首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytoskeletal elements in arthropod sensilla and mammalian photoreceptors.   总被引:1,自引:0,他引:1  
Ciliary receptor cells, typified by cilia or modified cilia, are very common in the animal kingdom. In addition to the cytoskeleton of their ciliary processes these receptors possess other specific prominent cytoskeletal elements. Two representative systems are presented: i) scolopidia, mechanosensitive sensilla of various arthropod species; and ii) photoreceptor cells of the retina of the bovine eye. Two cytoskeletal structures are characteristic for arthropod scolopidia: a scolopale typifies the innermost auxiliary cell, and long ciliary rootlets are extending well into the sensory cells. The latter element is also characteristic for the inner segment of the photoreceptor cells in bovine. The scolopale of scolopidia is mainly composed of actin filaments. In the absence of myosin, the uniform polarity of the actin filaments and their association with tropomyosin all indicate a stabilizing role of the filament bundles within the scolopale. This function and a certain elasticity of actin filament bundles may be important during stimulation of the sensilla. The ciliary rootlets of both systems originate at the basal bodies at the ciliary base of the sensory cells and project proximally. These rootlets are composed of longitudinally oriented, fine filaments forming a characteristic regular cross-striation. An alpha-actinin immunoreactivity was detected within the ciliary rootlets of scolopidia. In addition, antibodies to centrin react with the rootlets of both types of receptors. Since centrin is largely responsible for the contraction of the flagellar rootlets in green algae, contraction may also occur in the ciliary rootlets of insect sensilla and vertebrate photoreceptors. In both systems, contraction or relaxation of the ciliary rootlets could serve in sensory transduction or adaptation.  相似文献   

2.
Summary Long ciliary rootlets are a characteristic feature of the dendritic inner segments of the sensory cells in insect sensilla. These rootlets are composed of highly ordered filaments and are regularly cross-striated. Collagenase digestion and immunohistochemistry reveal that the rootlets are probably not composed of collagen fibers. However, double-labeling experiments with phalloidin and anti--actinins show that antibodies to -actinin react with the ciliary rootlets of the sensilla, but do not stain the scolopale, which is composed of actin filaments as visualized by phalloidin. Antibodies to centrin, a contractile protein isolated from flagellar rootlets of green algae, also stain the ciliary rootlets. Within the ciliary rootlets of insect sensilla, -actinin may be associated with filaments other than actin filaments. The immunohistochemical localization of a centrin-like protein suggests that contractions probably occur within the rootlets. The centrin-like protein may play a role during the mechanical transduction or adaptation of the sensilla.  相似文献   

3.
Summary Immuno-electron microscopy confirms that the scolopale, a characteristically prominent cytoskeletal element of insect scolopidia, is composed mainly of actin filaments. Immunohistochemistry reveals that these filaments are co-localized with tropomyosin. Myosin S1-decoration shows that their polarity is unidirectional. Antibodies to -actinin do not bind within the scolopale. The association of these actin filaments with tropomyosin in the absence of myosin, together with their uniform polarity, strongly suggests that, in the scolopale, they have a stabilizing rather than contractile function. Filament elasticity would appear to be important for stimulation. The degree of elasticity may well be governed by the extent of tropomyosin binding.  相似文献   

