首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Our data are for a large composite sample of bugs (Insecta Hemiptera and Homoptera) from a tropical rain forest area in Sulawesi, Indonesia, collected by various sampling techniques at several representative localities over one year. We demonstrate how an overall relationship between log abundance and log body length in a large sample, which at first sight might appear to be of the polygonal form identified by Blackburn and Gaston, can be broken down into a consistent series of stronger linear relationships based around the composition of taxonomic clades with differing gradients. Furthermore, we show that the number of species within superfamily/family clades is negatively related to the mean body size of the clade, suggesting that taxa with a small body size tend to be represented by more species, thus further distorting the form of any overall relationship. The significance of these findings is discussed in the context of the current debate about species abundance, species size and distribution area relationships.  相似文献   

2.
1. Range size, population size and body size, the key macroecological variables, vary temporally both within and across species in response to anthropogenic and natural environmental change. However, resulting temporal trends in the relationships between these variables (i.e. macroecological patterns) have received little attention. 2. Positive relationships between the local abundance and regional occupancy of species (abundance-occupancy relationships) are among the most pervasive of all macroecological patterns. In the absence of formal predictions of how abundance-occupancy relationships may vary temporally, we outline several scenarios of how changes in abundance within species might affect interspecific patterns. 3. We use data on the distribution and abundance of 73 farmland and 55 woodland bird species in Britain over a 32-year period encompassing substantial habitat modification to assess the likelihood of these scenarios. 4. In both farmland and woodland habitats, the interspecific abundance-occupancy relationship changed markedly over the period 1968-99, with a significant decline in the strength of the relationship. 5. Consideration of intraspecific dynamics shows that this has been due to a decoupling of abundance and occupancy particularly in rare and declining species. Insights into the intraspecific processes responsible for the interspecific trend are obtained by analysis of temporal trends in the distribution of individuals between sites, which show patterns consistent with habitat quality declines. 6. This study shows that a profitable approach to ascertaining the nature of human impacts is to link intra- and interspecific processes. In the case of British farmland and woodland birds, changes to the environment lead to species-specific responses in large-scale distributions. These species-specific changes are the driver of the observed changes in the form and strength of the interspecific relationship.  相似文献   

3.
We examined the changes in spatial pattern that accompanied the population decline of the garden tiger moth, Arctia caja (L.) in Britain between 1968 and 1999 using Spatial Analysis by Distance Indices (SADIE) techniques. A principal co-ordinate analysis of all pair-wise spatial associations between years indicated three groupings of years: 1969–1978,1979–1990,1991–1999, which revealed three phases during the population decline: an early period with highly structured spatial pattern; a middle period with nearly random distribution overall; and a recent period with highly structured spatial pattern but small abundance overall. The change in spatial structure in the early 1980’s accompanied rapid changes in abundance but preceded a sharp decline in occupancy and confirms that the sharp decline in abundance included decreases from widespread high-density sites. Perhaps unusually, A. caja varied from spatially aggregated to randomly distributed and back to spatially aggregated, all while its abundance declined sharply. Present distribution pattern may reflect past abundance changes poorly in this species. Areas showing the greatest variation in abundance displayed the greatest range in spatial structure, but also the greatest stability of spatial pattern, indicating changes between extremes of spatial pattern occurred slowly. SADIE techniques are a powerful method to quantify temporal changes in spatial pattern and relate them to temporal changes in abundance.  相似文献   

4.
Empty habitat in coastal sediments for populations of macrozoobenthos   总被引:6,自引:0,他引:6  
Species with wide dispersal are expected to have little empty habitat. This was tested by analysing habitat use in the Wadden Sea near the island of Sylt (North Sea). Sampling covered 222 intertidal sites spread across the K?nigshafen tidal flats (4.5 km2, mapping approach conducted once) and 270 subtidal sites along 12 km of a tidal channel system (stratified random sampling in spring and autumn). For any single species, 'suitable habitat' was extrapolated from the ranges of water depth and sediment composition present at the ten sites with the highest frequency or abundance of the species. On average, macrobenthic species actually used less than half of the suitable sites within the scale of local populations; this was far less than expected from a lognormal distribution. In the subtidal, abundance of most species changed between the two sampling seasons. A 50% increase in overall abundance was accompanied by a decrease in empty habitat of only about 25%. Thus, a doubling of abundances would not fill the empty space but just of half of it. The polychaete Scoloplos armiger was an exception in occupying almost all of its suitable habitat in the intertidal and subtidal sediments. A distinct patch of high species richness occurred where flood waters persistently form a large gyre which may enhance larval settlement. We suggest that limitations to larval settlement and/or juvenile survival primarily cause the extent of the observed habitat emptiness. Electronic Publication  相似文献   

