首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On September 28-29, 2006, the National Institute of Environmental Health Sciences led a team from the National Institutes of Health in hosting a Working Group on Integrated Translational Research in DNA Repair, in Berkeley, CA. In recognition of the far-reaching goals for this area of investigation, the Working Group was charged with conceiving a vision to facilitate projects that would apply the lessons of DNA Repair research to clinical application and public health. The participants included basic and physician scientists working in the various areas of DNA Repair and genome stability, as well as agency representatives of the National Cancer Institute and the National Institute of General Medical Sciences. In constructing this vision of practical research recommendations, the Working Group was asked to identify roadblocks to progress, suggest enabling technologies, and to consider areas that are ripe for translation. This report summarizes the rationale for this initiative and the recommendations that emerged.  相似文献   

2.
Repair replication of DNA has been studied in first instar larvae of Drosophila melanogaster with isopycnic centrifugation techniques. Larvae were fed BUdR, FUdR, streptomycin, penicillin, and Fungazone for two to four hours prior to exposure to UV, X-rays, MMS, or EMS. Feeding was continued for four hours in the presence of (3)HBUdR and DNA was isolated from whole larvae. Repair replication is stimulated by each of these agents. MMS is about 10 times as potent as EMS in stimulating repair synthesis. A dose of 200 ergs/mm(2) largely saturates the level of repair replication observed after UV irradiation. Repair replication rises between 0 and 80,000 R of X-rays before falling off. Semiconservative synthesis is seriously inhibited above a dose of 40,000 R of X-rays. Photorepair has been detected as a reduction in repair synthesis resulting from post-irradiation exposure to photoreactivating light. The same treatment has no detectable effect on X-ray-stimulated repair replication. Repair replication is insensitive to the presence of caffeine or hydroxyurea during the final incubation, although semiconservative synthesis is strongly inhibited by these agents. A mixture of BUdR and (3)HTdR can be used to replace (3)HBUdR in detecting repair replication.  相似文献   

3.
1. DNA repair was measured in 3 Gy gamma-irradiated human peripheral lymphocyte subpopulations by means of nucleoid sedimentation. 2. The influence of the antibiotic, novobiocin (an inhibitor of inter alia topoisomerase II) on the repair process was investigated. 3. Repair of 33 37% of the DNA lesions induced by gamma-irradiation in enriched B lymphocyte fractions, was retarded by novobiocin. 4. Repair in enriched T lymphocyte fractions was unaffected by novobiocin.  相似文献   

4.
Base excision repair is an important mechanism for correcting DNA damage produced by many physical and chemical agents. We have examined the effects of the REV3 gene and the DNA polymerase genes POL1, POL2, and POL3 of Saccharomyces cerevisiae on DNA repair synthesis is nuclear extracts. Deletional inactivation of REV3 did not affect repair synthesis in the base excision repair pathway. Repair synthesis in nuclear extracts of pol1, pol2, and pol3 temperature-sensitive mutants was normal at permissive temperatures. However, repair synthesis in pol2 nuclear extracts was defective at the restrictive temperature of 37 degrees C and could be complemented by the addition of purified yeast DNA polymerase epsilon. Repair synthesis in pol1 nuclear extracts was proficient at the restrictive temperature unless DNA polymerase alpha was inactivated prior to the initiation of DNA repair. Thermal inactivation of DNA polymerase delta in pol3 nuclear extracts enhanced DNA repair synthesis approximately 2-fold, an effect which could be specifically reversed by the addition of purified yeast DNA polymerase delta to the extract. These results demonstrate that DNA repair synthesis in the yeast base excision repair pathway is catalyzed by DNA polymerase epsilon but is apparently modulated by the presence of DNA polymerases alpha and delta.  相似文献   

