首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to investigate the effect of fat-rich diets on neutrophil functions, 21 day-aged rats were fed for 6 weeks with a control diet consisting of a regular laboratory rodent chow (4 per cent final fat content), a control diet supplied with soybean oil (15 per cent final fat content), or a control diet supplied with coconut oil (15 per cent final fat content). Glycogen-elicited peritoneal neutrophils from rats fed soybean and coconut oil-enriched diets presented a reduction in spontaneous and PMA-stimulated H2O2 generation relative to neutrophils from rats fed the control diet. The activity of superoxide dismutase, glutathione peroxidase and catalase did not change in animals fed fat-rich diets. In addition, the capacity to generate O2-, spontaneously or in response to PMA, did not change in neutrophils from animals fed fat-rich diets. Values attained matched those observed in animals fed the control diet, regardless of the method used to measure O2-, the superoxide dismutase-inhibitable reduction of cytochrome c or the lucigenin-dependent chemiluminescence. However, the initial rate of O2- generation both in resting neutrophils and in PMA-stimulated cells was significantly reduced when animals were fed with coconut or soybean oil-enriched diets due, at least in part, to a reduction in the activity of glucose-6-phosphate dehydrogenase. The concentration of thiobarbituric acid reactive substances, an index of lipid peroxidation, was increased in animals fed both fat-rich diets. This was accompanied by an increase in arachidonic acid content in these cells. Results presented suggest that lipid peroxidation in neutrophils from animals fed fat-rich diets may be associated with a consumption of H2O2 yielding more reactive oxygen-derived species such as the hydroxyl radical.  相似文献   

2.
Leukotriene C4 binding to rat lung membranes   总被引:8,自引:0,他引:8  
A high affinity binding site for leukotriene C4 (LTC4), one component of slow reacting substance of anaphylaxis, has been identified in a membrane preparation from rat lung. As measured by a filtration technique, [3H]LTC4 binding was saturable, specific, reversible, and heat-sensitive. In the presence of 20 mM CaCl2, the dissociation constant (KD) was 41 +/- 9 nM and the maximum number of binding sites (Bmax) was 31 +/- 10 pmol/mg of protein. Specificity was demonstrated by competition studies in which LTC4 had a Ki of 40 nM against specifically bound [3H]LTC4, whereas leukotriene D4 (LTD4) had a Ki of 4 microM. The stereoisomers (5R, 6R) LTC4, (5S, 6S) LTC4, and (5R, 6S) LTC4 had Ki values 3-, 15-, and 25-fold higher than that of natural (5S, 6R) LTC4. Leukotrienes E4 and B4, several prostaglandins and fatty acids, glutathione, and platelet activating factor were even less effective with Ki values above 10 microM. A slow reacting substance of anaphylaxis antagonist, FPL 55712, which, in some systems, distinguishes LTC4- from LTD4-induced contractions, was a weak competitor with a Ki of 16 microM. Serine-borate complex which inhibits gamma-glutamyl transpeptidase, an enzyme responsible for LTC4 metabolism, did not alter binding. In addition, 100 microM FPL 55712 did not reduce metabolism. These observations suggest that the binding observed for LTC4 may represent association with a physiological receptor for this molecule which has a relatively low affinity for LTD4.  相似文献   

3.
We studied the characteristics of the leukotriene (LT) C4 and D4 receptors on a cultured smooth muscle cell line, BC3H-1. Specific [3H]LTC4 binding to the cell membrane was greater than 80% of total binding and saturable at a density of 3.96 +/- 0.39 pmol/mg protein, with an apparent dissociation constant (Kd) of 14.3 +/- 2.0 nM (n = 9). The association and dissociation of [3H]LTC4 binding were rapid and apparent equilibrium conditions were established within 5 min. Calculated Kd value of [3H]LTC4 binding from the kinetic analysis was 9.9 nM. From the competition analysis, calculated Ki value of unlabeled LTC4 to compete for the specific binding of [3H]LTC4 was 9.2 nM and was in good agreement with the Kd value obtained from the Scatchard plots or kinetic analysis. The rank order of potency of the unlabeled competitors for competing specific [3H]LTC4 binding was LTC4 much greater than LTD4 greater than LTE4 greater than FPL-55712. The maximum number of binding sites (Bmax) of [3H]LTD4 in the membrane of BC3H-1 cell line was about 11 times lower than that of the [3H]LTC4. The calculated values of Kd and Bmax of [3H]LTD4 binding were 9.3 +/- 0.8 nM and 0.37 +/- 0.04 pmol/mg protein, respectively (n = 3). The rank order of potency or the unlabeled competitors for competing specific [3H]LTD4 binding was LTD4 = LTE4 greater than FPL-55712 much greater than LTC4. These findings demonstrate that BC3H-1 cell line possess both LTC4 and LTD4 receptors with a predominance of LTC4 receptors. Thus BC3H-1 cell line is a good model to study the regulation of LTC4 and LTD4 receptors.  相似文献   

