首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王佳华  谷峰 《生命科学》2022,(10):1284-1288
线粒体作为细胞中重要的细胞器,其携带有自身的基因组。线粒体基因组发生突变后,可能导致人类疾病。开发靶向线粒体基因组的新型基因编辑工具在疾病治疗和疾病模型构建中具有重要意义。该文总结了线粒体基因编辑领域的进展,特别是近期以DdCBE和TALED为代表的重大进展;同时,也指出目前线粒体基因编辑工具仍然有一些缺点。该文拟为新型线粒体基因编辑工具的研发提供参考。  相似文献   

2.
锌指核酸酶在基因组定向修饰中的应用   总被引:1,自引:0,他引:1  
同源重组和逆转录病毒介导转基因法是目前基因组修饰中常用的两种主要方法.由于这些传统方法效率低,特异性差等缺点,制约了其在研究中的应用.锌指核酸酶(zinc finger nuclease,ZFN)是一种人工合成酶,含有锌指蛋白DNA结合域和非特异性核酸酶FokI结构域. ZFN在对基因组的靶向修饰时,表现出高度特异性和高效性. 最新研究结果显示,锌指核酸酶在哺乳动物细胞和斑马鱼基因组靶向敲除的效率高达20%.这一技术的出现,将给基因组靶向修饰的研究和应用领域带来革命,特别是在基因治疗人类疾病方面有巨大的潜力和广阔的前景.  相似文献   

3.
传统的基因组编辑技术是基于胚胎干细胞和同源重组实现生物基因组定向改造,但是该技术打靶效率低,严重制约了生命科学以及医学的研究.因此,研究新的基因组编辑技术十分重要.人工核酸酶介导的基因组编辑技术是通过特异性识别靶位点造成DNA双链断裂,引起细胞内源性的修复机制实现靶基因的修饰.与传统的基因组编辑技术相比,人工核酸酶技术打靶效率高,这对于基因功能的研究、构建人类疾病动物模型以及探索新型疾病治疗方案有着重要的意义.人工核酸酶技术有3种类型:锌指核酸酶(ZFN)、类转录激活因子核酸酶(TALEN)及规律成簇的间隔短回文重复序列(CRISPR).本文将对以上3种人工核酸酶技术的原理以及在生命科学和医学研究的应用进行综述.  相似文献   

4.
对目标基因组位点进行靶向修饰一直是基因工程研究的重点。靶向基因编辑技术能够有效地用于建立动物和细胞疾病模型、培育动植物新品种,并具有治疗遗传疾病的重大潜力。近年来靶向核酸酶技术取得了重大的进展,逐渐成为基因编辑的主流工具。综述了锌指核酸酶(ZFN)、类转录激活样效应因子核酸酶(TALEN)、规律成簇间隔短回文重复序列(CRISPR/Cas)这三大靶向基因编辑系统的原理和研究进展,并讨论了其局限性和未来的发展方向。  相似文献   

5.
旨在建立一种简便检测线粒体DNA(mt DNA)核酸酶靶向剪切活性的方法。利用转基因技术,将一段含有两个靶向目标序列(T1、T2)的线粒体DNA序列随机整合到宿主基因组中,通过实时荧光定量PCR筛选单拷贝或低拷贝的单克隆转基因细胞株。将含有T1、T2的CRISPR(clustered regularly interspaced short palindromic repeats)/Cas9质粒分别瞬时转染到所选细胞株中,靶向剪切核基因组,在靶向目标序列处造成DNA双链断裂,引发非同源末端连接修复机制,引入插入或缺失突变。观察测序峰图,证明两个靶向目标序列T1、T2均有剪切效率,且T1高于T2。建立了一种高效快速检测线粒体核酸酶靶向剪切活性的新方法。  相似文献   

6.
新型靶向基因组编辑技术研究进展   总被引:1,自引:0,他引:1  
传统的靶向基因组编辑技术改造基因效率非常低,严重制约了基础研究和临床应用。因此,新的靶向基因组编辑工具的研究显得非常重要,以此来提高基因原位修复、定点整合及高通量基因敲除的效率。主要论述了近年来发现的新型靶向基因组编辑技术即锌指核酸酶(ZFN)、转录激活子样效应因子核酸酶(TALENs)、规律成簇间隔短回文重复(CRISPR)/Cas系统。从它们的发现、结构和研究进展及应用前景等方面进行了总结;通过比较三者的优缺点,发现规律成簇间隔短回文重复(CRISPRs)具有明显的优点。  相似文献   

