共查询到20条相似文献,搜索用时 0 毫秒
1.
The principles driving the organization of the ventral object-processing stream remain unknown. Here, we show that stimulus-specific repetition suppression (RS) in one region of the ventral stream is biased according to motor-relevant properties of objects. Quantitative analysis confirmed that this result was not confounded with similarity in visual shape. A similar pattern of biases in RS according to motor-relevant properties of objects was observed in dorsal stream regions in the left hemisphere. These findings suggest that neural specificity for "tools" in the ventral stream is driven by similarity metrics computed over motor-relevant information represented in dorsal structures. Support for this view is provided by converging results from functional connectivity analyses of the fMRI data and a separate neuropsychological study. More generally, these data suggest that a basic organizing principle giving rise to "category specificity" in the ventral stream may involve similarity metrics computed over information represented elsewhere in the brain. 相似文献
2.
Hallvard Røe Evensmoen Lars M. Rimol Anderson M. Winkler Richard Betzel Tor Ivar Hansen Hamed Nili Asta Håberg 《Cell reports》2021,34(3):108658
- Download : Download high-res image (130KB)
- Download : Download full-size image
3.
4.
Neuropsychological case studies suggest the existence of two functionally separate visual streams: the ventral pathway, central for object recognition; and the dorsal pathway, engaged in visually guided actions. However, a clear dissociation between the functions of the two streams has not been decisively shown in intact humans. In this study, we demonstrate dissociation between dorsal and ventral fMRI activation patterns during observation of object manipulation video clips. Parietal areas, such as anterior intraparietal sulcus (aIPS) display grasp viewing-dependent adaptation (i.e., fMR adaptation during repeated viewing of the same object-grasping movement) as well as a contralateral preference for the viewed manipulating hand. Ventral regions, such as the fusiform gyrus, show similar characteristics (i.e., adaptation, contralateral preference), but these depend on object identity. Our results support the hypothesized functional specialization in the visual system and suggest that parietal areas (such as aIPS) are engaged in action recognition, as well as in action planning. 相似文献
5.
Background
Reactions to sensory events sometimes require quick responses whereas at other times they require a high degree of accuracy–usually resulting in slower responses. It is important to understand whether visual processing under different response speed requirements employs different neural mechanisms.Methodology/Principal Findings
We asked participants to classify visual patterns with different levels of detail as real-world or non-sense objects. In one condition, participants were to respond immediately, whereas in the other they responded after a delay of 1 second. As expected, participants performed more accurately in delayed response trials. This effect was pronounced for stimuli with a high level of detail. These behavioral effects were accompanied by modulations of stimulus related EEG gamma oscillations which are an electrophysiological correlate of early visual processing. In trials requiring speeded responses, early stimulus-locked oscillations discriminated real-world and non-sense objects irrespective of the level of detail. For stimuli with a higher level of detail, oscillatory power in a later time window discriminated real-world and non-sense objects irrespective of response speed requirements.Conclusions/Significance
Thus, it seems plausible to assume that different response speed requirements trigger different dynamics of processing. 相似文献6.
Goal-related activity in V4 during free viewing visual search. Evidence for a ventral stream visual salience map 总被引:6,自引:0,他引:6
Natural exploration of complex visual scenes depends on saccadic eye movements toward important locations. Saccade targeting is thought to be mediated by a retinotopic map that represents the locations of salient features. In this report, we demonstrate that extrastriate ventral area V4 contains a retinotopic salience map that guides exploratory eye movements during a naturalistic free viewing visual search task. In more than half of recorded cells, visually driven activity is enhanced prior to saccades that move the fovea toward the location previously occupied by a neuron's spatial receptive field. This correlation suggests that bottom-up processing in V4 influences the oculomotor planning process. Half of the neurons also exhibit top-down modulation of visual responses that depends on search target identity but not visual stimulation. Convergence of bottom-up and top-down processing streams in area V4 results in an adaptive, dynamic map of salience that guides oculomotor planning during natural vision. 相似文献
7.