4.
Leukotrienes C4 and D4 have been implicated as possible mediators of hypoxic pulmonary vasoconstriction. To test this hypothesis, the relationship between pulmonary leukotriene (LT) synthesis in response to hypoxia and alterations in pulmonary hemodynamics was evaluated in pentobarbital sodium-anesthetized, neuromuscular-blocked, male, mongrel dogs. A reduction in the fraction of inspired O2 (FIO2) in vehicle-treated animals (n = 12) from 0.21 to 0.10 was associated with increases in LTC4 and LTD4 in bronchoalveolar lavage fluid (BALF). After 30 min of continuous hypoxia, LTC4 and LTD4 increased from control values of 59.4 +/- 10.4 and 91.7 +/- 18.1 ng/lavage to 142.7 +/- 31.8 (P less than 0.05) and 156.3 +/- 25.3 (P less than 0.01) ng/lavage, respectively. Concomitantly, mean pulmonary arterial pressure (Ppa) and pulmonary vascular resistance (PVR) were increased over control by 67 +/- 7 (P less than 0.001) and 62 +/- 7% (P less than 0.001), respectively. In contrast, in animals treated with diethylcarbamazine (n = 5), a leukotriene A4 synthase inhibitor, identical reductions in FIO2 were not associated with increases in LTC4 and LTD4 in BALF, although at the same time period, Ppa and PVR were increased over control by 60 +/- 13 (P less than 0.05) and 112 +/- 31% (P less than 0.05), respectively. These results, therefore, do not support the contention that leukotrienes mediate hypoxic pulmonary vasoconstriction in dogs.  相似文献   

5.
The contractions elicited by leukotriene (LT) C4 and D4 in isolated guinea pig trachea were characterized under conditions in which LTC4 to LTD4 metabolism was blocked by the presence of 45 mM l-serine-borate complex (SB). The presence of SB caused a shift of the LTC4-concentration-response curve to the left by 7.5-fold, and blocked the bioconversion of LTC4 to LTD4 by the trachea as estimated by HPLC analysis of the LTs present in the tissue bath fluid. The potency of FPL 55712 as an antagonist of the LTC4-induced contractions in the presence of SB was 15-30-fold less than its potency as an antagonist of the LTD4-induced contractions. In contrast, another LT antagonist, SK&F 101132, equally antagonized the contractions elicited by LTC4 and LTD4 in either the presence or absence of SB. The differential antagonism of LTC4 and LTD4 implies the existence of multiple pharmacologic receptors for the LTs. The calcium channel entry blockers, nifedipine and verapamil, at concentrations as high as 10 microM, suppressed the maximal LTC4-induced contraction by no more than 20%, whereas the purported intracellular calcium antagonist, TMB-8, completely suppressed the LTC4 concentration-response curve in the presence of SB, a profile identical to that previously reported for LTD4. Thus, if multiple LT receptors exist, they appear to mobilize calcium in a qualitatively similar fashion following LT stimulation.  相似文献   