5.
Contrary to species occurrence, little is known about the determinants of spatial patterns of intraspecific variation in abundance, particularly for parasitic organisms. In this study, we provide a multi‐faceted overview of spatial patterns in parasite abundance and examine several potential underlying processes. We first tested for a latitudinal gradient in local abundance of the regionally most common parasite species and whether these species achieve higher abundances at the same localities (shared hot spots of infection). Secondly, we tested whether intraspecific similarity in local abundance between sites follows a spatial distance decay pattern or is better explained by variation in extrinsic biotic and abiotic factors between localities related to local parasite transmission success. We examined the infection landscape of a model fish host system (common and upland bullies, genus Gobiomorphus: Eleotridae) across its entire distributional range. We applied general linear models to test the effect of latitude on each species local abundance independently, including the abundance of each co‐infecting species as another predictor. We computed multiple regressions on distance matrices among localities based on abundance of each of the four most common trematode species, as well as for geographic distance, biotic and abiotic distinctness of the localities. Our results showed that the most widely distributed parasites of bullies also achieve the highest mean local abundances, following the abundance – occupancy relationship. Variation in local abundance of any focal parasite species was independent of latitude, the abundance of co‐occurring species and spatial distance or disparity in biotic attributes between localities. For only one parasite species, similarity of abundance between sites covaried with the extent of abiotic differences between sites. The lack of association between hot spots of infection for co‐occurring species reinforces the geographic mosaic scenario in which hosts and parasites coevolve by suggesting non‐deterministic, species‐specific variation in parasite abundance across space.  相似文献   

6.
Jani Heino 《Ecography》2005,28(3):345-354
A positive relationship between regional distribution and local abundance of species is almost ubiquitous macroecological pattern, yet the mechanisms behind this pattern remain poorly understood. I tested for the relationship between regional distribution and local abundance of stream insect species in a boreal drainage system, with a specific aim to examine if this relationship follows the mechanistic basis of either the niche-based (niche breadth and niche position) or metapopulation models. There was a positive relationship between regional distribution and local abundance of stream insects, and there also were significant relationships between distribution/abundance and niche breadth or niche position. These results thus suggest that widely distributed species tend to be, on average, locally more abundant, have wider niches and lower marginality of niche position with regard to environmental factors than species that have more restricted distributions. However, although significant, there was much unexplained variability around these relationships, suggesting that other mechanisms (e.g. metapopulation dynamics) besides differences in species' niches are likely to affect the distribution and abundance of stream insects, at least within a drainage system. The results thus showed that 1) although niche position was more consistently related to the positive distribution-abundance relationship, ecologists should not abandon niche breadth as a potential mechanism behind this relationship, and 2) that several mechanisms are likely to act in concert in determining the relationship between distribution and abundance of species.  相似文献   

7.
Heino J 《Oecologia》2008,157(2):337-347
The interspecific relationship between local abundance and regional distribution, as well as the occupancy frequency distribution, are widely studied topics in macroecology. A positive abundance-occupancy relationship has been found in a majority of studies, and satellite species modes are typically dominant in occupancy frequency distributions. However, there are a number of exceptions to these "general" findings, and only a few studies have examined these patterns and their temporal variability in stream organisms. I examined both abundance-occupancy relationships and occupancy frequency distributions in stream insects in a boreal drainage system over six consecutive years. I found that the positive interspecific abundance-occupancy relationship was highly stable temporally, with coefficients of determination ranging from 0.25 to 0.47 over the years. There were no strong differences in the strength and slope of the abundance-occupancy relationship between non-predatory and predatory insect species in each year. Temporally stable abundance-occupancy relationships were paralleled by among-year patterns in both abundance and occupancy, with locally abundant and widely distributed species remaining locally abundant and widely distributed over the years, while locally uncommon and regionally rare species showed the opposite. Occupancy frequency distributions were strongly right-skewed, mirroring the dominance of the left-most satellite mode of regionally rare species. That the abundance-occupancy relationship, species' abundances and distributions, as well as the dominance of satellite species in occupancy frequency distribution were temporally stable suggest that niche-based models are strong candidates for explaining these patterns in stream insects. By contrast, metapopulation-based models that predict clear temporal variability in species' abundance and occupancy, as well as bimodal occupancy frequency distributions, are less plausible candidates for explaining the observed patterns. The present findings are the opposite to those in some terrestrial studies, but they are in agreement with other terrestrial studies and with a few previous studies on stream organisms.  相似文献   

