首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermotolerance and related antioxidant enzyme activities induced by both heat acclimation and exogenous salicylic acid (SA) application were studied in grapevine (Vitis vinifera L. cv. Jingxiu). Heat acclimation and exogenous SA application induced comparable changes in thermotolerance, ascorbic acid (AsA), glutathione (GSH), and hydrogen peroxide (H2O2) concentrations, and in activities of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), glutathione reductase (GR), ascorbic peroxidase (APX) and catalase (CAT) in grape leaves. Within 1 h at 38 °C, free SA concentration in leaves rose from 3.1 μg g−1 FW to 19.1 μg g−1 FW, then sharply declined. SA application and heat acclimation induced thermotolerance were related to changes of antioxidant enzyme activities and antioxidant concentration, indicating a role for endogenous SA in heat acclimation in grape leaves.  相似文献   

2.
This paper aims to determine the changes in reactive oxygen species (ROS) and the responses of the lily (Lilium longiflorum L.) antioxidant system to short-term high temperatures. Plants were exposed to three levels of heat stress (37°C, 42°C, 47°C) for 10 h when hydrogen peroxide (H2O2) and superoxide (O2) production rate along with membrane injury indexes, and changes in antioxidants were measured. Compared with the control (20°C), electrolyte leakage and MDA concentration varied slightly after 10 h at 37°C and 42°C, while increased significantly at 47°C. During 10 h at 37°C and 42°C, antioxidant enzyme activities, such as SOD, POD, CAT, APX and GR, were stimulated and antioxidants (AsA and GSH concentrations) maintained high levels, which resulted in low levels of O2 and H2O2 concentration. However, after 10 h at 47°C, SOD, APX, GR activities and GSH concentration were similar to the controls, while POD, CAT activities and AsA concentration decreased significantly as compared with the control, concomitant with significant increase in O2 and H2O2 concentrations. In addition, such heat-induced effects on antioxidant enzymes were also confirmed by SOD and POD isoform, as Cu/ZnSOD maintained high stability under heat stress and the intensity of POD isoforms reduced with the duration of heat stress, especially at 47°C. It is concluded that in lily plants, the oxidative damage induced by heat stress was related to the changes in antioxidant enzyme activities and antioxidants.  相似文献   

3.
The activities of antioxidant defence enzymes — total, manganese and copper zinc containing superoxide dismutase (Tot SOD, Mn SOD, CuZn SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR) and biotransformation phase II enzyme glutathione-S-transferase (GST) — in the liver of longfin gurnard (Chelidonichthys obscurus) from the Montenegrin coastline (Adriatic sea) were investigated. The specimens were collected in winter (February) and late spring (May) at two localities: Platamuni (PL, potentially unpolluted) and the Estuary of the River Bojana (EB, potentially polluted). The obtained results show that the activities of Mn SOD, CAT, GSH-Px and GST in winter were significantly lower at EB than at PL. In spring, the activities of CAT and GST were decreased, while GR activity was increased at EB in comparison to PL. The activities of Mn SOD and GST at PL were decreased and GSH-Px, GR and GST activities at EB were increased in spring compared to winter. Our work represents the first study of liver antioxidant enzymes of longfin gurnard from the Montenegrin coastline and reveals that locality, as a variable, has a greater influence on antioxidant enzymes and biotransformation phase II enzyme GST activities compared to season.  相似文献   

4.
镉对长江华溪蟹肝胰腺抗氧化酶活力的影响   总被引:9,自引:0,他引:9  
闫博  王兰  李涌泉  刘娜  王茜 《动物学报》2007,53(6):1121-1128
重金属对环境的污染已成为全球面临的首要问题之一,其中镉(Cd2 )是一种广泛存在的毒性污染物,能通过消化道和呼吸道进入生物体,对机体造成损伤(Zyadah and Abdel-Baky,2000)。研究表明,Cd2 可以通过Ca2 通道穿过细胞膜进入机体(Roesijadi and Robinson,1994),诱导产生大量自由基和活性氧(ROS),从而形成氧胁迫(Toppi andGabbrielli,1994;Hegedus et al.,2001)。ROS可以与体内脂质、蛋白质和核酸反应,导致脂质过氧化、细胞膜损伤并且影响多种酶的活力,对生物体造成威胁。由于在水生生态系统中生物富集污染物的作用明显,故相对于陆地生…  相似文献   