6.
Differences in iron bioavailability from human milk and milk formulas may in part be due to differences in lipid composition. We investigated the short and long term effects of diets based on different fats [corn, coconut, olive, or soy oil, human milk fat (HMF) and a formula fat blend (FF)] on iron absorption in rats. Suckling rat pups dosed with 59Fe-labeled diets containing different fat sources were killed after 6 h, and blood and individual tissues were counted. Iron availability was estimated by % 59Fe in blood. Pups dosed with a more saturated fat (coconut oil) had a higher % 59Fe in blood than those fed other fat sources. Weanling rats were used to determine iron bioavailability from fat sources using both the hemoglobin repletion method and whole body counting. Hemoglobin regeneration was significantly higher for rats fed the HMF diet (8.4 +/- 0.5 g/dl) than from the FF diet (6.5+/-0.6 g/dl) or the corn oil diet (less saturated) (6.4 +/- 0.3 g/dl). Rats fed diets based on coconut oil (more saturated) had significantly higher % 59Fe retention (61.6 +/- 1.4) than rats fed diets based on FF (49.8 +/- 3.4). There was a significant positive association between oleic acid in the diet and oleic acid in the intestinal mucosa (r = 0.95, p < 0.05) and between linoleic acid in the diet and linoleic acid in the intestinal mucosa (r = 0.97, p < 0.05) suggesting that the dietary treatment altered the fatty acid composition of the brush border membrane. Our results suggest that saturated fats may increase iron absorption and that part of this may be achieved by changes in the fatty acid composition of the intestinal mucosa. Hemoglobin regeneration and % 59Fe retention data suggest that differences in iron absorption from infant diets may in part be due to differences in fat composition. Therefore, lipid composition of infant formulas should also be taken into consideration as a factor influencing iron bioavailability.  相似文献   

7.
Arachidonate metabolites are potent biological mediators affecting multiple cellular functions. Although prostaglandins of the E series, which are products of the cyclooxygenase pathway, have been known as inhibitors or down-regulators of fibroblast proliferation and collagen synthesis, the more recently discovered products of the 5-lipoxygenase pathway have not been as extensively investigated with regard to fibroblast function. In this study, a sulfidopeptide product of the lipoxygenase pathway, leukotriene C4 (LTC4), was examined for its ability to modulate rat lung fibroblast collagen synthesis and proliferation in vitro. The data revealed the ability of LTC4 and to a lesser extent leukotriene D4 (LTD4) to stimulate collagen synthesis in a dose-dependent (10(-11)-10(-8) M) manner without affecting cellular proliferation as determined by radiolabeled thymidine incorporation; 1 nM LTC4 caused an 85% (p less than 0.02) increase above untreated controls in [3H]proline incorporation into collagenous protein in the media, which was blocked by the putative leukotriene receptor antagonist FPL55712 (10 microM) and inhibited by cycloheximide and actinomycin D. This LTC4 stimulatory effect was slightly more specific for collagen synthesis vs noncollagenous protein synthesis but was not accompanied with any change in the collagen type composition. Binding of [3H]LTC4 to these cells was specific, reversible, and saturable, with a Kd of 1.8 +/- 0.95 nM. Under equilibrium conditions, there was an estimated 2.39 X 10(4) receptors per cell. This binding was also inhibited by 10 microM FPL55712. Competitive binding studies show specificity of this binding for LTC4 relative to LTD4 and FPL55712. Furthermore, no significant conversion of LTC4 to LTD4 or leukotriene E4 was noted during the binding studies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Convenient extraction and radioimmunoassay methods for measurement of leukotrienes C4 and D4 (LTC4 and LTD4) in biological fluids are described. LTC4 or LTD4 in plasma was extracted with acetonitrile, and the extract was washed with dichloromethane then adjusted to pH 3.5 or 6.0, respectively. Each leukotriene was partially purified by using a C18-bonded silica cartridge and quantitated by radioimmunoassay. Amounts of LTC4 and LTD4 in the range of 0.025-1.6 ng could be assayed in plasma. This procedure was employed to examine the increase in plasma LTC4 (0.249 +/- 0.036 ng/ml) and LTD4 (1.399 +/- 0.235 ng/ml) of guinea pigs during intravenous challenge-induced anaphylactic bronchoconstriction, and the suppression of the increase of bronchoconstriction and leukotrienes by the administration of 5-lipoxygenase inhibitors such as E6080 (6-hydroxy-2-(4-sulfamoylbenzyl-amino)- 4,5,7-trimethylbenzothiazole hydrochloride), AA861 (2,3,5-trimethyl-6-(12-hydroxy-5,10-dodecadiynyl)-1,4-benzoquinone ) and phenidone. On the other hand, LTC4 and LTD4 were not detected in plasma after an inhaled challenge, though significant bronchoconstriction was provoked. It was concluded that the present study validates a new technique for quantitating plasma leukotrienes on the basis of pH and a suitable method for evaluating the pharmacological efficacy of 5-lipoxygenase inhibitors.  相似文献   

