首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracellular glutathione (GSH) depletion induced by buthionine sulfoximine (BSO) caused cell death that seemed to be apoptosis in C6 rat glioma cells. Arachidonic acid (AA) promoted BSO-induced cell death by accumulating reactive oxygen species (ROS) or hydroperoxides. AA inhibited caspase-3 activation and internucleosomal DNA fragmentation during the BSO-induced GSH depletion. Furthermore, AA reduced intracellular ATP content, induced dysfunction of mitochondrial membrane and enhanced 8-hydroxy-2'-deoxyguanosine (8-OH-dG) production. There was significant increase of 12-lipoxygenase activity in the presence of AA under the BSO-induced GSH depletion in C6 cells. These results suggest that AA promotes cell death by changing to necrosis from apoptosis through lipid peroxidation initiated by lipid hydroperoxides produced by 12-lipoxygenase under the GSH depletion in C6 cells. Some ROS such as hydroperoxide produced by unknown pathway make hydroxy radicals and induce 8-OH-dG formation in the cells. The conversion of apoptosis to necrosis may be a possible event under GSH depleted conditions.  相似文献   

2.
Glutamate and buthionine sulfoximine (BSO) both reduce intracellular glutathione (GSH) concentration but by different mechanisms, and thereby induce cell death in C6 rat glioma cells. The effects of lipid peroxidation on chromosomal DNA damage during the GSH depletion-induced cell death were assessed. Polyunsaturated fatty acids (PUFA), such as arachidonic acid (AA), gamma-linolenic acid and linoleic acid enhanced lipid peroxidation, induced a loss of membrane integrity and consequently promoted 1-2 Mbp giant DNA fragmentation under both glutamate- and BSO-induced GSH-depletion. Treated C6 cells had 3'-OH termini in their DNA which were recognized by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) analysis. Antioxidants capable of scavenging reactive oxygen species and lipid radicals and iron or copper scavengers inhibited both lipid peroxidation and 1-2 Mbp giant DNA fragmentation, consequently protecting against cell death under GSH depletion. These results suggest that GSH depletion induces lipid peroxidation and leads to 1-2 Mbp giant DNA fragmentation; and that PUFAs can promote giant DNA fragmentation and 3'-OH termini in chromosomal DNA enhancing lipid peroxidation of C6 cells.  相似文献   

3.
Glutamate induced glutathione (GSH) depletion in C6 rat glioma cells, which resulted in cell death. This cell death seemed to be apoptosis through accumulation of reactive oxygen species (ROS) or hydroperoxides representing cytochrome c release from mitochondria and internucleosomal DNA fragmentation. A significant increase of 12-lipoxygenase enzyme activity was observed in the presence of arachidonic acid (AA) under GSH depletion induced by glutamate. AA promoted the glutamate-induced cell death, which reduced caspase-3 activity and diminished internucleosomal DNA fragmentation. Furthermore, AA reduced intracellular NAD, ATP and membrane potentials, which indicated dysfunction of the mitochondrial membrane. Protease inhibitors such as N-alpha-tosyl-L-phenylalanine chloromethyl ketone (TPCK) and 3, 4-dichloroisocumarin (DCI) but no Ac-DEVD, a caspase inhibitor, suppressed the glutamate-induced cell death. AA reduced the inhibitory effect of TPCK and DCI on the glutamate-induced cell death. These results suggest that AA promotes cell death by inducing necrosis from caspase-3-independent apoptosis. This might occur through lipid peroxidation initiated by ROS or lipid hydroperoxides generated during GSH depletion in C6 cells.  相似文献   

4.
Chromosomal DNA and mitochondrial dysfunctions play a role on mammalian cell death induced by oxidative stress. The major biochemical dysfunction of chromosome is the presence of an ordered cleavage of the DNA backborn, which is separated and visualized as an electrophoretic pattern of fragments. Oxidative stress provides chromatin dysfunction such as single strand and double strand DNA fragmentation leading to cell death. More than 1 Mb of giant DNA, 200-800 kb or 50-300 kb high molecular weight (HMW) DNA and internucleosomal DNA fragments are produced during apoptosis or necrosis induced by oxidative stress such as glutathione (GSH) depletion in several types of mammalian cells. Reactive oxygen species (ROS)-mediated DNA fragmentation is enhanced by polyunsaturated fatty acids including arachidonic acid or their hydroperoxides, leading to necrosis. Mitochondrial dysfunction on decrease of trans membrane potential, accumulation of ROS, membrane permeability transition and release of apoptotic factors during apoptosis or necrosis has been implicated. This review refers to the correlation of chromosomal DNA fragmentation and apoptosis or necrosis induced by GSH depletion, and the possible mechanisms of oxidative stress-induced cell death.  相似文献   