Hierarchical coding of letter strings in the ventral stream: dissecting the inner organization of the visual word-form system 总被引:8,自引:0,他引:8
Visual word recognition has been proposed to rely on a hierarchy of increasingly complex neuronal detectors, from individual letters to bigrams and morphemes. We used fMRI to test whether such a hierarchy is present in the left occipitotemporal cortex, at the site of the visual word-form area, and with an anterior-to-posterior progression. We exposed adult readers to (1) false-font strings; (2) strings of infrequent letters; (3) strings of frequent letters but rare bigrams; (4) strings with frequent bigrams but rare quadrigrams; (5) strings with frequent quadrigrams; (6) real words. A gradient of selectivity was observed through the entire span of the occipitotemporal cortex, with activation becoming more selective for higher-level stimuli toward the anterior fusiform region. A similar gradient was also seen in left inferior frontoinsular cortex. Those gradients were asymmetrical in favor of the left hemisphere. We conclude that the left occipitotemporal visual word-form area, far from being a homogeneous structure, presents a high degree of functional and spatial hierarchical organization which must result from a tuning process during reading acquisition. 相似文献
8.
The mammalian visual system is still the gold standard for recognition accuracy, flexibility, efficiency, and speed. Ongoing advances in our understanding of function and mechanisms in the visual system can now be leveraged to pursue the design of computer vision architectures that will revolutionize the state of the art in computer vision. 相似文献
9.
Background
Attention is used to enhance neural processing of selected parts of a visual scene. It increases neural responses to stimuli near target locations and is usually coupled to eye movements. Covert attention shifts, however, decouple the attentional focus from gaze, allowing to direct the attention to a peripheral location without moving the eyes. We tested whether covert attention shifts modulate ongoing neuronal activity in cortical area V6A, an area that provides a bridge between visual signals and arm-motor control.Methodology/Principal Findings
We performed single cell recordings from 3 Macaca Fascicularis trained to fixate straight-head, while shifting attention outward to a peripheral cue and inward again to the fixation point. We found that neurons in V6A are influenced by spatial attention. The attentional modulation occurs without gaze shifts and cannot be explained by visual stimulations. Visual, motor, and attentional responses can occur in combination in single neurons.Conclusions/Significance
This modulation in an area primarily involved in visuo-motor transformation for reaching may form a neural basis for coupling attention to the preparation of reaching movements. Our results show that cortical processes of attention are related not only to eye-movements, as many studies have shown, but also to arm movements, a finding that has been suggested by some previous behavioral findings. Therefore, the widely-held view that spatial attention is tightly intertwined with—and perhaps directly derived from—motor preparatory processes should be extended to a broader spectrum of motor processes than just eye movements. 相似文献10.
Background
Detecting objects is an important task when moving through a natural environment. Flies, for example, may land on salient objects or may avoid collisions with them. The neuronal ensemble of Figure Detection cells (FD-cells) in the visual system of the fly is likely to be involved in controlling these behaviours, as these cells are more sensitive to objects than to extended background structures. Until now the computations in the presynaptic neuronal network of FD-cells and, in particular, the functional significance of the experimentally established distributed dendritic processing of excitatory and inhibitory inputs is not understood.Methodology/Principal Findings
We use model simulations to analyse the neuronal computations responsible for the preference of FD-cells for small objects. We employed a new modelling approach which allowed us to account for the spatial spread of electrical signals in the dendrites while avoiding detailed compartmental modelling. The models are based on available physiological and anatomical data. Three models were tested each implementing an inhibitory neural circuit, but differing by the spatial arrangement of the inhibitory interaction. Parameter optimisation with an evolutionary algorithm revealed that only distributed dendritic processing satisfies the constraints arising from electrophysiological experiments. In contrast to a direct dendro-dendritic inhibition of the FD-cell (Direct Distributed Inhibition model), an inhibition of its presynaptic retinotopic elements (Indirect Distributed Inhibition model) requires smaller changes in input resistance in the inhibited neurons during visual stimulation.Conclusions/Significance
Distributed dendritic inhibition of retinotopic elements as implemented in our Indirect Distributed Inhibition model is the most plausible wiring scheme for the neuronal circuit of FD-cells. This microcircuit is computationally similar to lateral inhibition between the retinotopic elements. Hence, distributed inhibition might be an alternative explanation of perceptual phenomena currently explained by lateral inhibition networks. 相似文献11.