4.
Summary This study of the ultrastructure of the auditory sensilla of the New Zealand weta, Hemideina crassidens, is the first such study on a member of the orthopteran Superfamily Gryllacridoidea. Ultrastructure of the auditory sensilla is similar in all of the tibial mechanosensory organs, here called subgenual organ, intermediate organ and crista acoustica by analogy with comparable structures in Tettigoniidae.Distal to each sensory soma is a dendrite containing multiple ciliary rootlets that fuse into a single ciliary root. This splits into nine root processes that pass around the outside of the proximal basal body and then rejoin at the level of the distal basal body, distal to which the dendrite has a modified ciliary structure with a circlet of nine peripheral paired tubes and rods as it passes through the proximal extracellular space. It is then enclosed by a zone of scolopale cell cytoplasm before expanding into a dilatation within the distal extracellular space. In some sensilla this space is partially occluded by electron dense material which is part of the scolopale cell. Distal to the dilatation the cilium shrinks and ends surrounded by the scolopale cap.Accessory cells consist of glia enwrapping the sensory neuron in the region of its soma, the scolopale cell surrounding the ciliary portion of the dendrite, and the attachment cell surrounding the scolopale cell and scolopale cap and connected to them by desmosomes. The attachment cells are filled with microtubules in differing densities and orientations. Lamellae are present in the acellular matrix surrounding the attachment cells. Banded fibres, presumably of collagen, are also present in the matrix.  相似文献   

5.
The two actin-binding regions on the myosin heads of cardiac muscle   总被引:1,自引:0,他引:1  
In the presence of myosin S1 or myosin heads, actin filaments tend to form bundles. The biological meaning of the bundling of actin filaments has been unclear. In this study, we found that the cardiac myosin heads can form the bundles of actin filaments more rapidly than can skeletal S1, as monitored by light scattering and electron microscopy. Moreover, the actin bundles formed by cardiac S1 were found to be more stable against mechanical agitation. The distance between actin filaments in the bundles was approximately 20 nm, which is comparable to the length of a myosin head and two actin molecules. This suggests the direct binding of S1 tails to the adjacent actin filament. The "essential" light chain of cardiac myosin could be cross-linked to the actin molecule in the bundle. When monomeric actin molecules were added to the bundle, the bundles could be dispersed into individual filaments. The three-dimensional structure of the dispersed actin filaments was reconstructed from electron cryo-microscopic images of the single actin filaments dispersed by monomer actin. We were able to demonstrate that cardiac myosin heads bind to two actin molecules: one actin molecule at the conventional actin-binding region and the other at the essential light-chain-binding region. This capability of cardiac myosin heads to bind two actin molecules is discussed in view of lower ATPase activity and slower shortening velocity than those of skeletal ones.  相似文献   

6.
Smith DS 《Tissue & cell》1969,1(3):443-484
The dipteran haltere incorporates large numbers of regularly disposed mechanoreceptors providing the sensory input enabling the vibrating haltere to function as a gyroscopic organ of equilibrium. Campaniform sensilla of the basal and scapal regions have been investigated by light and transmission electron microscopy, and these observations are augmented by scanning electron studies of the cuticle overlying the groups of sensilla. Each sensillum possesses a specialized fan-shaped terminal containing a complex and ordered association of microtubules and filaments. The transmission of stress to this region via the cuticle, and its possible role in transduction is considered. The fine structure of apical and basal sections of the distal sensory process and associated sheath cells is described; the functional significance of the distribution of mitochondria and other components is discussed. The organization of haltere chordotonal sensilla is described briefly, and compared with other mechanoreceptors with particular reference to microtubules and scolopale structures.  相似文献   

7.
Functional morphology of the subgenual organ of the carpenter ant   总被引:1,自引:0,他引:1  
Menzel JG  Tautz J 《Tissue & cell》1994,26(5):735-746
Using light microscopy, confocal microscopy, electron microscopy and histochemistry, the subgenual organ (SGO) of an ant, Camponutas ligniperda, is investigated. Sensory units and attachment cells together enclose a large extracellular cavity, which is filled by acid mucopolysaccharides, as revealed by staining with ruthenium red. Due to this cavity, the whole SGO has the shape of a deformed sphere and the scolopidia exhibit a distribution of angles between 0 degrees and 60 degrees with the tibial long axis (as is shown by phalloidin-rhodamin staining of the actin filaments of the scolopale, viewed in situ by laser scanning confocal microscopy). The subgenual organ is innervated by a branch of the tibial nerve, which splits within or shortly distal to the femur-tibia joint. The other features of the SGO of Camponotus ligniperda are similar as in other insects: the SGO of Camponotus ligniperda contains about 35 scolopidial sensilla; it is fixed to the subgenual nerve on its proximal end, by its attachment cells to the opposite part of the cuticle; the fixation by the attachment cells is accomplished by a vast quantity of cytoplasmic microtubules; the construction of the sensory units is the same as in other mononematic scolopidial organs. The role of the extracellular lumen inside the organ and the special shape of the SGO of Camponotus ligniperda in mechanical transmission is discussed.  相似文献   