8.
Many species are expanding at their leading‐edge range boundaries in response to climate warming. Species are known to respond individualistically to climate change, but there has been little consideration of whether responses are consistent over time. We compared responses of 37 southerly distributed British butterflies over two study periods, first between 1970–1982 and 1995–1999 and then between 1995–1999 and 2005–2009, when mean annual temperature increased regionally by 0.03 °C yr?1 (a significant rate of increase) and 0.01 °C yr?1(a nonsignificant increase) respectively. Our study species might be expected to benefit from climate warming. We measured three responses to climate to investigate this; changes in range margin, distribution area and abundance. In general, the responses of species were inconsistent over time. Species that increased their distribution areas during the first period tended to do so again during the second period, but the relationship was weak. Changes in range margins and abundance were not consistent. In addition, only 5/37 species showed qualitatively similar responses in all three response variables over time (three species increased and two species declined in all variables in both periods). Overall rates of range expansion and distribution area change were significantly greater in the second study period, despite the lower rate of warming, perhaps due to species exploiting climate‐distribution lags remaining from the earlier, warmer period. However, there was a significantly greater decline in abundance during the second study period, so range expansions northwards were not necessarily accompanied by increases in distribution area and/or abundance. Hence, species ranges have been thinning as they have expanded northwards. The idiosyncratic responses of these species likely reflect the balance of climatic and habitat drivers of species distribution and abundance changes.  相似文献   

9.
More than 300 samples of Macrolepidoptera have been collected over 24 years at a site in southern England on field courses run for university students. The samples were taken in mercury vapour light traps. They show that numbers have fluctuated markedly between periods of high abundance and periods of low abundance. Species richness in the samples is strongly affected by abundance. Evenness of distribution of numbers between species is higher in samples from woodland than in samples collected over grass, and higher earlier than later in the season. For a series of samples from the same population, MacArthur's overlapping niche and the broken stick resource apportionment models predict a weakly positive regression of the evenness J of a sample on species number, whereas the sequential breakage model predicts a negative regression. The latter implies the highest level of competitive interaction within the moth communities sampled. We find that the data agree with the sequential breakage model, rather than the other two. A weak positive regression was expected in view of the trapping method used but was not found. The fit of the sequential breakage model also implies that species abundance is log normally distributed, which it may be for many reasons. It is argued nevertheless that such comparisons may be of use for detecting competitive interaction, and that it is important to do so in order to judge the validity of predictions about effects of environmental change or human interference on the structure of communities.  相似文献   

10.
A positive relationship between distribution and local abundance is often observed among species in a community. The resource-breadth hypothesis suggests that this pattern is the result of differential abilities among species to utilize available resources, such that generalists are widely distributed and locally abundant, and specialists are narrowly distributed and locally sparse. This hypothesis was tested in a community consisting of 22 species or morphospecies of parasites infecting members of 18 species of fish among 14 sites in 7 small streams in the Appalachian Mountains of North Carolina. A positive relationship between distribution (fraction of sites occupied) and abundance (average local abundance) was evident among parasite species. The number of host species infected by each parasite species was positively related to both distribution and average local abundance; both relationships held after statistical removal of the distribution and abundance of the hosts, respectively. These results support the resource-breadth hypothesis as an explanation for the distribution-abundance relationship in this system.  相似文献   

11.
A soil arthropod community was studied in a dry evergreen forest over a 3-year period from May 1998 to April 2001. Population abundance, species composition, and community structure were investigated over the 3-year study period. The soil arthropods consisted of Acari (75.38%), Collembola (16.11%), and others (8.51%), and their abundances showed a clear difference between the rainy and dry seasons. Population abundance of Collembola and Acari were low during drought conditions. The humidity was the most important factor determining distribution, abundance, and survival of soil Collembola in this tropical forest. High predation and low accumulation of organic matter caused low population abundance of Collembola in the tropical habitat. The collembolan community was dominated by a few dominant species over the study period. The pattern of seasonal changes in numbers of Collembola was similar over the 3-year study period. The species composition of the collembolan community was constant and persistent throughout a 3-year study period. Thus, the collembolan community showed constancy in its species composition with seasonal variability over the 3-year study period.  相似文献   