5.
The activities of antioxidant enzymes viz. glutathione reductase, GR; superoxide dismutase, SOD; peroxidase, POD; catalase, CAT and glutathione-S-transferase, GST and alkaloid accumulation were investigated in leaf pairs (apical, middle, basal) and in roots of Catharanthus roseus seedlings under the conditions of different nitrogen sources (20 mM KNO(3) and 2 mM NH(4)Cl) and salinity, in the absence (non-saline control) and in the presence of 100 mM NaCl in the nutrient solution. Salinity caused a reduction in plant biomass. The biomass production of ammonium-fed plants was lower than that of nitrate-fed plants. The antioxidant enzymes exhibited higher activity in saline-treated plants. Changes in antioxidant enzyme activity caused by different nitrogen sources differed in all leaf pairs, as well as in roots of C. roseus. Ammonium-fed plants showed higher CAT, GR and GST activity in leaf pairs as well as in roots, while POD and SOD activity were higher in nitrate-fed plants. Higher peroxidase activity concomitant with the increased accumulation of alkaloid was found in all leaf pairs, as well as in roots of C. roseus of NO(3)(-) fed plants as compared to NH(4)(+) fed plants.  相似文献   

6.
The antioxidant enzyme response of the mussel Mytilus galloprovincialis to different degree of pollution was investigated. Antioxidant enzyme activities - catalase (CAT), glutathione peroxidase (GSH-PX), glutathione reductase (GR), superoxide dismutase (SOD) - and malondialdehyde (MDA) concentration were measured in gills and digestive glands of mussels. Mussels from the same origin were transplanted along the Balearic coastal waters in eight stations characterized by a different degree of contamination and human impacts. Antioxidant enzyme activities showed an adaptive response to increase the activities in the more polluted areas. CAT, GR and SOD in gills and CAT and GR in digestive gland presented significant differences between polluted and non-polluted stations. No significant differences were observed in MDA concentration indicating that the antioxidant response is capable to avoid the lipid peroxidation. The use of biomarkers such as CAT and GR in gills and digestive glands of the mussel M. galloprovincialis is a good tool to categorize differences between polluted and non-polluted areas.  相似文献   

7.
渗透胁迫对黑麦幼苗活性氧和抗氧化酶活性的影响   总被引:1,自引:0,他引:1  
用20%聚乙二醇(PEG 6000)研究了渗透胁迫对黑麦(Secale cereale L.)幼苗活性氧(reactive oxygen species, ROS)和主要抗氧化酶—— 超氧化物歧化酶(superoxide dismutase, SOD)、过氧化氢酶(catalase, CAT)、抗坏血酸过氧化物酶(ascorbate peroxidase, APX)和谷胱甘肽还原酶(glutathione reductase, GR)活性的影响。结果表明, 与对照相比, PEG处理明显提高了叶子和根中丙二醛(malondialdehyde, MDA)的含量、ROS的水平和以上4种抗氧化酶的活性。渗透胁迫下,叶子和根中MDA和ROS水平变化的规律基本相似, 但抗氧化酶活性在2种器官中表现不完全相同, 叶子中CAT的活性在对照和处理中无显著差异, 但在根中差异明显, 表明叶子中SOD、APX和GR在植物应答渗透胁迫中起重要作用, 而根中这4种抗氧化酶都参与植物对胁迫的反应。GR活性随PEG处理变化幅度显著高于其它抗氧化酶, 表明GR在黑麦应答渗透胁迫中所起作用可能强于其它抗氧化酶。  相似文献   