9.
The role of leukotriene D4 (LTD4) as a mediator of immediate hypersensitivity reactions in the guinea-pig conjunctiva was examined using a potent, second-generation LTD4 receptor antagonist, MK-571 (also known as L-660,711). The microvascular permeability changes in the guinea-pig conjunctiva following challenge with either LTD4 or antigen were measured through accumulation of intravenously administered 99mtechnetium-labeled albumin. Topical application of MK-571 (up to 2 h pretreatment) significantly inhibited the conjunctival responses to LTD4 (ED50 of 18-60 ng/eye) but not to histamine. The responses to a single topical antigen challenge in ovalbumin-sensitized guinea pigs were significantly inhibited (44%) by topical treatment with MK-571, in contrast to the lack of effect previously observed with prototypic antagonists. The inhibitory effects of MK-571 did not involve an action on conversion of [3H]LTC4 to LTD4 and LTE4. Following a second antigen challenge (24 h after the first), MK-571 inhibited the resultant permeability changes by 78%. Specific histamine H1 and H2 antagonists similarly inhibited the responses to the first and second challenges (63 and 74%, respectively). The present study suggests that LTD4 is involved in conjunctival hypersensitivity reactions and that potent LTD4 receptor antagonists may be of therapeutic value in the treatment of allergic conjunctivitis.  相似文献   

10.
The inhibitory effects of KC-404, a novel clinically available anti-asthmatic drug, on leukotriene(LT) D4-, LTC4-, histamine- and acetylcholine(ACh)-induced contractile responses in isolated guinea pig lung parenchymal, tracheal and ileal longitudinal strips were compared using an organ bath system. In lung parenchyma, KC-404 antagonized LTD4 in a competitive fashion, whereas it antagonized histamine noncompetitively. The pA2 value against LTD4 was 7.39. KC-404 hardly antagonized LTC4 and ACh. A ranked order of potency estimated from its minimum effective concentrations (MEC) was LTD4 greater than histamine greater than LTC4 greater than ACh. In trachea, KC-404 antagonized LTC4 and LTD4 in a competitive fashion, while it antagonized histamine noncompetitively. The pA2 values against LTC4 and LTD4 were 5.99 and 6.51, respectively. KC-404 hardly antagonized ACh. A ranked order of the potency estimated from MEC was LTD4 greater than LTC4 greater than histamine greater than ACh. The pA2 values of KC-404 against LTD4 in lung parenchyma and trachea were little or not altered, while its inhibitory effect on histamine-induced contraction in trachea was markedly diminished by the pretreatment of tissues with indomethacin. In ileum, KC-404 noncompetitively antagonized all of the agonists used. A ranked order of the potency estimated from pD2 values was LTD4 divided by LTC4 greater than histamine greater than ACh. These results suggest that KC-404 is a selective antagonist of LTD4 and that it might interact with LTD4 receptor in airway smooth muscles but not in ileum. Another possibility that the drug might interact with LTD4 specific excitation-contraction coupling mechanism was also discussed.  相似文献   

11.
I Sakuma  S S Gross  R Levi 《Prostaglandins》1987,34(5):685-696
The purpose of our investigation was to assess the role of the endothelium in the vasomotor effects of leukotrienes. Norepinephrine-preconstricted rings isolated from guinea pig main pulmonary artery and thoracic aorta responded to LTC4 and LTD4 with a concentration-dependent relaxation. In endothelium-denuded rings, both LTC4 and LTD4 caused a concentration-dependent contraction. The LTD4 receptor antagonist ICI 198,615 inhibited both LTC4- and LTD4-induced relaxation and contraction. Inhibition of gamma-glutamyl transpeptidase with AT-125 prevented the effects of LTC4, but not those of LTD4. The relaxant effect of LTD4 was not modified by indomethacin, but was abolished by methylene blue. We conclude that: 1) LTD4 induces a receptor-mediated endothelium-dependent relaxation of cavian pulmonary artery and aorta; 2) the vasorelaxant effect of LTC4 requires its conversion to LTD4; 3) the vasorelaxant effect of LTD4 is unrelated to PGI2 release, and is probably due to the release of an "EDRF"; 4) the removal of the endothelium reveals a direct receptor-mediated vasoconstricting effect of leukotrienes.  相似文献   