5.
It has been reported that glutamate decreased the intracellular glutathione (GSH) concentration and thereby induced cell death in C6 rat glioma cells. Polyunsaturated fatty acids such as arachidonic acid, gamma-linolenic acid, and linoleic acid enhanced lipid peroxidation promoting 8-hydroxy-2'-deoxyguanosine (8-OH-dG) formation under the glutamate-induced GSH-depletion. The enhancement of lipid peroxidation by polyunsaturated fatty acids was species-dependent. Some antioxidants capable of scavenging oxygen and lipid radicals and some iron or copper scavengers inhibited both the lipid peroxidation and the 8-OH-dG formation, consequently protecting against cell death induced by glutamate-induced GSH depletion. These results suggest that GSH depletion caused by glutamate induces lipid peroxidation and consequently 8-OH-dG formation and that polyunsaturated fatty acids enhance lipid peroxidation associated with mediated 8-OH-dG formation through a chain reaction.  相似文献   

6.
Direct exposure of human hepatoma cell line SMMC-7721 to hydrogen peroxide (H2O2) can induce apoptosis. Apoptosis induced by H2O2 was inhibited by cycloheximide, actinomycin D, 3-aminobenzamide, EGTA or Zn2+. H2O2 can increase the level of intracellular Ca2+, downregulate GSH levels, slightly induce lipid peroxidation, and lead to change in the ratio of reduced ion components to oxidized ion components of cells. Analysis of flow cytometry indicates that H2O2 decreases the level of Bcl-2. The data indicate that H2O2-induced apoptosis requires new mRNA and protein syntheses; H2O2 can activate Ca2+/Mg2+-dependent endonuclease leading to internucleosomal DNA fragmentation and activation of poly (ADP-ribose) polymerase interfering with the energy metabolism of the cell. The H2O2 downregulation of GSH may be more important for apoptosis than H2O2 induction of lipid peroxidation, and the H2O2 induced changes in redox status of the cell may be among the original events which lead up to other biochemical changes.  相似文献   

7.
In this report we studied DNA damage and lipid peroxidation in rat liver nuclei incubated with iron ions for up to 2 hrs in order to examine whether nuclear DNA damage was dependent on membrane lipid peroxidation. Lipid peroxidation was measured as thio-barbituric acid-reactive substances (TBARS) and DNA damage was measured as 8-OH-deoxyguanosine (8-OH-dG). We showed that Fe(II) induced nuclear lipid peroxidation dose-dependently but only the highest concentration (1.0 mM) used induced appreciable 8-OH-dG. Fe(II1) up to 1 mM induced minimal lipid peroxidation and negligible amounts of 8-OH-dG. Ascorbic acid enhanced Fe(II)-induced lipid peroxidation at a ratio to Fe(II) of 1:l but strongly inhibited peroxidation at ratios of 2.5:l and 5:l. By contrast, ascorbate markedly enhanced DNA damage at all ratios tested and in a concentration-dependent manner. The nuclear DNA damage induced by 1 niM FeSO4/5 mM ascorbic acid was largely inhibited by iron chelators and by dimethylsulphoxide and manni-tol, indicating the involvement of OH. Hydrogen peroxide and superoxide anions were also involved, as DNA damage was partially inhibited by catalase and, to a lesser extent, by superoxide dismutase. The chain-breaking antioxidants butylated hydroxytoluene and diphenylamine (an alkoxyl radical scavenger) did not inhibit DNA damage. Hence, this study demonstrated that ascorbic acid enhanced Fe(II)-induced DNA base modification which was not dependent on lipid peroxidation in rat liver nuclei.  相似文献   