8.
Summary Changes in the spatial relationship between actin filaments and microtubules during the differentiation of tracheary elements (TEs) was investigated by a double staining technique in isolatedZinnia mesophyll cells. Before thickening of the secondary wall began to occur, the actin filaments and microtubules were oriented parallel to the long axis of the cell. Reticulate bundles of microtubules and aggregates of actin filaments emerged beneath the plasma membrane almost simultaneously, immediately before the start of the deposition of the secondary wall. The aggregates of actin filaments were observed exclusively between the microtubule bundles. Subsequently, the aggregates of actin filaments extended preferentially in the direction transverse to the long axis of the cell, and the arrays of bundles of microtubules which were still present between the aggregates of actin filaments became transversely aligned. The deposition of the secondary walls then took place along the transversely aligned bundles of microtubules.Disruption of actin filaments by cytochalasin B produced TEs with longitudinal bands of secondary wall, along which bundles of microtubules were seen, while TEs produced in the absence of cytochalasin B had transverse bands of secondary wall. These results indicate that actin filaments play an important role in the change in the orientation of arrays of microtubules from longitudinal to transverse. Disruption of microtubules by colchicine resulted in dispersal of the regularly arranged aggregates of actin filaments, but did not inhibit the formation of the aggregates itself, suggesting that microtubules are involved in maintaining the arrangement of actin filaments but are not involved in inducing the formation of the regularly arranged aggregates of actin filaments.These findings demonstrate that actin filaments cooperate with microtubules in controlling the site of deposition of the secondary wall in developing TEs.Abbreviations DMSO dimethylsulfoxide - EGTA ethyleneglycolbis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - FITC fluorescein isothiocyanate - MSB microtubule-stabilizing buffer - PBS phosphate buffered saline - PIPES piperazine-N,N-bis(2-ethanesulfonic acid) - TE tracheary element  相似文献   

9.
Drosophila bristle cells are shaped during growth by longitudinal bundles of cross-linked actin filaments attached to the plasma membrane. We used confocal and electron microscopy to examine actin bundle structure and found that during bristle elongation, snarls of uncross-linked actin filaments and small internal bundles also form in the shaft cytoplasm only to disappear within 4 min. Thus, formation and later removal of actin filaments are prominent features of growing bristles. These transient snarls and internal bundles can be stabilized by culturing elongating bristles with jasplakinolide, a membrane-permeant inhibitor of actin filament depolymerization, resulting in enormous numbers of internal bundles and uncross-linked filaments. Examination of bundle disassembly in mutant bristles shows that plasma membrane association and cross-bridging adjacent actin filaments together inhibits depolymerization. Thus, highly cross-bridged and membrane-bound actin filaments turn over slowly and persist, whereas poorly cross-linked filaments turnover more rapidly. We argue that the selection of stable bundles relative to poorly cross-bridged filaments can account for the size, shape, number, and location of the longitudinal actin bundles in bristles. As a result, filament turnover plays an important role in regulating cytoskeleton assembly and consequently cell shape.  相似文献   