8.
Caulerpa racemosa var. cylindracea is a potential invader of the Mediterranean Sea and 11 Mediterranean countries are under threat from this alga. In the present study, in order to investigate seasonal changes in the antioxidant status of C. racemosa var. cylindracea, antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and lipid peroxidation (LPO) levels were determined in C. racemosa var. cylindracea samples, which were collected in May 2003, September 2003, December 2003, and March 2004 from Turkish coastlines. SOD and CAT activities showed similar trends. These enzymes increased from May to December, then sharp decreases were observed. On the other hand, GSH-Px enzyme activities showed a fluctuation between May 2003 and March 2004. In contrast to increases in SOD and CAT activities up to December 2003, LPO level decreased in this period. No significant correlation was observed between antioxidant status and solar radiation. In conclusion, the antioxidant status of C. racemosa var. cylindracea is strictly not affected by both solar radiation and seawater temperature; however, the growth of epiphytes on fronds may change antioxidant status. Further investigations are strongly warranted to understand the contributions of non-enzyme-based antioxidants such as glutathione, vitamin E, and vitamin C.  相似文献   

9.
To better understand the mechanisms of plant tolerance to high concentration of arsenic, we characterized two antioxidant enzymes, glutathione reductase (GR) and catalase (CAT), in the fronds of Pteris vittata, an arsenic-hyperaccumulating fern, and Pteris ensiformis, an arsenic-sensitive fern. The induction, activation and apparent kinetics of GR and CAT in the plants upon arsenic exposure were investigated. Under arsenic exposure (sodium arsenate), CAT activity in P. vittata was increased by 1.5-fold, but GR activity was unchanged. Further, GR was not inhibited or activated by the arsenic in assays. No significant differences in Km and Vmax values of GR or CAT were observed between the two ferns. However, CAT activity in P. vittata was activated by 200 μM arsenate up to 300% compared to the control. Similar but much smaller increases were observed for P. ensiformis and purified bovine liver catalase (133% and 120%, respectively). This research reports, for the first time, the activation of CAT by arsenic in P. vittata. The increased CAT activities may allow P. vittata to more efficiently mediate arsenic-induced stress by preparing the fern for the impeding production of reactive oxygen species resulting from arsenate reduction to arsenite in the fronds.  相似文献   

10.
Two gramineous species among wild plants, Echinochloa oryzicola Vasing and Setaria viridis (L.) Beauv., and Oryza sativa L. cv. Nipponbare were subjected to salt stress. The relative growth rate (RGR), Na content, photosynthetic rate, antioxidant enzymes activity (superoxide disumutase (SOD), catalase (CAT), ascorbate peroxidase (APx) and glutathione reductase (GR)), and malondialdehyde (MDA) content in leaves after NaCl treatment were studied. RGR significantly decreased in O. sativa more than in E. oryzicola and S. viridis. Comparatively salt-tolerant S. viridis showed higher growth rate, lower Na accumulation rate in leaves, higher photosynthetic rate, and induced more SOD, CAT, APx, and GR activity and lower increase of MDA content as compared to the salt-sensitive O. sativa. At the same time, the comparatively salt-tolerant E. oryzicola also showed higher growth rate, much lower Na accumulation and no observable increase of MDA content, even though the CAT and APx activities were not induced by salinity. These results suggested that the scavenging system induced by H2O2-mediated oxidative damage might, at least in part, play an important role in the mechanism of salt tolerance against cell toxicity of NaCl in some gramineous plants  相似文献   

11.
The effect of exogenously applied glycinebetaine (GB) on the alleviation of damaging effects of NaCl treatment was studied in view of relative water content (RWC), malondialdehyde content, and the activity of some antioxidant enzymes in two rice (Oryza sativa L.) cultivars differing in salt tolerance (salt-tolerant Pokkali and--sensitive IR-28), comparatively. Both cultivars took up exogenously applied GB through their roots and accumulated it to considerable levels. Leaf RWC of both cultivars under salt treatment showed an increase with GB application. The activities of superoxide dismutase (SOD), ascorbate peroxidase (AP), catalase (CAT), and glutathione reductase (GR) increased in leaves of Pokkali, but peroxidase (POX) activity decreased under salinity. In IR-28, the activities of SOD, AP and POX increased, whereas CAT and GR decreased upon exposure to salt treatment. When compared to the salt-treated group alone, GB application decreased the activities of SOD, AP, CAT, and GR in Pokkali, whereas it increased the activities of CAT and AP in IR-28 under salinity. However, the activity of POX in IR-28 under salinity showed a decrease with GB application compared to the NaCl group. In addition, lipid peroxidation levels of both cvs. under salt treatment showed a decrease with GB treatment. Therefore, we conclude that GB protects both rice seedlings from salinity-induced oxidative stress.  相似文献   