7.
8.
9.
通过对基因组特定区域进行精确定向遗传修饰,一方面可以针对目标序列进行精确突变,获得突变材料,对目标基因功能进行明确鉴定;另一方面可以进行目标序列的精确置换或插入,将外源基因随机导入造成的表达及遗传的不确定性降至最低。传统的基因定向修饰技术仅依赖于细胞自身的同源重组,修饰效率低下,而且还存在位置效应和遗传不稳定等诸多问题。通过引入序列特异性核酸酶(sequence—specificnucleases,SSN),可以在基因组特定位点造成DNA双链断裂(doublestrandbreak,OSB),促进依赖于细胞内源“同源重组”及“非同源末端连接”的DNA修复事件的定向发生,实现基因组定向遗传修饰效率的大幅提升。迄今为止,在基因组定向遗传修饰研究及应用领域,已经有多种不同类型的序列特异性核酸酶被有效使用,在多种生物中实现了不同类型的基因组定向遗传修饰。该文首先综述了SSN的结构特征及技术原理,然后对SSN技术在植物基因组定向遗传修饰中的研究进展和应用前景进行了重点介绍。  相似文献   

10.
俞梅  赖东武  傅国胜 《生命的化学》2021,41(8):1672-1683
心血管疾病已成为引起人类死亡的主要原因,线粒体在心肌细胞和心血管疾病中起重要作用。线粒体是维持细胞能量代谢的重要细胞器,线粒体钙稳态失衡介导的线粒体损伤和功能障碍是众多疾病共同的病理生理机制。作为线粒体功能研究中的重要一环,线粒体靶向Ca2+探针可特异性指示线粒体Ca2+水平变化,对深化疾病状态下线粒体钙稳态失衡机制的研究具有重要意义。本文拟在不同心血管疾病中,对线粒体靶向Ca2+探针的应用进行小结。  相似文献   

11.
12.
李爽  杨圆圆  邱艳  陈彦好  徐璐薇  丁秋蓉 《遗传》2017,39(3):177-188
基因组编辑技术的飞速发展,尤其是近年来CRISPR/Cas9基因组编辑体系的出现,使得研究人员能高效地在细胞系和动物模型中对基因组进行精确编辑。基于基因组编辑技术的各种实验研究平台被相继开发,包括通过在细胞系中引入疾病相关突变位点建立疾病模型,通过高通量筛选寻找导致肿瘤耐药性的突变基因,通过体内原位靶向致病基因并修改突变进行基因治疗等。这些基因组编辑技术研究平台极大推动了精准医学研究领域的发展。本文对基因组编辑技术在精准医学领域的基础研究、转化应用、目前存在的问题以及未来发展的方向进行了讨论。  相似文献   

13.
旨在建立一种简便检测线粒体DNA(mt DNA)核酸酶靶向剪切活性的方法。利用转基因技术,将一段含有两个靶向目标序列(T1、T2)的线粒体DNA序列随机整合到宿主基因组中,通过实时荧光定量PCR筛选单拷贝或低拷贝的单克隆转基因细胞株。将含有T1、T2的CRISPR(clustered regularly interspaced short palindromic repeats)/Cas9质粒分别瞬时转染到所选细胞株中,靶向剪切核基因组,在靶向目标序列处造成DNA双链断裂,引发非同源末端连接修复机制,引入插入或缺失突变。观察测序峰图,证明两个靶向目标序列T1、T2均有剪切效率,且T1高于T2。建立了一种高效快速检测线粒体核酸酶靶向剪切活性的新方法。  相似文献   

14.
基因组编辑技术对植物基因功能研究和作物遗传改良具有巨大的潜在价值。CRISPR/Cas9系统是继锌指核酸酶(ZFNs)和类转录激活效应因子核酸酶(TALENs)系统之后的新一代基因组编辑技术系统,具有操作简单和效率高等优点。概述了CRISPR/Cas9系统的技术特点及其在水稻基因功能研究及遗传改良中的应用,并指出了该系统在植物基因精准编辑中需要突破的关键问题。  相似文献   