10.
Actin filament arrays in in vivo microvillar bundles of rat intestinal enterocyte were re-evaluated using electron tomography (ET). Conventional electron microscope observation of semi-thin cross sections (300nm thick) of high-pressure freeze fixed and resin embedded brush border has shown a whirling pattern in the center of the microvilli instead of hexagonally arranged dots, which strongly suggests that the bundle consists of a non-parallel array of filaments. A depth compensation method for the ET was developed to estimate the actual structure of the actin bundle. Specimen shrinkage by beam irradiation during image acquisition was estimated to be 63%, and we restored the original thickness in the reconstruction. The depth compensated tomogram displayed the individual actin filaments within the bundles and it indicated that the actin filaments do not lie exactly parallel to each other: instead, they are twisted in a clockwise coil with a pitch of ~120°/μm. Furthermore, the lattice of actin filaments was occasionally re-arranged within the bundle. As the microvillar bundle mechanically interacts with the membrane and is thought to be compressed by the membrane's faint tensile force, we removed the shrouding membrane using detergents to eliminate the mechanical interaction. The bared bundles no longer showed the whirling pattern, suggesting that the bundle had released its coiled property. These findings indicate that the bundle has not rigid but elastic properties and a dynamic transformation in its structure caused by a change in the mechanical interaction between the membrane and the bundle.  相似文献   

11.
In developing Drosophila bristles two species of cross-linker, the forked proteins and fascin, connect adjacent actin filaments into bundles. Bundles form in three phases: (a) tiny bundles appear; (b) these bundles aggregate into larger bundles; and (c) the filaments become maximally cross-linked by fascin. In mutants that completely lack forked, aggregation of the bundles does not occur so that the mature bundles consist of <50 filaments versus ∼700 for wild type. If the forked concentration is genetically reduced to half the wild type, aggregation of the tiny bundles occurs but the filaments are poorly ordered albeit with small patches of fascin cross-linked filaments. In mutants containing an excess of forked, all the bundles tend to aggregate and the filaments are maximally crossbridged by fascin. Alternatively, if fascin is absent, phases 1 and 2 occur normally but the resultant bundles are twisted and the filaments within them are poorly ordered. By extracting fully elongated bristles with potassium iodide which removes fascin but leaves forked, the bundles change from being straight to twisted and the filaments within them become poorly ordered. From these observations we conclude that (a) forked is used early in development to aggregate the tiny bundles into larger bundles; and (b) forked facilitates fascin entry into the bundles to maximally cross-link the actin filaments into straight, compact, rigid bundles. Thus, forked aligns the filaments and then directs fascin binding so that inappropriate cross-linking does not occur.  相似文献   

12.
Proteins that cross-link actin filaments can either form bundles of parallel filaments or isotropic networks of individual filaments. We have found that mixtures of actin filaments with alpha-actinin purified from either Acanthamoeba castellanii or chicken smooth muscle can form bundles or isotropic networks depending on their concentration. Low concentrations of alpha-actinin and actin filaments form networks indistinguishable in electron micrographs from gels of actin alone. Higher concentrations of alpha-actinin and actin filaments form bundles. The threshold for bundling depends on the affinity of the alpha-actinin for actin. The complex of Acanthamoeba alpha-actinin with actin filaments has a Kd of 4.7 microM and a bundling threshold of 0.1 microM; chicken smooth muscle has a Kd of 0.6 microM and a bundling threshold of 1 microM. The physical properties of isotropic networks of cross-linked actin filaments are very different from a gel of bundles: the network behaves like a solid because each actin filament is part of a single structure that encompasses all the filaments. Bundles of filaments behave more like a very viscous fluid because each bundle, while very long and stiff, can slip past other bundles. We have developed a computer model that predicts the bundling threshold based on four variables: the length of the actin filaments, the affinity of the alpha-actinin for actin, and the concentrations of actin and alpha-actinin.  相似文献   