8.
We have investigated the effects of a smokeless tobacco extract (STE) on lipid peroxidation, cytochrome c reduction, DNA fragmentation and apoptotic cell death in normal human oral keratinocyte cells, and assessed the protective abilities of selected antioxidants. The cells, isolated and cultured from human oral tissues, were treated with STE (0-300 microl;g/ml) for 24 h. Superoxide anion production was determined by cytochrome c reductase. Oxidative tissue damage was determined by lipid peroxidation and DNA fragmentation, whereas apoptotic cell death was assessed by flow cytometry. STE-induced fragmentation of genomic DNA was also determined by gel electrophoresis. The comparative protective abilities of vitamin C (75 microM), vitamin E (75 microM), a combination of vitamins C & E (75 microM each), and a novel grape seed proanthocyanidin (IH636) extract (GSPE) (100 microg/ml) against STE induced oxidative stress and tissue damage were also determined. Following treatment of the cells with 300 microg STE/ml 1.5-7.6-fold increases in lipid peroxidation, cytochrome c reduction and DNA fragmentation were observed. The addition of the antioxidants to cells treated with STE provided 10-54% decreases in these parameters. Approximately 9, 29, and 35% increases in apoptotic cell death were observed following treatment with 100, 200, and 300 microg STE/ml, respectively, and 51-85% decreases in apoptotic cell death were observed with the antioxidants. The results demonstrate that STE produces oxidative tissue damage and apoptosis, which can be attenuated by antioxidants including vitamin C, vitamin E, a combination of vitamins C plus E and GSPE. GSPE exhibited better protection against STE than vitamins C and E, singly and in combination.  相似文献   

9.
During apoptosis, endonucleases cleave DNA into 50-300-kb fragments and subsequently into internucleosomal fragments. DNA fragmentation factor (DFF) is implicated in apoptotic DNA cleavage; this factor comprises DFF45 and DFF40 subunits, the former of which acts as a chaperone and inhibitor of the catalytic subunit and whose cleavage by caspase-3 results in DFF activation. Disruption of the DFF45 gene blocks internucleosomal DNA fragmentation and confers resistance to apoptosis in primary thymocytes. The role of DFF-mediated DNA fragmentation in apoptosis was investigated in primary fibroblasts from DFF45(-/-) and control (DFF45(+/+)) mice. DFF45 deficiency rendered fibroblasts resistant to apoptosis induced by tumor necrosis factor (TNF). TNF induced rapid cleavage of DNA into approximately 50-kb fragments in DFF45(+/+) fibroblasts but not in DFF45(-/-) cells, indicating that DFF mediates this initial step in DNA processing. The TNF-induced activation of poly(ADP-ribose) polymerase (PARP), which requires PARP binding to DNA strand breaks, and the consequent depletion of the PARP substrate NAD were markedly delayed in DFF45(-/-) cells, suggesting a role for DFF in PARP activation. The activation of caspase-3 and mitochondrial events important in apoptotic signaling, including the loss of mitochondrial membrane potential and the release of cytochrome c, induced by TNF were similarly delayed in DFF45(-/-) fibroblasts. DFF45(-/-) and DFF45(+/+) cells were equally sensitive to the DNA-damaging agent and PARP activator N-methyl-N'-nitro-N-nitrosoguanidine. Inhibition of PARP by 3-aminobenzamide partially protected DFF45(+/+) cells against TNF-induced death and inhibited the associated release of cytochrome c and activation of caspase-3. These results suggest that the generation of 50-kb DNA fragments by DFF, together with the activation of PARP, mitochondrial dysfunction, and caspase-3 activation, contributes to an amplification loop in the death process.  相似文献   

10.
Proatherogenic oxidized low-density lipoprotein (oxLDL) induces endothelial apoptosis. We investigated the anti-apoptotic effects of intracellular and extracellular nitric oxide (*NO) donors, iron chelators, cell-permeable superoxide dismutase (SOD), glutathione peroxidase mimetics, and nitrone spin traps. Peroxynitrite (ONOO-)-modified oxLDL induced endothelial apoptosis was measured by DNA fragmentation, TUNEL assay, and caspase-3 activation. Results indicated the following: (i) the lipid fraction of oxLDL was primarily responsible for endothelial apoptosis. (ii) Endothelial apoptosis was potently inhibited by *NO donors and lipophilic phenolic antioxidants. OxLDL severely depleted Bcl-2 levels in endothelial cells and *NO donors restored Bcl-2 protein in oxLDL-treated cells. (iii) The pretreatment of a lipid fraction derived from oxLDL with sodium borohydride or potassium iodide completely abrogated apoptosis in endothelial cells, suggesting that lipid hydroperoxides induce apoptosis. (iv) Metalloporphyrins dramatically inhibited oxLDL-induced apoptosis in endothelial cells. Neither S-nitrosation of caspase-3 nor induction of Hsp70 appeared to play a significant role in the antiapoptotic mechanism of *NO in oxLDL-induced endothelial apoptosis. We propose that cellular lipid peroxyl radicals or lipid hydroperoxides induce an apoptotic signaling cascade in endothelial cells exposed to oxLDL, and that *NO inhibits apoptosis by scavenging cellular lipid peroxyl radicals.  相似文献   