5.
DNA fibre autoradiography, after incorporation of high specific activity 3H-thymidine and 3H-deoxycytidine, has been used to investigate repair in DNA fibres from single cells following UV, or methyl-methane sulphonate (MMS) treatment. Asynchronously growing human fibroblasts, leucocytes, and HeLa cells at different phases of the cell cycle have been investigated. Isotope incorporation in repair could be differentiated from that involved in replication by the distribution and density of silver grains along the DNA fibres. Grain distribution due to repair was continuous over long stretches of the fibres and was at a low density, occasionally interspersed with short slightly denser segments. Replication labelling on the other hand, was dense and usually in short tandem segments. Repair labelling was of a similar overall density in fibres from a single cell, but differed in intensity from cell to cell. In mutagen treated Go (leucocytes) or G1 (HeLa cells), repair labelling was not increased by the presence of the DNA inhibitors, hydroxyurea (HU) or 5-fluorodeoxyuridine (FUdR). Repair was not detectable in S cells however, without the use of these inhibitors to reduce endogenous nucleoside production. FUdR enhanced the repair labelling in S cells only slightly, while HU increased it beyond that observed in UV irradiated, HU treated, G1 cells. The intensity of repair labelling in fibres from mutagen treated S cells appears to be proportional to the degree of reduction of DNA chain elongation in replicons.  相似文献   

6.
Lukas J  Bartek J 《Cell》2004,118(6):666-668
Repair of damaged DNA is a dynamic process that requires careful orchestration of a multitude of enzymes, adaptor proteins, and chromatin constituents. In this issue of Cell, Lisby et al. (2004) provide a visual glimpse into how the diverse signaling and repair machines are organized in space and time around the deadliest genetic lesions--the DNA double-strand breaks.  相似文献   

7.
Repair synthesis in human cells in tissue culture can be readily separated from semi-conservative DNA synthesis with the aid of a benzoylated naphthoylated DEAE cellulose (BND-cellulose) column. Cells are incubated with a radioactive DNA precursor during treatment with a repair-inducing agent. An inhibitor of semi-conservative DNA synthesis (hydroxyurea) is added to slow the progression of the DNA growing point. The cells are lysed and after treatment with ribonuclease and pronase the lysates are sheared and passed through a BND-cellulose column. Native DNA is eluted with I M NaCl. Any increase in radioactivity in the native DNA is due to repair synthesis and the specific repair activity (nucleotides inserted per mug of DNA) can be determined from radioactivity and absorbancy measurements. Repair can also be measured in the region of the DNA growing point by fractionation of the material eluted from BND-cellulose with 50% formamide. Repair was not detected in N-acetoxy-2-acetylaminofluorene (AAAF)-treated lymphoblasts derived from an individual with xeroderma pigmentosum although methyl methanesulfonate (MMS)-induced repair was observed in these cells.  相似文献   

8.
The First joint meeting of the German DGDR (German Society for Research on DNA Repair) and the French SFTG (French Society of Genotoxicology) on DNA Repair was held in Toulouse, France, from September 15 to 19, 2007. It was organized by Lisa Wiesmüller and Bernard Salles together with the scientific committee consisting of Gilbert de Murcia, Jean-Marc Egly, Frank Grosse, Karl-Peter Hopfner, Georges Iliakis, Bernd Kaina, Markus Löbrich, Bernard Lopez, Daniel Marzin and Alain Sarasin. This report summarizes information presented by the speakers (invited lectures and oral communications) during the seven plenary sessions, which include (1) excision repair, (2) DNA repair and carcinogenesis, (3) double-strand break repair, (4) replication in repair and lesion bypass, (5) cellular responses to genotoxic stress, (6) DNA repair machinery within the chromatin context and (7) genotoxicology and testing. A total of 23 plenary lectures, 32 oral communications and 66 posters were presented in this rather intense 4 days meeting, which stimulated extensive discussions and highly interdisciplinary scientific exchanges among the ∼250 participants.  相似文献   

9.
DNA excision repair in mammalian cell extracts.   总被引:3,自引:0,他引:3  
The many genetic complementation groups of DNA excision-repair defective mammalian cells indicate the considerable complexity of the excision repair process. The cloning of several repair genes is taking the field a step closer to mechanistic studies of the actions and interactions of repair proteins. Early biochemical studies of mammalian DNA repair in vitro are now at hand. Repair synthesis in damaged DNA can be monitored by following the incorporation of radiolabelled nucleotides. Synthesis is carried out by mammalian cell extracts and is defective in extracts from cell lines derived from individuals with the excision-repair disorder xeroderma pigmentosum. Biochemical complementation of the defective extracts can be used to purify repair proteins. Repair of damage caused by agents including ultraviolet irradiation, psoralens, and platinating compounds has been observed. Neutralising antibodies against the human single-stranded DNA binding protein (HSSB) have demonstrated a requirement for this protein in DNA excision repair as well as in DNA replication.  相似文献   