15.
基因组编辑技术是在生物基因组水平上对靶标序列进行定点编辑的一种重要手段。近年来,锌指核酸酶技术(ZFNs)、类转录激活因子核酸酶技术(TALENs)、成簇且规律间隔的短回文重复序列和相关Cas蛋白的DNA核酸内切酶系统(CRISPR/Cas)等基因组编辑技术的相继问世,为功能基因组的研究提供了有效的实验手段。这3种基因组编辑技术的基本工作原理都是通过定点切割基因组DNA双链,从而诱导内源性的修复机制产生定点突变。通过介绍这3种技术的国内外研究现状及发展趋势探讨了基因组编辑技术在昆虫科学中的应用发展前景。  相似文献   

16.
基因组编辑是对基因组遗传信息进行定向改造的技术,其中CRISPR/Cas系统是目前应用最广泛的基因组编辑新技术。将先进的高通量测序以及相关计算生物分析应用于基因编辑研究,可进一步优化基因编辑效率和精度等检测流程,实现对全基因组功能基因筛选的监测。同时,利用基于生物信息及机器学习和深度学习等新方法,可对向导RNA(gRNA)的高效设计和实现对编辑效果的预测。本文将对计算生物学分析在CRISPR/Cas基因编辑系统的应用及研究进展等进行概述。  相似文献   

17.
黄娇娇  曹春伟  郑国民  赵建国 《遗传》2017,39(11):1078-1089
核酸酶介导的基因组编辑技术大幅度提高了编辑真核细胞基因组的能力,给生命科学领域带来了革命性地发展,也给猪的遗传改良带来了全新的契机。本文介绍了基因组编辑技术尤其是CRISPR/Cas9系统的发展以及各种天然存在的和人为改造的Cas9变体的作用特点;汇总了利用基因组编辑技术提高猪生产性能,尤其是改善猪肉品质和抵抗病毒感染的研究进展;分析了目前利用基因组编辑技术推进猪遗传改良所面临的挑战;最后,展望了基于基因组编辑技术的猪遗传改良和品种培育的发展趋势。  相似文献   

18.
基因组编辑技术是进行功能基因组研究的重要工具.锌指核酸酶技术(ZFNs)、类转录激活因子核酸酶技术(TALENs)以及CRISPR/Cas技术是近年来发展起来的3种主流基因组编辑技术.这3种基因组编辑技术的原理都是通过在生物基因组特定位点制造DNA断裂损伤,从而激活机体自身的DNA损伤修复机制,在此过程中引发各种变异.ZFNs是最早发展的通用基因组编辑技术,可用以实施定点敲除和定点敲入变异,但ZFNs技术的发展受限于构建难度大、成本高等缺点.TALENs技术在ZFNs基础上发展而来,较ZFNs技术而言,TALENs技术具备构建灵活度高、成本低等优势.不同于ZFNs与TALENs技术,CRISPR/Cas技术具有独特的DNA靶向机制,这种机制使其非常适合进行多位点编辑.目前,3种技术都在多种物种中成功测试,例如小鼠、斑马鱼、果蝇、线虫和家蚕.在后基因组时代,这些新技术工具必将在未来功能基因组研究中发挥重大作用.  相似文献   

19.
线粒体基因组在帕金森病发病机制中的作用   总被引:1,自引:0,他引:1  
线粒体基因组以及线粒体呼吸链中酶复合体的改变会影响能量的供给,而脑对能量供给的改变非常敏感,甚至因此会引起神经细胞的死亡,导致神经退行性变的发生。由于脑组织不同的区域易感性不同,黑质纹状体部位的神经细胞容易引起氧化应激,导致自由基的升高,mtDNA发生突变,酶复合体功能下降,最终引起神经细胞的死亡,形成帕金森病的临床表现。  相似文献   

20.
肿瘤是危害人类健康的重大疾病之一。目前用于肿瘤治疗的方法有手术治疗、化学药物治疗、放射治疗等。然而,传统的治疗方法存在治疗效果不佳、易引发多药耐药、毒副作用大等缺点,仍需进一步探索新的肿瘤治疗靶点和策略。线粒体作为细胞的能量转换器,被认为是肿瘤、心血管和神经性疾病新药设计的最重要靶点之一。纳米药物递送载体具有易被主动靶向基团修饰的特点,可实现细胞乃至细胞器的精准靶向给药。本文从抑制肿瘤细胞增殖、促进肿瘤细胞凋亡、抑制肿瘤复发与转移、诱导细胞自噬等方面综述了线粒体靶向纳米载体在肿瘤诊疗中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号