Stuart Geman 《Journal of Physiology》2006,100(4):212-224
Pattern recognition systems that are invariant to shape, pose, lighting and texture are never sufficiently selective; they suffer a high rate of false alarms. How are biological vision systems both invariant and selective? Specifically, how are proper arrangements of sub-patterns distinguished from the chance arrangements that defeat selectivity in artificial systems? The answer may lie in the nonlinear dynamics that characterize complex and other invariant cell types: these cells are temporarily more receptive to some inputs than to others (functional connectivity). One consequence is that pairs of such cells with overlapping receptive fields will possess a related property that might be termed functional common input. Functional common input would induce high correlation exactly when there is a match in the sub-patterns appearing in the overlapping receptive fields. These correlations, possibly expressed as a partial and highly local synchrony, would preserve the selectivity otherwise lost to invariance. 相似文献
12.
Crossmodal processing of object features in human anterior intraparietal cortex: an fMRI study implies equivalencies between humans and monkeys 总被引:11,自引:0,他引:11
The organization of macaque posterior parietal cortex (PPC) reflects its functional specialization in integrating polymodal sensory information for object recognition and manipulation. Neuropsychological and recent human imaging studies imply equivalencies between human and macaque PPC, and in particular, the cortex buried in the intraparietal sulcus (IPS). Using functional MRI, we tested the hypothesis that an area in human anterior intraparietal cortex is activated when healthy subjects perform a crossmodal visuo-tactile delayed matching-to-sample task with objects. Tactile or visual object presentation (encoding and recognition) both significantly activated anterior intraparietal cortex. As hypothesized, neural activity in this area was further enhanced when subjects transferred object information between modalities (crossmodal matching). Based on both the observed functional properties and the anatomical location, we suggest that this area in anterior IPS is the human equivalent of macaque area AIP. 相似文献
13.
Perceiving the pain of others activates a large part of the pain matrix in the observer [1]. Because this shared neural representation can lead to empathy or personal distress [2, 3], regulatory mechanisms must operate in people who inflict painful procedures in their practice with patient populations in order to prevent their distress from impairing their ability to be of assistance. In this functional magnetic resonance imaging MRI study, physicians who practice acupuncture were compared to naive participants while observing animated visual stimuli depicting needles being inserted into different body parts, including the mouth region, hands, and feet. Results indicate that the anterior insula somatosensory cortex, periaqueducal gray, and anterior cingulate cortex were significantly activated in the control group, but not in the expert group, who instead showed activation of the medial and superior prefrontal cortices and the temporoparietal junction, involved in emotion regulation and theory of mind. 相似文献
14.
Detritus processing by a small woodland stream is analysed by following the loss of weight of 10 g, single species accumulations of riparian leaves. The daily loss rates are expressed as exponential coefficients after the data are fitted by least squares. Comparisons are made between two sites on a small hardwater trout stream during two seasons. Leaf processing rates form a continuum from a low of 0.5%/day to a high of 2.0%/day. Differences between species of leaf are observed, but significant differences between fall and winter processing and between the two sites are not. The response of the invertebrate community to differences in leaf species is investigated using controlled, artificial streams where significant differences in the effect of the invertebrates are related to the ability ofthe leaf to be processed. Evidence suggests that differential invertebrate colonization of leaf packs is a function of microbial colonization and conditioning. The data are used to develop a general scheme of leaf pack processing. 相似文献
15.
16.