12.
The pharmacology of leukotrienes (LT) C4 and D4 in isolated airway smooth muscle was investigated. In rat trachea, neither LTC4 or D4 elicited a response. In contrast, LTC4 was a potent contractile agonist in guinea-pig trachea, bronchus and parenchymal lung strip. Similar effects were obtained with LTD4 in trachea and parenchyma. In trachea and bronchus, the concentration-response curve to LTC4 was biphasic: indomethacin converted the biphasic response curve to a simple sigmoidal shape and enhanced the maximum contractile response. The SRS-A antagonist FPL 55712 antagonized the effect of LTD4 in both trachea and parenchyma. As regards LTC4-induced contraction of trachea and bronchus, FPL 55712, depending on concentration, either antagonized, or antagonized and enhanced the maximum contractile response. The enhancement of the maximum contractile response by FPL 55712 was not apparent when indomethacin was present. FPL 55712 failed to antagonize the effect of LTC4 in parenchyma.  相似文献   

13.
We have investigated the effects of leukotrienes (LTs) on isolated tracheal smooth muscle from sheep sensitive to Ascaris suum antigen. LTC4 and LTD4 produced dose-dependent contractions of sheep trachea, but LTE4 was virtually inactive. YM-17690, a non-analogous LT agonist, produced no contractile response up to 100 microM. Indomethacin (5 microM) had no effect on LTC4- and LTD4-induced contractions. L-Serine borate (45 mM), an inhibitor of gamma-glutamyl transpeptidase, shifted the dose-response curve of LTC4 to the left by 161-fold, and L-cysteine (6 mM), an inhibitor of aminopeptidase, shifted the dose-response curves of LTC4 and LTD4 to the left by 67- and 23-fold, respectively. YM-16638 (1 microM), an LT antagonist, shifted the dose-response curves of LTC4 and LTD4 to the right with pKB values of 6.57 and 7.13, respectively. YM-16638 did not affect LTC4-induced contractions of L-serine borate-treated tissues, indicating that the compound acts only on LTD4 receptors in sheep trachea, LTE4 (1 microM) shifted the dose-response curves of LTC4 and LTD4 to the right with pKB values of 6.87 and 7.31, respectively. YM-17690 (10 microM) showed effects similar to LTE4, suggesting that the compound acts as an LTE4 agonist in sheep trachea. These results suggest that in sheep tracheal smooth muscle (a) LTC4 and LTD4 produce contractions, (b) these LT-induced contractions are not mediated by cyclooxygenase products, (c) LTC4 is converted to LTD4 and then to LTE4, and (d) the potency of the LTC4- and LTD4-induced contractions is increased when their conversion to LTE4 is inhibited.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The desaturation, chain elongation and esterification of [1-14C]eicosapentaenoic acid, [1-14C]arachidonic acid, [1-14C]eicosatrienoic acid, [1-14C]linolenic acid and [1-14C]linoleic acid were studied in isolated liver cells. Rats fed diets with either 15% hydrogenated coconut oil or 15% partially hydrogenated marine oil, both deficient in essential fatty acids, 15% soybean oil or standard pellet diet with 6% fat, were used. The delta 4-desaturation of 22:5(n - 3) and 22:4(n - 6) as well as the delta 6-desaturase activity was distinctly higher in cells from animals fed coconut or marine oil than with soybean oil or standard pellet. The rate of delta 5-desaturation of 20:3(n - 6) and 20:4(n - 3) was nearly the same in cells from rats fed coconut, marine and soybean oils and higher than with standard pellet. The chain elongation of 20:5(n - 3) to 22:5(n - 3) was distinctly more pronounced than the elongation of 20:4(n - 6) with all four diets. 20:5(n - 3) was mainly esterified in the phospholipids with marine and coconut oils, and mainly in triacylglycerol with standard pellet and soybean oils. The proportion of [1-14C]20:4(n - 6) in the phospholipids to that in triacylglycerol decreased in the order marine oil greater than coconut oil greater than standard pellet greater than soybean oil. The different endogenous arachidonic acid content in the phospholipids induced by the different diets increased in the same order. 20:5(n - 3) was rapidly esterified in triacylglycerol and phospholipids, then liberated especially from the triacylglycerol fraction, chain elongated to 22:5(n - 3) and reesterified.  相似文献   