12.
Changes in antioxidant metabolism because of the effect of salinity stress (0, 80, 160 or 240 m M NaCl) on protective enzyme activities under ambient (350 μmol mol−1) and elevated (700 μmol mol−1) CO2 concentrations were investigated in two barley cultivars ( Hordeum vulgare L., cvs Alpha and Iranis). Electrolyte leakage, peroxidation, antioxidant enzyme activities [superoxide dismutase (SOD), EC 1.15.1.1; ascorbate peroxidase (APX), EC 1.11.1.11; catalase (CAT), EC 1.11.1.6; dehydroascorbate reductase (DHAR), EC 1.8.5.1; monodehydroascorbate reductase (MDHAR), EC 1.6.5.4; glutathione reductase (GR), EC 1.6.4.2] and their isoenzymatic profiles were determined. Under salinity and ambient CO2, upregulation of antioxidant enzymes such as SOD, APX, CAT, DHAR and GR occurred. However, this upregulation was not enough to counteract all ROS formation as both ion leakage and lipid peroxidation came into play. The higher constitutive SOD and CAT activities together with a higher contribution of Cu,Zn-SOD 1 detected in Iranis might possibly contribute and make this cultivar more salt-tolerant than Alpha. Elevated CO2 alone had no effect on the constitutive levels of antioxidant enzymes in Iranis, whereas in Alpha it induced an increase in SOD, CAT and MDHAR together with a decrease of DHAR and GR. Under combined conditions of elevated CO2 and salinity the oxidative damage recorded was lower, above all in Alpha, together with a lower upregulation of the antioxidant system. So it can be concluded that elevated CO2 mitigates the oxidative stress caused by salinity, involving lower ROS generation and a better maintenance of redox homeostasis as a consequence of higher assimilation rates and lower photorespiration, being the response dependent on the cultivar analysed.  相似文献   

13.
Kuzniak E  Skłodowska M 《Planta》2005,222(1):192-200
Peroxisomes, being one of the main organelles where reactive oxygen species (ROS) are both generated and detoxified, have been suggested to be instrumental in redox-mediated plant cell defence against oxidative stress. We studied the involvement of tomato (Lycopersicon esculentum Mill.) leaf peroxisomes in defence response to oxidative stress generated upon Botrytis cinerea Pers. infection. The peroxisomal antioxidant potential expressed as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6) and glutathione peroxidase (GSH-Px, EC 1.11.1.19) as well as the ascorbate-glutathione (AA-GSH) cycle activities was monitored. The initial infection-induced increase in SOD, CAT and GSH-Px indicating antioxidant defence activation was followed by a progressive inhibition concomitant with disease symptom development. Likewise, the activities of AA-GSH cycle enzymes: ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2) as well as ascorbate and glutathione concentrations and redox ratios were significantly decreased. However, the rate and timing of these events differed. Our results indicate that B. cinerea triggers significant changes in the peroxisomal antioxidant system leading to a collapse of the protective mechanism at advanced stage of infection. These changes appear to be partly the effect of pathogen-promoted leaf senescence.  相似文献   

14.
In third-, fourth-, and fifth-instar larvae of the cabbage looper moth, Trichoplusia ni, the activities of the antioxidant enzymes, superoxide dismutase (SOD*), catalase (CAT), glutathione peroxidase (GPOX), and glutathione reductase (GR) were examined using 850 g supernatants of whole-body homogenates. The enzyme activities, expressed as units mg−1 protein min−1 at 25°C ranged as follows: SOD, 0.67-2.13 units; CAT, 180.5-307.5 units; GPOX, none detectable; and GR, 0.40-1.19 units. There was a similar pattern of changes for SOD and CAT activities with larval ontogeny, but not for GR. The cabbage looper apparently uses SOD and CAT to form a “defensive team” effective against endogenously produced superoxide anion (O2⪸). Glutathione may serve as an antioxidant for the destruction of any organic/lipid peroxides formed, and GSH oxidized to glutathione disulfide would be recycled by GR. Bioassays against pro-oxidant compounds exogenous sources of (O2⪸) show high sensitivity of mid-fifth instars to the linear furanocoumarin, 8-methoxypsoralen (xanthotoxin) primarily from photoactivation (320-380 nm), and auto-oxidation of the flavonoid, quercetin. The LC50s are 0.0004 and 0.0045% (w/w) concentration of xanthotoxin and quercetin, respectively. Both pro-oxidants have multiple target sites for lethal action and, in this context, the role of antioxidant enzymes is discussed.  相似文献   