13.
In the assembly of actin filaments that takes place during the spreading of a polulation of human lung cells, after trypsin detachment off the substratum and replating, tropomyosin exhibits a considrable lag in its association with the newly forming filament bundles; it begins to associate with them during the later stages of cell spreading as the actin filament bundles normally seen in interphase cells begin to organize. This lag is evident in a number of cell types that are spreading onto a substratum; it does not appear to be due to a selective degradation of this molecule during rounding up of the cells, since tropmyosin associates with the actin filament bundles after this lag even under conditions where the protein synthetic activity of the cell is inhibited to more than 95% by cycloheximide. The preferential binding of tropomyosin to fully assembled filament bundles but not to newly formed bundles of actin filaments suggests therefore the existence of two classes of action filaments: those that bind tropomyosin and those that do not. This selective localization of tropomyosin and those that do not. This selective localization of tropomyosin on actin filaments was further pursued by examining the localization of this molecule in membrane ruffles. The immunofluorescent results indicate that ruffling is an actin-filament-dependent, microtubule-independent phenomenon. Tropomyosin is absent from membrane ruffles under a variety of circumstances where ruffling is expressed and, more generally, from any other cellular activity where actin filaments are expected to be in a dynamic state of reorganization or are required to be in a flexible configuraion. It is concluded that in tissue culture cells tropomyosin binds preferentially to actin filaments involved in structural support to confer rigidity upon them as well as aid them in maintaining a stretched phenotype. The absence of tropomyosin from certain motile phenomena where actin filaments are involved indicates that these classes of actin filaments are regulated by cytoplasmic mechanisms distinct from that by which tropomyosin (and troponin) mediates contractility in skeletal mulscle; it opens the possibility that different types of actin filaments enagaged in different cellular motile phenomenon in tissue culture cells may be regulated by a host of coexisting regulatory mechanisms, some as yet undetermined.  相似文献   

14.
Panasenko OO  Gusev NB 《IUBMB life》2000,49(4):277-282
Interaction of calponin and alpha-actinin with actin was analyzed by means of cosedimentation and electron microscopy. G-actin was polymerized in the presence of calponin, alpha-actinin, or both of these actin-binding proteins (ABPs). The single and bundled actin filaments were separated, and the stoichiometry of ABPs and actin in both types of filaments was determined. Binding of calponin to the single or bundled actin filaments was not dependent on the presence of alpha-actinin and did not displace alpha-actinin from actin. In the presence of calponin, however, less alpha-actinin was bound to the bundled actin filaments, and the binding of alpha-actinin was accompanied by a partial decrease in the calponin/actin stoichiometry in the bundles of actin filaments. Calponin had no influence on the binding of alpha-actinin to the single actin filaments. The structure of actin bundles formed in the presence of the two ABPs differed from that formed in the presence of either one singly. We conclude that calponin and alpha-actinin can coexist on actin and that nearly each actin monomer can bind one of these ABPs.  相似文献   

15.
Previous studies demonstrate that in developing Drosophila bristles, two cross-linking proteins are required sequentially to bundle the actin filaments that support elongating bristle cells. The forked protein initiates the process and facilitates subsequent cross-linking by fascin. Using cross-linker-specific antibodies, mutants, and drugs we show that fascin and actin are present in excessive amounts throughout bundle elongation. In contrast, the forked cross-linker is limited throughout bundle formation, and accordingly, regulates bundle size and shape. We also show that regulation of cross-linking by phosphorylation can affect bundle size. Specifically, inhibition of phosphorylation by staurosporine results in a failure to form large bundles if added during bundle formation, and leads to a loss of cross-linking by fascin if added after the bundles form. Interestingly, inhibition of dephosphorylation by okadaic acid results in the separation of the actin bundles from the plasma membrane. We further show by thin section electron microscopy analysis of mutant and wild-type bristles that the amount of material that connects the actin bundles to the plasma membrane is also limited throughout bristle elongation. Therefore, overall bundle shape is determined by the number of actin filaments assembled onto the limited area provided by the connector material. We conclude that assembly of actin bundles in Drosophila bristles is controlled in part by the controlled availability of a single cross-linking protein, forked, and in part by controlled phosphorylation of cross-links and membrane actin connector proteins.  相似文献   