11.
The effect of oxidative stress catalysed by transition metals appears to have a critical relevance for the structure and function not only of membrane lipids but also of integral membrane proteins in a complex lipid-protein assembling, and membrane-dependent function. The integral membrane enzyme 5'-nucleotidase is susceptible to Fe((2+))-ion catalysed oxidative modification, and the extent of enzyme inhibition is in inverse relationship (r = -0.820) with lipid peroxidation (MDA) level. This work is also a comparative study about possible effectiveness of different Fe-ion chelators (deferoxamine, Na-citrate, Na-salicylate, ammonium oxalate and EDTA), antioxidants (GSH, GSH/GSH-Px system, Cu, Zn-SOD and mannitol) and metal cations (Mg(2+) and Mn(2+)) to protect or restore Fe(2+)-ion induced 5'-nucleotidase inhibition and to suppress Fe(2+)-ion enhanced lipid peroxidation. Among the examined chelators it was only deferoxamine and Na-citrate that exerted a fully protective and reactivating ability; among the antioxidants it was only GSH; among the metal cations it was only Mn(2+). The ability to protect or restore 5'-nucleotidase activity and to diminish chain-induced lipid peroxidation is explicable in terms of: metal-binding ability, capacity of taking iron away from a biological molecule, or ability of transferring the damage to itself. After a short incubation period, the iron associated with enzyme or lipid hydroperoxides could be in a labile coordinative linkage, still able to interact with possible ligands or metal cations.  相似文献   

12.
Excision of chromatin loop domains and internucleosomal DNA fragmentation are widely considered as consecutive stages of chromatin disassembly during apoptosis. We report here on apoptosis induced by staurosporine in NB-2a neuroblastoma cells, which was accompanied by excision of chromatin loop domains, but proceeded without internucleosomal DNA cleavage. In contrast to apoptosis associated with internucleosomal DNA fragmentation, the apoptotic pathway associated with excision of chromatin loop domains was largely caspase independent. We identify here MAPK family member, p38/JNK, mitochondria, and topoisomerase II as the components of this caspase-independent apoptotic pathway. While caspase-independent excision of chromatin loop domains was a predominant mechanism of DNA disintegration in staurosporine-treated neuroblastoma, both caspase-dependent internucleosomal DNA fragmentation and caspase-independent excision of chromatin loop domains accompanied staurosporine-induced apoptosis of promyelocytic leukemia cells. Our results suggest that caspase-independent excision of chromatin loop domains represents a separate cell death pathway, which operates either in parallel or independently from caspase-dependent internucleosomal DNA fragmentation.  相似文献   

13.
Treatment of cultured neonatal cardiomyocytes with ethacrynic acid (EA) induced a rapid depletion of glutathione (GSH) that preceded a gradual elevation of cytosolic Ca2+ (monitored by phosphorylase a activation), a loss of protein thiols, and a marked inactivation of the thiol-dependent enzyme glyceraldehyde-3-phosphate dehydrogenase (G3PD). A subsequent decline of mitochondrial transmembrane potential (delta psi) and ATP occurred prior to the onset of lipid peroxidation which closely paralleled a loss of cardiomyocyte viability. The antioxidant N,N'-diphenyl-p-phenylenediamine prevented lipid peroxidation and cell death but had no effect on elevated cytosolic Ca2+, delta psi loss, GSH depletion, or G3PD inactivation. Pretreatment with the iron chelator, deferoxamine, decreased both lipid peroxidation and cell death. EA-induced lipid peroxidation and cell damage were also diminished by preincubation with acetoxymethyl esters of the Ca2+ chelators Quin-2 and ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid, even though cytosolic Ca2+ remained elevated. The extent of GSH depletion was unaltered by either chelator; however, Quin-2 did protect G3PD from inactivation by EA. An inhibitor of the mitochondrial respiratory chain, antimycin A, decreased EA-induced lipid peroxidation and cell death but had no effect on thiol depletion or elevated cytosolic Ca2+. These data suggest that cardiomyocyte thiol status may be linked to intracellular Ca2+ homeostasis and that peroxidative damage originating in the mitochondria is a major event in the onset of cell death in this cardiomyocyte model of thiol depletion.  相似文献   