12.
Associations between spatial distribution of ground-beetles (Carabidae) and environmental variables were studied over three hierarchical scales in deciduous forest in central Alberta, Canada We also examined the relationship between species abundance and distribution on several scales ranging from the local scale of our study to that of the North American temperate deciduous forest Understorey plant cover, tree cover, and occurrence of other carabids were associated with distribution of particular species at the smallest ecological scales within populations However, great differences in population sues of carabid species among five distinct sites several kilometres apart were not correlated with variation in the same environmental variables In central Alberta, abundance and extent of distribution were correlated positively among the 30 carabid species collected, and distributions of the ten species classified as 'core' species were generally aggregated at all spatial scales On the continental scale, there was a significant positive correlation between abundance and distribution for the 114 species of the entire data set, and the six species meeting the criteria of 'core' taxa on this scale, were also 'core' elements in central Alberta Further analysis of covariance of core elements of species assemblages across different taxa provides a sound empirical approach for understanding community organization  相似文献   

13.
We investigate the patterns of abundance‐spatial occupancy relationships of adult parasite nematodes in mammal host populations (828 populations of nematodes from 66 different species of terrestrial mammals). A positive relationship between mean parasite abundance and host occupancy, i.e. prevalence, is found which suggests that local abundance is linked to spatial distribution across species. Moreover, the frequency distribution of the parasite prevalence is bimodal, which is consistent with a core‐satellite species distribution. In addition, a strong positive relationship between the abundance (log‐transformed) and its variance (log‐transformed) is observed, the distribution of worm abundance being lognormally distributed when abundance values have been corrected for host body size.
Hanski et al. proposed three distinct hypotheses, which might account for the positive relationship between abundance and prevalence in free and associated organisms: 1) ecological specialisation, 2) sampling artefact, and 3) metapopulation dynamics. In addition, Gaston and co‐workers listed five additional hypotheses. Four solutions were not applicable to our parasitological data due to the lack of relevant information in most host‐parasite studies. The fifth hypothesis, i.e. the confounded effects exerted by common history on observed patterns of parasite distributions, was considered using a phylogeny‐based comparison method. Testing the four possible hypotheses, we obtained the following results: 1) the variation of parasite distribution across host species is not due to phylogenetic confounding effects; 2) the positive relationship between mean abundance and prevalence of nematodes may not result from an ecological specialisation, i.e. host specificity, of these parasites; 3) both a positive abundance‐prevalence relationship and a negative coefficient of variation of abundance‐prevalence relationship are likely to occur which corroborates the sampling model developed by Hanski et al. We argue that demographic explanations may be of particular importance to explain the patterns of bimodality of prevalence when testing Monte‐Carlo simulations using epidemiological modelling frameworks, and when considering empirical findings. We conclude that both the bimodal distribution of parasite prevalence and the mean‐variance power function simply result from demographic and stochastic patterns (highlighted by the sampling model), which present compelling evidence that nematode parasite species might adjust their spatial distribution and burden in mammal hosts for simple epidemiological reasons.  相似文献   

14.
Aim To assess short‐term variability in the community composition and community structure of tintinnid ciliates, herbivores of the microzooplankton. Location North‐west Mediterranean Sea. Methods We sampled on 18 dates over a 4‐week period in 2004 at an open‐water site. Species were classified as ‘core species’, found on every date, or ‘occasional species’, absent on one or more dates. Species abundance distributions of the entire community, and separately the core and occasional species, were compared with geometric, log‐series and log‐normal distributions. Core and occasional species were compared in terms of the shell or lorica oral diameter (LOD), analogous to gape size. Results We found 11 core and 49 occasional species. Diversity metrics were stable compared with shifts in abundances. Core species accounted for the majority of individuals in all samples. On each date, 9–22 occasional species, representing 10–15% of the population, were found. Species richness of the occasionals was positively related to population size. The identities of the occasional species found were unrelated to the time between sampling. The species abundance distribution of the occasional population was best fit by a log‐series distribution, while that of the core species was best fit by a log‐normal distribution. The species abundance distribution of the entire community was best fit by a log‐series distribution. Most of the occasional species had LODs distinct from that of a core species and occupied size classes left empty by the core population. However, the most abundant and frequent of the occasional species had a LOD similar to that of a core species. Main conclusions Among tintinnids, which are planktonic protists, occasional species have a species abundance distribution pattern distinct from that of core species. Occasional species appeared to be composed of two groups, one of relatively abundant species and similar to core species, and a second group of ephemeral species with morphologies distinct from core species. The existence of two categories of occasional or rare species may be common: (1) those similar to, and thus perhaps able to replace, dominant species in the absence of a change in the environment; and (2) those distinct from dominant species and requiring different conditions to prosper.  相似文献   