16.
Binding of actin filaments to connectin   总被引:3,自引:0,他引:3  
The binding of actin filaments to connectin, a muscle elastic protein, was investigated by means of turbidity and sedimentation measurements and electron microscopy. In the presence of less than 0.12 M KCl at pH 7.0, actin filaments bound to connectin. Long actin filaments formed bundles. Short actin filaments also aggregated into irregular bundles or a meshwork, and were frequently attached perpendicularly to long bundles. The binding of F-actin to connectin was saturated at an equal weight ratio (molar ratio, 50 : 1), as determined by a cosedimentation assay. Larger amounts of sonicated short actin filaments appeared to bind to connectin than intact F-actin. Myosin S1-decorated actin filaments did not bind to connectin. The addition of S1 to connectin-induced actin bundles resulted in partial disaggregation. Thus, connectin does not appear to interfere with actin-myosin interactions, since myosin S1 binds to actin more strongly than connectin.  相似文献   

17.
The actin filament severing protein, Acanthamoeba actophorin, decreases the viscosity of actin filaments, but increases the stiffness and viscosity of mixtures of actin filaments and the crosslinking protein alpha-actinin. The explanation of this paradox is that in the presence of both the severing protein and crosslinker the actin filaments aggregate into an interlocking meshwork of bundles large enough to be visualized by light microscopy. The size of these bundles depends on the size of the containing vessel. The actin filaments in these bundles are tightly packed in some areas while in others they are more disperse. The bundles form a continuous reticulum that fills the container, since the filaments from a particular bundle may interdigitate with filaments from other bundles at points where they intersect. The same phenomena are seen when rabbit muscle aldolase rather than alpha-actinin is used as the crosslinker. We propose that actophorin promotes bundling by shortening the actin filaments enough to allow them to rotate into positions favorable for lateral interactions with each other via alpha-actinin. The network of bundles is more rigid and less thixotropic than the corresponding network of single actin filaments linked by alpha-actinin. One explanation may be that alpha-actinin (or aldolase) normally in rapid equilibria with actin filaments may become trapped between the filaments increasing the effective concentration of the crosslinker.  相似文献   

18.
Myosin II motors play several important roles in a variety of cellular processes, some of which involve active assembly/disassembly of cytoskeletal substructures. Myosin II motors have been shown to function in actin bundle turnover in neuronal growth cones and in the recycling of actin filaments during cytokinesis. Close examination had shown an intimate relationship between myosin II motor adenosine triphosphatase activity and actin turnover rate. However, the direct implication of myosin II in actin turnover is still not understood. Herein, we show, using high-resolution cryo-transmission electron microscopy, that myosin II motors control the turnover of actin bundles in a concentration-dependent manner in vitro. We demonstrate that disassembly of actin bundles occurs through two main stages: the first stage involves unbundling into individual filaments, and the second involves their subsequent depolymerization. These evidence suggest that, in addition to their “classical” contractile abilities, myosin II motors may be directly implicated in active actin depolymerization. We believe that myosin II motors may function similarly in vivo (e.g., in the disassembly of the contractile ring by fine tuning the local concentration/activity of myosin II motors).  相似文献   

19.
20.
Nematocytes of hydra feature a complex cytoskeleton consisting mainly of several bundles of actin filaments and a basket-like structure formed by microtubules. The aim of this study was to establish the sequence of appearance of cytoskeletal elements during nematocyte development using immuno-fluorescence and electron microscopical techniques. Our results are a first step in trying to understand developmental hierarchies and mechanisms which govern the synthesis and assembly of the cytoskeleton in nematocytes. The finger-shaped rods around the apex of the capsule are the first detectable elements of the cytoskeleton. Microtubules of the basket structure then follow and later, the actin filaments of microvilli which support the cnidocil. The actin filaments, however, do not show the highly ordered bundling pattern characteristic of filaments in functional nematocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号