14.
Properties of DNA fragmentation activity generated by ATP depletion   总被引:1,自引:0,他引:1  
Internucleosomal DNA fragmentation is generally perceived as one of the characteristic features of apoptosis, most of which are driven by caspase activation dependent upon ATP. On the other hand, ATP depletion has been reported to induce apoptosis accompanying DNA fragmentation. To address this apparent paradox, we analyzed the DNA-fragmenting activity generated in ATP-depleted cells. In HL-60 promyelocytic leukemia cells cultured in glucose-free medium with oligomycin, internucleosomal DNA fragmentation occurred as an early event. The DNA fragmentation was blocked by serine protease inhibitors but not by caspase inhibitors. Consistently, ICAD/DFF45 could not inhibit the DNA-fragmenting activity of the ATP-depleted cytosol in a cell-free system. When ATP was supplied to the cell-free assay, 80% of the DNA-fragmenting activity was lost. The reduced activity was then restored by proteasome inhibitors, suggesting a role of proteasome to protect from a cellular insult derived from ATP-depletion.  相似文献   

15.
Oxidative stress may be a common mechanism underlying various forms of cell death, including necrosis and apoptosis. The authors have reported previously that the cupric nitrilotriacetate (Cu-NTA), a renal carcinogen, induces oxidative DNA damage and apoptosis in HL-60 human leukemia cells (Ma, Y., et al. Free Radic. Biol Med. 25:568-575; 1998). The focus of this investigation was to examine the possible pathway of the apoptosis induced by Cu-NTA. Results of the present study demonstrated that after exposure of HL-60 cells to Cu-NTA, an increase in lipid hydroperoxide and loss of mitochondrial membrane potential (deltaphim) were observed, followed by the increase in cytosolic cytochrome c that was released from the mitochondria. These events proceeded and triggered the activation of caspase-3 (CPP32/apopain/Yama), resulting in the degradation of poly (ADP-ribose) polymerase and DNA fragmentation. The antioxidants, N-acetylcysteine and glutathione, protected the loss of deltaphim and blocked the apoptosis induced by Cu-NTA. In addition, Ac-DEVD-CHO, a specific inhibitor of caspase-3, inhibited Cu-NTA-induced apoptosis. These results suggested that Cu-NTA-induced apoptosis in HL-60 cells was, at least in part, triggered by free radical-induced lipid peroxidation of membrane, which induced the release of cytochrome c from mitochondria and activation of caspase-3.  相似文献   

16.
Lipid peroxidation-mediated cytotoxicity and DNA damage in U937 cells   总被引:7,自引:0,他引:7  
Park JE  Yang JH  Yoon SJ  Lee JH  Yang ES  Park JW 《Biochimie》2002,84(12):1198-1205
Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. In the present study, we evaluated lipid peroxidation-mediated cytotoxicity and oxidative DNA damage in U937 cells. Upon exposure of U937 cells to tert-butylhydroperoxide (t-BOOH) and 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH), which induce lipid peroxidation in membranes, the cells exhibited a reduction in viability and an increase in the endogenous production of reactive oxygen species (ROS), as measured by the oxidation of 2',7'-dichlorodihydrofluorescein. In addition, a significant decrease in the intracellular GSH level and the activities of major antioxidant enzymes were observed. We also observed lipid peroxidation-mediated oxidative DNA damage, reflected by an increase in 8-OH-dG level and loss of the ability of DNA to renature. When the cells were pretreated with the antioxidant N-acetylcysteine (NAC) or the spin trap alpha-phenyl-N-t-butylnitrone (PBN), lipid peroxidation-mediated cytotoxicity in U937 cells was protected. This effect seems to be due to the ability of NAC and PBN to reduce ROS generation induced by lipid peroxidation. These results suggest that lipid peroxidation resulted in a pro-oxidant condition of U937 cells by the depletion of GSH and inactivation of antioxidant enzymes, which consequently leads to a decrease in survival and oxidative damage to DNA. The results indicate that the peroxidation of lipid is probably one of the important intermediary events in oxidative stress-induced cellular damage.  相似文献   