10.
R D Wood  P Robins  T Lindahl 《Cell》1988,53(1):97-106
Soluble extracts from human lymphoid cell lines that perform repair synthesis on covalently closed circular DNA containing pyrimidine dimers or psoralen adducts are described. Short patches of nucleotides are introduced by excision repair of damaged DNA in an ATP-dependent reaction. Extracts from xeroderma pigmentosum cell lines fail to act on damaged circular DNA, but are proficient in repair synthesis of ultraviolet-irradiated DNA containing incisions generated by Micrococcus luteus pyrimidine dimer-DNA glycosylase. Repair is defective in extracts from all xeroderma pigmentosum cell lines investigated, representing the genetic complementation groups A, B, C, D, H, and V. Mixing of cell extracts of group A and C origin leads to reconstitution of the DNA repair activity.  相似文献   

11.
The fundamental nuclear enzyme DNA topoisomerase I (topo I), cleaves the double-stranded DNA molecule at preferred sequences within its recognition/binding sites. We have recently reported that when cells incorporate halogenated nucleosides analogues of thymidine into DNA, it interferes with normal chromosome segregation, as shown by an extraordinarily high yield of endoreduplication, and results in a protection against DNA breakage induced by the topo II poison m-AMSA [F. Cortés, N. Pastor, S. Mateos, I. Domínguez, The nature of DNA plays a role in chromosome segregation: endoreduplication in halogen-substituted chromosomes, DNA Repair 2 (2003) 719-726; G. Cantero, S. Mateos, N. Pastor; F. Cortés, Halogen substitution of DNA protects from poisoning of topoisomerase II that results in DNA double-strand breaks (DSBs), DNA Repair 5 (2006) 667-674]. In the present investigation, we have assessed whether the presence of halogenated nucleosides in DNA diminishes the frequency of interaction of topo I with DNA and thus the frequency with which the stabilisation of cleavage complexes by the topo I poison camptothecin (CPT) takes place, in such a way that it protects from chromosome breakage and sister-chromatid exchange. This protective effect is shown to parallel a loss in halogen-substituted cells of the otherwise CPT-increased catalytic activity bound to DNA.  相似文献   

12.
The activities of DNA polymerase-alpha and -beta isolated from pig spleen were determined at different temperatures and in the presence of different concentrations of inhibitors. The results were compared with parallel estimations of replicative DNA synthesis and UV-induced repair synthesis in spleen cells. In respect to pCMB and aCTP, polymerase-alpha is more sensitive than polymerase-beta and similarly is replication more sensitive than repair. Repair synthesis and the activity of polymerase-beta decreases at temperatures higher than 40 degrees C whereas both replication and the activity of polymerase-alpha are greatly stimulated at elevated temperatures with optima of 45 degrees C (polymerase-alpha) and 41 degrees C (replication). The results favour the hypothesis that polymerase-beta is involved in repair synthesis.  相似文献   

13.
In eukaryotes, recombinational repair is choreographed by multiprotein complexes that are organized into focal assemblies. These foci are highly dynamic giga-dalton structures capable of simultaneously repairing multiple DNA lesions. Moreover, the composition of these repair centers depends on the nature of the DNA lesion and is tightly coordinated with progression of the cell cycle. Components of DNA repair centers are regulated by post-translational modifications such as phosphorylation, ubiquitination and sumoylation. Repair foci progress through four distinct stages: first, DNA damage recognition and binding of DNA ends by the Mre11 complex and Ku70/80; second, end-processing and binding of single-stranded DNA by replication protein A, which recruits checkpoint proteins; third, recombinational repair during S and G(2) phase; and fourth, disassembly of foci and resumption of the cell cycle.  相似文献   

14.
Chloroquine (ClQ) inhibited the repair of DNA damage produced in cultured rat liver cells by methyl methanesulfonate (MMS). MMS caused fragmentation of single-strand DNA in alkaline sucrose gradients. Repair of the damage was followed by observing the restoration of the normal sedimentation pattern at intervals after treatment. Repair was significant by 7 h and nearly complete at 24 h. Addition of ClQ during the repair peiod markedly reduced the rate of repair. Also, ClQ increased the lethality of MMS, which could be due to the inhibition of repair. ClQ was found to inhibit protein synthesis, but the effect on repair is probably not due entirely to this action since comparable inhibition of protein synthesis by cycloheximide produced a lesser degree of delay in repair.  相似文献   