15.
The role of mannitol as an osmoprotectant, a radical scavenger, a stabilizer of protein and membrane structure, and protector of photosynthesis under abiotic stress has already been well described. In this article we show that mannitol applied exogenously to salt-stressed wheat, which normally cannot synthesize mannitol, improved their salt tolerance by enhancing activities of antioxidant enzymes. Wheat seedlings (3 days old) grown in 100 mM mannitol (corresponding to −0.224 MPa) for 24 h were subjected to 100 mM NaCl treatment for 5 days. The effect of exogenously applied mannitol on the salt tolerance of plants in view of growth, lipid peroxidation levels, and activities of antioxidant enzymes in the roots of salt-sensitive wheat (Triticum aestivum L. cv. Kızıltan-91) plants with or without mannitol was studied. Although root growth decreased under salt stress, this effect could be alleviated by mannitol pretreatment. Peroxidase (POX) and ascorbate peroxidase (APX) activities increased, whereas superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) activities decreased in Kızıltan-91 under salt stress. However, activities of antioxidant enzymes such as SOD, POX, CAT, APX, and GR increased with mannitol pretreatment under salt stress. Although root tissue extracts of salt-stressed wheat plants exhibited only nine different SOD isozyme bands of which two were identified as Cu/Zn-SOD and Mn-SOD, mannitol treatment caused the appearance of 11 different SOD activity bands. On the other hand, five different POX isozyme bands were determined in all treatments. Enhanced peroxidation of lipid membranes under salt stress conditions was reduced by pretreatment with mannitol. We suggest that exogenous application of mannitol could alleviate salt-induced oxidative damage by enhancing antioxidant enzyme activities in the roots of salt-sensitive Kızıltan-91.  相似文献   

16.
This study was undertaken to investigate the effect of exercise training on aging in the hepatic oxidative status and antioxidant defense of female albino rat. Two age groups of 3 months and 12 months old Wistar strain female albino rats were given chronic exercise training for a period of 12 weeks. The antioxidant enzyme assays were carried out by the standard methods. Lower (P<0.01) activities of the antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) by 21%, 44% and 63% respectively was observed in the older rats when compared to younger rats. Also, glutathione (GSH) levels were 42% lower (P<0.01) in older than younger animals. Exercise training to the 12 months aged rats significantly (P<0.01) elevated these antioxidant enzyme activities and GSH content, when compared to older control rats. These levels are almost equal to the values observed in the younger control rats. The levels of lipid peroxidation end product, malondialdehyde (MDA) the major indicator of oxidative stress, was found to increase with age (11%) and exercise training caused further elevation (28% of control). The present findings imply that the reactive oxygen species that are generated due to aging process were detoxified by the exercise induced antioxidant system in the liver tissue. These findings are also in agreement with similar changes in male animals, which clearly envisage no gender difference in the amelioration of the antioxidant enzyme system in older age due to exercise. In conclusion, it can be stated that twelve weeks treadmill exercise training has beneficial effect in improving antioxidant defense capacity by augmenting SOD, CAT and GR activities and GSH levels of older rats, thereby preventing oxidative damage to the liver tissue.  相似文献   

17.
Coronatine (COR) is a chlorosis-inducing phytotoxin that mimics some biological activities of methyl jasmonate. This study investigated whether COR confers salinity tolerance to cotton and whether such tolerance is correlated with changes in the activity of antioxidant enzymes. COR at 0.01muM was applied hydroponically to cotton seedlings at the two-leaf stage for 24h. A salinity stress of 150mM NaCl was imposed after completion of COR treatment for 15d. Salinity stress reduced biomass of seedlings and increased leaf superoxide radicals, hydrogen peroxide, lipid peroxidation, and electrolyte leakage. Activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and glutathione reductase (GR), and of the stable free radical, 1,1-diphenyl-2-picrylhydrazyl (DPPH), scavenging activity were altered by salinity to varying degrees. Pretreatment with COR increased the activities of CAT, POD, GR, and DPPH scavenging activity in leaf tissues of salinity-stressed seedlings. Thus, COR might reduce the production of reactive oxygen species by activating antioxidant enzymes and DPPH-radical scavenging, thereby preventing membrane peroxidation and denaturation of bio-molecules.  相似文献   