15.
P Sirois  S Roy  P Borgeat 《Prostaglandins》1983,26(1):91-101
The novel metabolites of arachidonic acid, leukotriene (LT) A4, B4, C4, D4 and E4 have potent myotropic activity on guinea-pig lung parenchymal strip in vitro. The receptors responsible for their action were characterized using desensitization experiments and the selective SRS-A antagonist, FPL-55712. During the continuous infusion of LTB4, the tissues became desensitized to LTB4 but were still responsive to histamine, LTA4, LTC4, LTD4 and LTE4. When LTD4 was infused continuously, the lung strips contracted to LTB4 and histamine but were no longer responsive to LTA4, LTC4, LTD4 and LTE4. Furthermore, FPL-55712 (10 ng ml-1 - 10 ug ml-1) produced dose-dependent inhibitions of LTA4, LTC4, LTD4 and LTE4 without inhibiting the contraction to LTB4 and histamine. On the basis of these results, it appears that the guinea-pig lung parenchyma may have one type of receptor for LTB4 and another for LTD4; LTA4, LTC4 and LTE4 probably act on the LTD4 receptor.  相似文献   

16.
The effect of synthetic leukotrienes on tracheal microvascular permeability   总被引:4,自引:0,他引:4  
The effect of synthetic leukotrienes (LT) C4, D4 and E4 on the permeability of the airway microvasculature to plasma albumin was quantitatively evaluated using an in situ guinea pig tracheal model. Vascular permeability was measured as extravascular albumin content by employing 125I-bovine serum albumin and, in order to correct for blood volume, 51Cr-erythrocytes were used. Intratracheal injection of synthetic LTC4, LTD4 and LTE4 (0.1-1000 ng) produced dose-dependent increases in tracheal extravascular albumin content. The leukotrienes were approximately 100-1000 fold more potent than histamine, although histamine did produce a greater maximal increase in extravascular albumin than the leukotrienes. Methacholine did not increase extravascular albumin content. The microvascular permeability effect of LTD4 was antagonized by FPL 55712 but not by mepyramine; conversely, the effect of histamine was antagonized by mepyramine and not by FPL 55712. Additionally, indomethacin did not alter the LTD4-induced increases in tracheal vascular permeability. These results suggest that the effect of LTD4 on tracheal microvascular permeability is directly mediated and is not the indirect result of cholinergic stimulation, histamine release or de novo synthesis of cyclooxygenase products.  相似文献   

17.
We hypothesized that leukotrienes might contribute to the pathophysiology of acute lung injury induced by oleic acid. Oleic acid (2-20 mg.kg-1.h-1), LY171883 [leukotriene (LT) D4/LTE4 receptor antagonist, 10 mg/kg + 1 mg.kg-1.h-1] + oleic acid (10 mg.kg-1. h-1), or triolein (20 mg.kg-1.h-1) were infused intravenously into anesthetized pigs. Treatment with the cyclooxygenase inhibitor was designed to possibly enhance LT release. Bronchoalveolar lavage fluid concentrations of LTB4, LTC4, LTD4, and LTE4 were measured by reverse-phase high-performance liquid chromatography and radioimmunoassay. Oleic acid caused dose-related hypoxemia and pulmonary hypertension and increased pulmonary vascular resistance, lung water, and alveolar-capillary membrane permeability. Bronchoalveolar lavage fluid levels of LTB4, LTC4, LTD4, and LTE4 showed no significant changes in oleic acid- or indomethacin + oleic acid-treated pigs, compared with triolein-treated controls. Indomethacin modestly attenuated the oleic acid-induced hypoxemia and the early increases (i.e., 0-0.5 h) in mean pulmonary arterial pressure and pulmonary vascular resistance. In contrast, LY171883 provided no protection against any oleic acid-induced cardiopulmonary effect (measured or calculated). We conclude that LTs are not likely to be important mediators of oleic acid-induced lung injury in the pig.  相似文献   