The ability to quickly detect changes in our surroundings has been crucial to human adaption and survival. In everyday life we often need to identify whether an object is new and if an object has changed its location. In the current event-related potential (ERP) study we investigated the electrophysiological correlates and the time course in detecting different types of changes of an objecṫs location and identity. In a delayed match-to-sample task participants had to indicate whether two consecutive scenes containing a road, a house, and two objects, were either the same or different. In six randomly intermixed conditions the second scene was identical, one of the objects had changed its identity, one of the objects had changed its location, or the objects had switched locations. The results reveal different time courses for the processing of identity and location changes in spatial scenes. Whereas location changes elicited a posterior N2 effect, indicating early mismatch detection, followed by a P3 effect reflecting post-perceptual processing, identity changes elicited an anterior N3 effect, which was delayed and functionally distinct from the N2 effect found for the location changes. The condition in which two objects switched position elicited a late ERP effect, reflected by a P3 effect similar to that obtained for the location changes. In sum, this study is the first to cohesively show different time courses for the processing of location changes, identity changes, and object switches in spatial scenes, which manifest themselves in different electrophysiological correlates. 相似文献
17.
Using fMRI and a psychophysical task involving letter identification, Kleinschmidt et al. (2002) (this issue of Neuron) delineate two patterns of neural activation, which manifest in different cortical regions: a transient activation, correlated with the change of a percept, and a longer-term hysteresis, correlated with the maintenance of the percept. These findings are provocative and suggest that neural hysteresis is mediated by visual structures that interact with higher-order regions to support longer-term maintenance of a percept. 相似文献
18.
Learning and neural plasticity in visual object recognition 总被引:4,自引:0,他引:4
The capability of the adult primate visual system for rapid and accurate recognition of targets in cluttered, natural scenes far surpasses the abilities of state-of-the-art artificial vision systems. Understanding this capability remains a fundamental challenge in visual neuroscience. Recent experimental evidence suggests that adaptive coding strategies facilitated by underlying neural plasticity enable the adult brain to learn from visual experience and shape its ability to integrate and recognize coherent visual objects. 相似文献
19.
Chong TT Cunnington R Williams MA Kanwisher N Mattingley JB 《Current biology : CB》2008,18(20):1576-1580
Mirror neurons, as originally described in the macaque, have two defining properties [1, 2]: They respond specifically to a particular action (e.g., bringing an object to the mouth), and they produce their action-specific responses independent of whether the monkey executes the action or passively observes a conspecific performing the same action. In humans, action observation and action execution engage a network of frontal, parietal, and temporal areas. However, it is unclear whether these responses reflect the activity of a single population that represents both observed and executed actions in a common neural code or the activity of distinct but overlapping populations of exclusively perceptual and motor neurons [3]. Here, we used fMRI adaptation to show that the right inferior parietal lobe (IPL) responds independently to specific actions regardless of whether they are observed or executed. Specifically, responses in the right IPL were attenuated when participants observed a recently executed action relative to one that had not previously been performed. This adaptation across action and perception demonstrates that the right IPL responds selectively to the motoric and perceptual representations of actions and is the first evidence for a neural response in humans that shows both defining properties of mirror neurons. 相似文献
20.
Sensory regions of neocortex are organized as arrays of vertical columns composed of cells that share similar response properties, with the orientation columns of the cat's visual cortex being the best known example. Interest in how sensitivity to different stimulus features first emerges in the columns and how this selectivity is refined by subsequent processing has fueled decades of research. A natural starting point in approaching these issues is anatomy. Each column traverses the six cortical layers and each layer has a unique pattern of inputs, intrinsic connections and outputs. Thus, it makes sense to explore the possibility of corresponding laminar differences in sensory function, that is, to examine relationships between morphology and physiology. In addition, to help identify general patterns of cortical organization, it is useful to compare results obtained from different sensory systems and diverse species. The picture that emerges from such comparisons is that each cortical layer serves a distinct role in sensory function. Furthermore, different cortices appear to share some common strategies for processing information but also have specialized mechanisms adapted for the demands of specific sensory tasks. 相似文献