15.
Aim We characterized the annual populations of 170 aphid species by their log abundance, site occupancy and site continuity (i.e. the persistence of species in time) and used this information to make predictions about groups of species that displayed characteristic patterns. By doing so, we aimed to identify commonalities in functional traits (host‐alternation; mode of reproduction; life‐cycle plasticity; median body size) and host plant geographic range sizes that may indicate why some species are common and others not. Location The population dynamics of winged aphids at 27 locations in the United Kingdom were studied. Methods The annual numbers of aphids were studied using a dataset comprising over 11 million individuals across 509 site‐years. Traits and host plants were analysed using linear mixed effects models and nonlinear regression models. Results Linear mixed effects models showed that the fixed effects of host alternation and winter host plant area of occupancy were important in predicting log abundance, site occupancy and site continuity. Life‐cycle plasticity was also a significant effect, although not for log abundance. Relationships between site continuity, site occupancy and log abundance were strongly nonlinear. Site continuity always lagged site occupancy, indicating that species were less likely to retain previously occupied sites when abundances were low. Main conclusions Aphid traits are a better paradigm than taxonomic relatedness in explaining macroecological patterns. Host alternation induces an annual flux of migrants that engenders higher annual log abundances, consistent with the theory that species with high local densities tend to confer a much wider distribution than those with low densities. The abundance of aphids is monotonically related to the geographic range size of their winter host, suggestive of a strong bottom‐up effect (i.e. resource controlled). The areas of occupancy (AOO) of winter host plants constrain aphids to low abundances because a greater proportion of hosts are trees and shrubs which tend to have smaller AOO than herbs and grasses, the common summer host types.  相似文献   

16.
Local, regional and global influences on the patterns of parasite species richness of 39 freshwater fish species from Central Europe were investigated. Host local abundance and host occurrence were considered respectively as local and regional factors, while host geographical range in longitude and latitude was considered as a global factor. Influences of size, ecology and behavior of hosts were also included in a comparative analysis using the independent contrasts method. We considered host habitat, host diet, host shoaling behavior and mobility. We found a positive relationship between local occurrence of fish and global range of their distribution. We confirmed previous findings showing the importance of host behavior and ecology on the variability of parasite species richness. Second, we showed how a global pattern, such as host geographical range, may affect the variability in parasite species richness through its effects on local abundance and distribution of hosts. A negative relationship between endoparasite species richness and host longitudinal range was found. This suggests that fish with eastern distribution live in the boundary of their distribution in Central Europe far from their center of distribution, which should also be characterized by a higher diversity of parasites.  相似文献   

17.
基于七姊妹山自然保护区内6 hm~2监测样地多度数据,通过累计经验分布曲线(ECDF)表征该样地内不同生活型功能群的物种-多度分布格局,并采用6种模型对各功能群不同取样尺度物种等级-多度曲线进行拟合并检验其拟合效果,分析多度格局与模型拟合在不同尺度间的差异,探讨其背后的生态学过程与机制。结果表明:(1)各尺度下落叶种比常绿种的物种数多,物种多样性指数更大,但个体数相对较少;不同功能群稀有种比例排序为:落叶种所有种常绿种。(2)6种模型中的断棍模型的拟合效果较差;中大尺度(50 m×50 m、100 m×100 m)上不同生活型树种多度分布能接受的模型较少,除大尺度的常绿树种外,拟合最优模型均为对数正态分布模型,大尺度的常绿树种拟合最优模型为中性模型;小尺度上(20 m×20 m)常绿树种的最优模型为对数正态分布模型,落叶树种最优模型为生态位优先模型,所有树种在小尺度最优模型为Zipf-Mandelbrot模型。研究认为,随着尺度逐渐扩大,中性过程较生态位过程对物种-多度格局的解释力度更大,落叶树种物种多度格局的形成机制较常绿树种更接近于样地所有树种物种-多度格局的形成机制。  相似文献   