15.
An in vitro system based upon extracts of Escherichia coli infected with bacteriophage T7 was used to monitor repair of double-strand breaks in the T7 genome. The efficiency of double-strand break repair was markedly increased by DNA molecules ('donor' DNA) consisting of a 2.1 kb DNA fragment, generated by PCR, that had ends extending approximately 1 kb on either side of the break site. Repair proceeded with greater than 10% efficiency even when T7 DNA replication was inhibited. When the donor DNA molecules were labelled with 32P, repaired genomes incorporated label only near the site of the double-strand break. When repair was carried out with unlabelled donor DNA and [32P]-dCTP provided as precursor for DNA synthesis the small amount of incorporated label was distributed randomly throughout the entire T7 genome. Repair was performed using donor DNA that had adjacent BamHI and PstI sites. When the BamHI site was methylated and the PstI site was left unmethylated, the repaired genomes were sensitive to PstI but not to BamHI endonuclease, showing that the methyl groups at the BamHI recognition site had not been replaced by new DNA synthesis during repair of the double-strand break. These observations are most consistent with a model for double-strand break repair in which the break is widened to a small gap, which is subsequently repaired by physical incorporation of a patch of donor DNA into the gap.  相似文献   

16.
The repair of apurinic/apyrimidinic (AP) sites is described. The major pathway involves hydrolysis of the stable phosphodiester bond on the 5′ side of the lesion by an AP endonuclease. The 5′ terminal deoxyribose-phosphate residue is excised by a separate phosphodiesterase which does not appear to be an exonuclease. Repair replication of the single missing nucleotide residue by a DNA polymerase and ligation complete the excision-repair process. The possibility that minor DNA lesions may accumulate with time in long-lived cells is considered. Such lesions should be chemically stable and should not be recognized by DNA-repair enzymes.  相似文献   

17.
18.
Walker GC 《Mutation research》2005,577(1-2):14-23
In 1974, Philip Hanawalt organized what proved to be the first in a continuing series of meetings that bring together the DNA Repair and Mutagenesis community. In conjunction with this meeting, he also edited a book that defined the state of the field at that point in time and included his personal assessment of numerous critical issues. This review traces some of the critical concepts concerning DNA repair and biological responses to DNA damage that have developed since that time, highlighting ways in which Phil Hanawalt has provided leadership in the field at many different levels.  相似文献   

19.
Repair of abasic sites in DNA   总被引:12,自引:0,他引:12  
Repair of both normal and reduced AP sites is activated by AP endonuclease, which recognizes and cleaves a phosphodiester bond 5' to the AP site. For a short period of time an incised AP site is occupied by poly(ADP-ribose) polymerase and then DNA polymerase beta adds one nucleotide into the repair gap and simultaneously removes the 5'-sugar phosphate. Finally, the DNA ligase III/XRCC1 complex accomplishes repair by sealing disrupted DNA ends. However, long-patch BER pathway, which is involved in the removal of reduced abasic sites, requires further DNA synthesis resulting in strand displacement and the generation of a damage-containing flap that is later removed by the flap endonuclease. Strand-displacement DNA synthesis is accomplished by DNA polymerase delta/epsilon and DNA ligase I restores DNA integrity. DNA synthesis by DNA polymerase delta/epsilon is dependent on proliferating cell nuclear antigen, which also stimulates the DNA ligase I and flap endonuclease. These repair events are supported by multiple protein-protein interactions.  相似文献   

20.
T Lindahl 《Mutation research》1990,238(3):305-311
The repair of apurinic/apyrimidinic (AP) sites is described. The major pathway involves hydrolysis of the stable phosphodiester bond on the 5' side of the lesion by an AP endonuclease. The 5' terminal deoxyribose-phosphate residue is excised by a separate phosphodiesterase which does not appear to be an exonuclease. Repair replication of the single missing nucleotide residue by a DNA polymerase and ligation complete the excision-repair process. The possibility that minor DNA lesions may accumulate with time in long-lived cells is considered. Such lesions should be chemically stable and should not be recognized by DNA-repair enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号