18.
The black swallowtail butterfly larvae, Papilio polyxenes, are specialist feeders that have adapted to feeding on plants containing high levels of prooxidant allelochemicals. Third, fourth, and fifth instar larvae were tested for their antioxidant enzyme activities, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GPOX), using 850-g supernatants from whole-body homogenates. The overall antioxidant enzyme profile for P. polyxenes was high compared to other insects, with activities ranging as follows: SOD, 1.1–7.5; CAT, 124–343; GR, 1.0–7.5; and GPOX, 0 units. To determine whether these antioxidant enzymes were inducible, P. poly xenes larvae were given a prooxidant challenge by dipping parsley leaves (their diet in the initial studies) in solutions of quercetin, such that the leaves became coated with this prooxidant flavonoid. Mid-fifth instar larvae fed on quercetin-coated leaves were assayed for antioxidant enzyme activities as was previously done with the larvae fed the standard diet. Food consumption and quercetin intake were monitored. SOD activity was increased almost twofold at the highest quercetin concentration tested. CAT and GR activity, on the other hand, were inhibited by increased quercetin consumption, with GR activity completely inhibited at the highest quercetin concentration after 12 h of feeding. GPOX activity, not present in control insects, was also not inducible by a quercetin challenge. These studies point out the key role that the antioxidant enzymes play in insect defenses against plant prooxidants.  相似文献   

19.
Mountain environmental stresses result in increased formation of hydrogen peroxide (H2O2) and accumulation of malondialdehyde (MDA) in leaves of Polygonum viviparum. The activities of several antioxidative system enzymes such as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), glutathione reductase (GR, EC 1.6.4.2), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and the contents of several non-enzymatic antioxidants such as reduced form of ascorbate (ASC), dehydroascorbate (DHA), reduced glutathione (GSH), and oxidized glutathione (GSSG) were investigated in leaves of P. viviparum, which were collected from three altitudes (2,200, 3,200, and 3,900 m) of Tianshan Mountain in China. The activities of these four antioxidative enzymes were accompanied by increases of H2O2 levels from 2,200 to 3,200 m. However, the activities of CAT and POD were decreased, whereas the activities of SOD and GR continually increased at 3,900 m. Analyses of isoforms of SOD, CAT, POD, and GR showed that the leaves of P. viviparum exposed different altitude conditions are capable of differentially altering the intensity. Additionally, two new isoforms of SOD were detected at 3900 m. A continual increase in the ASC, ASC to DHA ratio, GSH and GSH/[GSH + GSSG] ratio, and the activity of DHAR were observed in leaves of P. viviparum with the elevation of altitude. These results suggest that the higher contents of ASC, GSH as well as an increase in reduced redox state may be essential to antioxidation processes in the leaves of P. viviparum, whereas antioxidant enzymes system is a cofactor in the processes.  相似文献   

20.
The aim of our study was to determine the activity of antioxidant defence (AD) enzymes: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR) and the phase II biotransformation enzyme glutathione-S-transferase (GST) in the hepatopancreas, the gills and muscle of Spiny cheek crayfish (Orconectes limosus) from the River Danube and to compare tissue specificities of investigated enzymes. Our results indicated that both specific and total SOD activities in the hepatopancreas were lower compared to the gills and muscle. Total SOD activity in the gills was lower with respect to that in muscle. CAT and GSH-Px (both specific and total) activities were higher in the hepatopancreas compared to those in the gills and muscle. In the gills the specific and total GR activities were higher than in the hepatopancreas and muscle. The specific and total GST activities were higher in the hepatopancreas compared with the gills and muscle. Our study represents the first comprehensive report of AD enzymes in tissues of O. limosus caught in the River Danube. The noted tissue distributions of the investigated AD enzyme activities most likely reflected different metabolic activities and different responses to environmental conditions in the examined tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号