18.
A number of mechanisms have been proposed to explain the widely observed positive interspecific relationship between local abundance and extent of geographic distribution in animals Here, we use data on British birds to assess two of these hypotheses that the relationship results from the relative position of a study area with respect to the geographic ranges of the species which occur there, and that the relationship results from a simple difference between taxonomic groups, rather than any general tendency for more abundant species to have larger range sizes We find support for neither hypothesis Phylogenetically controlled comparative analyses reveal that the positive abundance-range size relationship is consistently found within taxa, even when abundance and range size are calculated at a variety of spatial and temporal scales Analyses both across species and within taxa show that bird species for which Britain is near to the centre of their distribution in Europe tend to have larger British range sizes and higher abundances than do species where Britain is close to the edge of their range in Europe However, these relationships do not cause that between abundance and range size, because this latter relationship persists within different range position categories Whether a species is near the centre or edge of its geographic range in Britain may affect its position on the abundance-range size relationship, but does not produce the relationship Range position in Britain does, however, seem to be related to the magnitude of temporal changes in the range sizes of British birds There is some evidence to suggest that species for which Britain is nearer to their European range centre have shown smaller changes in distribution over the period 1970–1990 than have species for which Britain is close to their European range edge  相似文献   

19.
Body mass has been shown to scale negatively with abundance in a wide range of habitats and ecosystems. It is believed that this relationship has important consequences for the distribution and maintenance of energy in natural communities. Some studies have shown that the relationship between body mass and abundance may be robust to major food web perturbations, fuelling the belief that natural processes may preserve the slope of this relationship and the associated cycling of energy and nutrients. Here, we use data from a long‐term experimental food web manipulation to examine this issue in a semi‐natural environment. Similar communities were developed in large experimental mesocosms over a six month period. Some of the mesocosms were then subjected to species removals, based on the mean strength of their trophic interactions in the communities. In treatments where the strongest interactors were removed, a community‐level trophic cascade occurred. The biomass density of invertebrates increased dramatically in these communities, which led to a suppression of primary production. In spite of these widespread changes in ecosystem functioning, the slope of the relationship between body mass and abundance remained unchanged. This was the case whether average species body mass and abundance or individual organism size spectra were considered. An examination of changes in species composition before and after the experimental manipulations revealed an important mechanism for maintaining the body mass–abundance relationship. The manipulated communities all had a higher species turnover than the intact communities, with the highest turnover in communities that experienced cascading effects. As some species increased in body mass and abundance, new species filled the available size–abundance niches that were created. This maintained the overall body mass–abundance relationship and provided a stabilising structure to these experimental communities.  相似文献   

20.
We studied colonization of annual plants in small-scale disturbances and undisturbed soil for four years in the northern Negev desert. The experiment consisted of 24 patches of I m2: eight undisturbed patches, eight 30 cm deep pits and eight 20 cm high mounds. Disturbance removed the seed bank from the pits and mounds. Rainfall was average during 1992 and 1993 (163.5 and 157.0 mm), very low in 1994 (97.5 mm) and very high in 1995 (283.0 mm). For all ca 100 species in the assemblage, we measured abundance, as the average local density in patches occupied by the species, and incidence, the proportion of patches occupied. Abundance and incidence were positively correlated in the four years of the study (R2-= 0.71, 0.56. 0. 56 and 0.64). The relationship became steeper during the course of colonization. A minority of species colonized all patches rapidly and increased exponentially in abundance. These high incidence and abundance species responded little or not at all to variations in rainfall. Most of the species experienced frequent local extinctions and colonizations in few patches. These low abundance and low to medium incidence species responded strongly to rainfall by fluctuations in abundance. Differences per species between abundance and/or incidence in pits, mounds and matrix were evident in many species along the entire relationship. These were mostly in favor of pits. We propose that the positions and trajectories of the individual species in the abundance-incidence phase plane signify constraints on population growth along the abundance axis, and on colonization and population persistence along the incidence axis. Since species with lower incidence and abundance respond strongly to rainfall variation, we conclude that their local populations and spatial distribution are to a large extent site-limited. High-abundance and high-incidence species have few or weak constraints and experience density-independent population growth, which is only seed-limited. The causes of site limitation and its effect on population growth and on eotonization and extinction processes differ for different species. In a number of species, abundance and incidence may be limited by dispersal, in conjunction with dispersal mode and patch-specific seed capture. Based on our case study we suggest that the trajectories of the species in the abundance-incidence phase plane are a useful tool for investigating assemblage dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号