18.
RG 12525 was determined to be a specific, competitive and orally effective antagonist of the peptidoleukotrienes, LTC4, LTD4 and LTE4, in several assays utilizing guinea pigs. In vitro, RG 12525 competitively inhibited 3H-LTD4 binding to lung membranes (Ki = 3.0 +/- 0.3 nM) and competitively antagonized the spasmogenic activity of LTC4, LTD4 and LTE4 on lung strips (KB values = 3 nM) with greater than 8000 fold selectivity. In vivo, RG 12525 orally inhibited LTD4 induced wheal formation (ED50 = 5 mg/kg with a t1/2 = 10 hrs at 9 mg/kg), LTD4 induced bronchoconstriction (ED50 = 0.6 mg/kg), and anaphylactic death (ED50 = 2.2 mg/kg with a t1/2 = 7 hrs at 10 mg/kg) and antigen induced bronchoconstriction (ED50 = 0.6 mg/kg). RG 12525 represents a significant improvement in receptor affinity and oral efficacy and thus, is a valuable pharmacological tool to evaluate peptidoleukotrienes in allergic diseases.  相似文献   

19.
Specific binding sites for (3H)-leukotriene D4 (LTD4) were identified on guinea-pig alveolar macrophages (GPAMs) using high specific activity (3H)-LTD4, in the presence or absence of unlabelled LTD4. The time required for (3H)-LTD4 binding to reach equilibrium was approximately 15 min at 0 degrees C. The binding was saturable, reversible and specific. The dissociation constant (Kd) and site density (Bmax) were found to be 2.33 +/- 0.38 nM and 560 +/- 48 fmol/10(6) cells, respectively, as determined from Scatchard analysis. In competition studies for the displacement of (3H)-LTD4 from binding sites, leukotrienes B4, C4, D4 and E4, and the peptidoleukotriene antagonist FPL-55712 revealed an order of potency of LTD4 (Ki 3.9 nM) greater than LTE4 (Ki 243.9 nM) greater than LTC4 (Ki 796.9 nM) greater than FPL-55712 (Ki 17.6 microM). Concentrations of LTB4 up to 10 microM did not displace the (3H)-LTD4 binding. Bioconversion of LTD4 by GPAMs, as determined by Reverse-Phase High-Performance Liquid Chromatography (RP-HPLC), was less than 3% in 30 min incubation periods. It is concluded that these binding sites may be receptors for LTD4 on GPAMs. Since LTD4 is produced by GPAMs, it is postulated that endogenous LTD4 may modulate thromboxane synthesis and lung constriction.  相似文献   

20.
The effects of leukotriene C4 (LTC4) and leukotriene D4 (LTD4) in the feline mesenteric vascular bed were investigated under conditions of controlled blood flow so that changes in perfusion pressure directly reflect changes in vascular resistance. Intra-arterial injections of LTC4 and LTD4 (0.3-3.0 micrograms) increased perfusion pressure in a dose-related fashion. Vasoconstrictor responses to LTC 4 and LTD4 were similar to norepinephrine (NE) whereas mesenteric vasoconstrictor response to the thromboxane analog, U46619, was markedly greater than were responses to LTC4 and LTD4. Meclofenamate in a dose that greatly attenuated the systemic depressor response to arachidonic acid was without effect on vasoconstrictor responses to LTC4 and LTD4, NE and U46619 in the mesenteric vascular bed. The present data show that LTC4 and LTD4 possess significant vasoconstrictor activity in the feline mesenteric vascular bed. In addition, the present data suggest that products of the cyclooxygenase pathway do not mediate vasoconstrictor responses to LTC4 and LTD4 in the intestinal circulation of the cat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号