovirus type 5 (Ad5)-based vaccine developed by Merck failed to either prevent HIV-1 infection or suppress viral load in subsequently infected subjects in the STEP human Phase 2b efficacy trial. Analogous vaccines had previously also failed in the simian immunodeficiency virus (SIV) challenge-rhesus macaque model. In contrast, vaccine protection studies that used challenge with a chimeric simian-human immunodeficiency virus (SHIV89.6P) in macaques did not predict the human trial results. Ad5 vector-based vaccines did not protect macaques from infection after SHIV89.6P challenge but did cause a substantial reduction in viral load and a preservation of CD4+ T cell counts after infection, findings that were not reproduced in the human trials. Although the SIV challenge model is incompletely validated, we propose that its expanded use can help facilitate the prioritization of candidate HIV-1 vaccines, ensuring that resources are focused on the most promising candidates. Vaccine designers must now develop T cell vaccine strategies that reduce viral load after heterologous challenge.  相似文献   

15.
Understanding the evolution of the human immunodeficiency virus type 1 (HIV-1) envelope during disease progression can provide tremendous insights for vaccine development, and simian-human immunodeficiency virus (SHIV) infection of non-human primate provides an ideal platform for such studies. A newly developed clade C SHIV, SHIV-1157ipd3N4, which was able to infect rhesus macaques, closely resembled primary HIV-1 in transmission and pathogenesis, was used to infect several pig-tailed macaques. One of the infected animals subsequently progressed to AIDS, whereas one remained a non-progressor. The viral envelope evolution in the infected animals during disease progression was analyzed by a bioinformatics approach using ultra-deep pyrosequencing. Our results showed substantial envelope variations emerging in the progressor animal after the onset of AIDS. These envelope variations impacted the length of the variable loops and charges of different envelope regions. Additionally, multiple mutations were located at the CD4 and CCR5 binding sites, potentially affecting receptor binding affinity, viral fitness and they might be selected at late stages of disease. More importantly, these envelope mutations are not random since they had repeatedly been observed in a rhesus macaque and a human infant infected by either SHIV or HIV-1, respectively, carrying the parental envelope of the infectious molecular clone SHIV-1157ipd3N4. Moreover, similar mutations were also observed from other studies on different clades of envelopes regardless of the host species. These recurring mutations in different envelopes suggest that there may be a common evolutionary pattern and selection pathway for the HIV-1 envelope during disease progression.  相似文献   

16.
The human immunodeficiency virus type 1 (HIV-1) Tat protein transduction domain (PTD), which contains rich arginine and lysine residues, is responsible for the highly efficient transduction of protein through the plasma membrane. In addition, it can be secreted from infected cells and has the ability to enter neighboring cells. When the PTD of Tat is fused to proteins and exogenously added to cells, the fusion protein can cross plasma membranes. Recent reports indicate that the endogenously expressed Tat fusion protein can demonstrate biodistribution of several proteins. However, intercellular transport and protein transduction have not been observed in some studies. Therefore, this study examined the intercellular transport and protein transduction of the Tat protein. The results showed no evidence of intercellular transport (biodistribution) in a cell culture. Instead, the Tat fusion peptides were found to have a significant effect on the transduction and intercellular localization properties. This suggests that the HIV-1 PTD passes through the plasma membrane in one direction.  相似文献   

17.
Tang Y  Winkler U  Freed EO  Torrey TA  Kim W  Li H  Goff SP  Morse HC 《Journal of virology》1999,73(12):10508-10513
Previously we demonstrated that murine retroviral Gag proteins associate with a cellular motor protein, KIF-4. Using the yeast two-hybrid assay, we also found an association of KIF-4 with Gag proteins of Mason-Pfizer monkey virus (MPMV), simian immunodeficiency virus (SIV), and human immunodeficiency virus type 1 (HIV-1). Studies performed with mammalian cell systems confirmed that the HIV-1 Gag protein associates with KIF-4. Soluble cytoplasmic proteins from cells infected with recombinant vaccinia virus expressing the entire Gag-Pol precursor protein of HIV-1 or transfected with HIV-1 molecular clone pNL4-3 were fractionated by sucrose gradient centrifugation and further separated by size-exclusion and anion-exchange chromatographies. KIF-4 and HIV-1 Gag cofractionated in both chromatographic separations. Immunoprecipitation assays have also verified the KIF-4-Gag association. KIF-4 binds mainly to the Gag precursor (Pr55 Gag) and a matrix-capsid processing intermediate (Pr42) but not to other processed Gag products. The binding of Gag is mediated by a domain of KIF-4 proximal to the C terminus. These results, and our previous studies, raise the possibility that KIF-4 may play an important role in retrovirus Gag protein transport.  相似文献   

18.
19.
20.
Human immunodeficiency virus (HIV) infection and the progression to AIDS are characterized by the depletion of CD4(+) T-cells. HIV-1 infection leads to apoptosis of uninfected bystander cells and the direct killing of HIV-infected cells. This is mediated, in part, by the HIV-1 Tat protein, which is secreted by virally infected cells and taken up by uninfected cells. We chemically synthesized two 86-residue subtype D Tat proteins, Ug05RP and Ug11LTS, from two Ugandan patients who were clinically categorized as either rapid progressor or long-term survivor, with non-conservative mutations located essentially in the glutamine-rich region. Structural heterogeneities were revealed by CD, which translate into differing trans-activational and apoptotic effects. CD data analysis and molecular modeling indicated that the short alpha-helix observed in subtype D Tat proteins from rapid progressor patients such as Tat Mal and Tat Ug05RP is not present in Ug11LTS. We show that Tat Ug05RP is more efficient than Tat Ug11LTS in its trans-activational role and in inducing apoptosis in binding tubulin via the mitochondrial pathway. The glutamine-rich region of Tat appears to be involved in the Tat-mediated apoptosis of T-cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号