17.
We have previously demonstrated that three potent iron chelators, hinokitiol, dithizone and deferoxamine, induce differentiation of F9 embryonal carcinoma cells, as do other well-known morphogens such as retinoic acid (RA) and sodium butyrate (NaB). In this study, we compared the patterns of cell proliferation, cell death and cell cycle arrest during the process of differentiation induced by these five agents. When F9 cells were cultured with the agents at their individual differentiation-inducing concentrations, cell proliferation was rapidly inhibited by treatment with the iron chelators and NaB. In contrast, RA did not influence the rate of increase of cell number at the concentration of 1 microm. The three chelators also caused a marked reduction in cell viability, and the treated cells exhibited internucleosomal DNA fragmentation, whereas cells treated with NaB showed no apoptotic characteristics. RA induced apoptosis weakly at 1 microm and strongly at higher concentrations. In addition, all the iron chelators hindered cell cycle progression, resulting in an arrest at the G1-S interface or S phase. The phenomena observed in chelator-treated cells were considerably different from those in RA- or NaB-treated cells. It is concluded that the three iron chelators cause both severe apoptotic cell death and cell cycle arrest of proliferating F9 cells via cellular iron deprivation, and that this apoptotic change may be independent of the process of differentiation.  相似文献   

18.
Ultraviolet A (UVA) irradiation causes human skin aging and skin cancer at least partially through the activation of matrix metalloproteinases (MMPs). MMP-1, the interstitial collagenase, is responsible for the degradation of collagen and is involved in tumor progression in human skin. The present study uses human skin fibroblast cells (FEK4) to investigate the involvement of lipid peroxidation and the role of peroxides as possible mediators in MMP-1 activation by UVA. Preincubation with the antioxidants butylated hydroxytoluene and Trolox reduced UVA-dependent MMP-1 upregulation, suggesting that peroxidation of membrane lipids is involved. Blocking the iron-driven generation of lipid peroxides and hydroxyl radicals by different iron chelators led to a decrease in UVA-induced MMP-1 mRNA accumulation. Moreover, modulation of glutathione peroxidase activity by use of the specific inhibitor mercaptosuccinate (MS) or by the depletion of glutathione (using buthionine-S, R-sulfoximine, BSO), enhanced the UVA-dependent MMP-1 response. Finally, UVA irradiation generated a significant increase in intracellular peroxide levels which is augmented by pretreatment of the cells with BSO or MS. Our results demonstrate that lipid peroxidation and the production of peroxides are important events in the signalling pathway of MMP-1 activation by UVA.  相似文献   

19.
The haemolysis of sea bass Dicentrarchus labrax red blood cells (RBC) was initiated by tert -butyl-hydroperoxide (t-BHP). The onset of the haemolytic process was accelerated by increasing t-BHP concentration. This process was preceded by a drop in the RBC glutathione content followed by the production of lipid peroxidation products. Also t-BHP induced DNA fragmentation in RBC nuclei as measured by COMET assay. The addition of the antioxidant Trolox C® dose-dependently delayed the onset of both lipid peroxidation and haemolysis, and protected GSH stores against t-BHP-induced depletion. DNA fragmentation was also pre-vented by Trolox C®. These results indicate that t-BHP induces haemolysis in sea bass RBC through the induction of oxidative stress. Such a simple model could prove useful for both fundamental and applied studies on marine fish antioxidant mechanisms.  相似文献   

20.
Effect of d-mannose treatment on different antioxidants, phenolics, protease activity, lipid peroxidation, DNA damage and cell death was investigated in coleoptiles of etiolated wheat seedlings. Modulations in these biochemical parameters were monitored up to 96 h after treatment at 24 h intervals. With accelerating effect on initial signs of cell death, i.e., appearance of long DNA fragmentation and no effect on initiation of terminal stage, i.e., internucleosomal nDNA fragmentation, mannose treatment (1 % = 56 mM) diminished the antioxidant activities in wheat coleoptiles. Mannose treatment decreased the catalase activity at all intervals, while APX and POD activities decreased at 72 h. Peroxidation of lipids increased at 72 h after mannose treatment. Levels of most of antioxidants, i.e., SOD, peroxidases and phenolics were raised during initial time period (24–48 h) of mannose treatment probably as an attempt to counter the stress effect. Protease activity gradually increased and protein content decreased with time in both treated and non-treated coleoptiles. Sharp decrease in CAT, APX and peroxidase activities and increase in lipid peroxidation at 72 h overlaps with apoptotic internucleosomal nDNA fragmentation in this organ. This coincidence points towards the importance of compromised antioxidant defense and involvement of reactive oxygen species in initiation of terminal stage of programmed cell death in wheat coleoptile. In conclusion, accelerating effect on DNA fragmentation and lipid peroxidation along with diminished antioxidant activities at the time of internucleosomal nDNA fragmentation, provide evidence for pro-apoptotic effect of d-mannose in wheat coleoptile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号