首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to investigate possible interactions between parental genomes in the composite genome of Nicotiana tabacum we have analyzed the organization of telomeric (TTTAGGG)n and ribosomal gene (rDNA) repeats in the progenitor genomes Nicotiana sylvestris and Nicotiana tomentosiformis or Nicotiana otophora. Telomeric arrays in the Nicotiana species tested are heterogeneous in length ranging from 20 to 200 kb in N. sylvestris, from 20 to 50 kb in N. tomentosiformis, from 15 to 100kb in N. otophora, and from 40 to 160kb in N. tabacum. The patterns of rDNA repeats (18S, 5.8S, 25S RNA) appeared to be highly homogeneous and speciesspecific; no parental rDNA units corresponding to N. sylvestris, N. tomentosiformis or N. otophora were found in the genome of N. tabacum by Southern hybridization. The results provide evidence for a species-specific evolution of telomeric and ribosomal repeats in the tobacco composite genome.  相似文献   

2.
We examined the structure, intranuclear distribution and activity of ribosomal DNA (rDNA) in Nico-tiana sylvestris (2n=2x=24) and N. tomentosiformis (2n=2x=24) and compared these with patterns in N. tabacum (tobacco, 2n=4x=48). We also examined a long-established N. tabacum culture, TBY-2. Nicotiana tabacum is an allotetraploid thought to be derived from ancestors of N. sylvestris (S-genome donor) and N. tomentosiformis (T-genome donor). Nicotiana sylvestris has three rDNA loci, one locus each on chromosomes 10, 11, and 12. In root-tip meristematic interphase cells, the site on chromosome 12 remains condensed and inactive, while the sites on chromosomes 10 and 11 show activity at the proximal end of the locus only. Nicotiana tomentosiformis has one major locus on chromosome 3 showing activity and a minor, inactive locus on chromosome 11. In N. tabacum cv. 095-55, there are four rDNA loci on T3, S10, S11/t and S12 (S11/t carries a small T-genome translocation). The locus on S12 remains condensed and inactive in root-tip meristematic cells while the others show activity, including decondensation at interphase and secondary constrictions at metaphase. Nicotiana tabacum DNA digested with methylcytosine-sensitive enzymes revealed a hybridisation pattern for rDNA that resembled that of N. tomentosiformis and not N. sylvestris. The data indicate that active, undermethylated genes are of the N. tomentosiformis type. Since S-genome chromosomes of N. tabacum show rDNA expression, the result indicates rDNA gene conversion of the active rDNA units on these chromosomes. Gene conversion in N. tabacum is consistent with the results of previous work. However, using primers specific for the S-genome rDNA intergenic sequences (IGS) in the polymerase chain reaction (PCR) show that rDNA gene conversion has not gone to completion in N. tabacum. Furthermore, using methylation-insensitive restriction enzymes we demonstrate that about 8% of the rDNA units remain of the N. sylvestris type (from ca. 75% based on the sum of the rDNA copy numbers in the parents). Since the active genes are likely to be of an N. tomentosiformis type, the N. sylvestris type units are presumably contained within inactive loci (i.e. on chromosome S12). Nicotiana sylvestris has approximately three times as much rDNA as the other two species, resulting in much condensed rDNA at interphase. This species also has three classes of IGS, indicating gene conversion has not homogenised repeat length in this species. The results suggest that methylation and/or DNA condensation has reduced or prevented gene conversion from occurring at inactive genes at rDNA loci. Alternatively, active undermethylated units may be vulnerable to gene conversion, perhaps because they are decondensed and located in close proximity within the nucleolus at interphase. In TBY-2, restriction enzymes showed hybridisation patterns that were similar to, but different from, those of N. tabacum. In addition, TBY-2 has elevated rDNA copy number and variable numbers of rDNA loci, all indicating rDNA evolution in culture. Received: 17 November 1999; in revised form: 3 February 2000 / Accepted: 3 February 2000  相似文献   

3.
The tobacco cultivar Nicotiana tabacum is a natural amphidiploid that is thought to be derived from ancestors of Nicotiana sylvestris and Nicotiana tomentosiformis. To compare these chloroplast genomes, DNA was prepared from isolated chloroplasts from green leaves of N. sylvestris and N. tomentosiformis, and subjected to whole-genome shotgun sequencing. The N. sylvestris chloroplast genome comprises of 155,941 bp and shows identical gene organization with that of N. tabacum, except one ORF. Detailed comparison revealed only seven different sites between N. tabacum and N. sylvestris; three in introns, two in spacer regions and two in coding regions. The chloroplast DNA of N. tomentosiformis is 155,745 bp long and possesses also identical gene organization with that of N. tabacum, except four ORFs and one pseudogene. However, 1,194 sites differ between these two species. Compared with N. tabacum, the nucleotide substitution in the inverted repeat was much lower than that in the single-copy region. The present work confirms that the chloroplast genome from N. tabacum was derived from an ancestor of N. sylvestris, and suggests that the rate of nucleotide substitution of the chloroplast genomes from N. tabacum and N. sylvestris is very low. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

4.
Summary Mitochondrial DNAs from Nicotiana tabacum, an amphiploid, and its putative progenitor species, N. sylvestris and N. tomentosiformis were compared in structure and organization. By using DNA transfer techniques and cloned fragments of known genes from maize and N. sylvestris as labeled probes, the positions of homologous sequences in restriction digests of the Nicotiana species were analyzed. Results indicate that the mitochondrial DNA of N. tabacum was inherited from N. sylvestris. Conservation in organization and sequence homology between mtDNAs of N. tabacum and the maternal progenitor, N. sylvestris, provide evidence that the mitochondrial genome in these species is evolutionarily stable. Approximately one-third of the probed restriction fragments of N. tomentosiformis mtDNA showed conservation of position with the other two species. Pattern variations indicate that extensive rearrangement of mtDNA has occurred in the evolution of these Nicotiana species.  相似文献   

5.
Summary Eight Nicotiana species including the putative progenitors of N. tabacum, Kostoff's amphidiploid (N. sylvestris × N. tomentosiformis), and 19 cultivars have been compared for total polyphenols, polyphenoloxidase and peroxidase activity in the leaf and/or root by a small plant technique. Greater variations for these chemical constituents occurred in the species than in the cultivars. N. tomentosiformis was highest in polyphenol content. Root extracts contained more polyphenoloxidase than the leaf, but its peroxidase content may not exceed the concentration in the leaf. The Kostoff's amphidiploid tended to resemble more the low oxidase and polyphenol parent. An additional study based on mature green leaves of Burley 21, the progenitor species, and their F 1 hybrids confirmed the quantitative differences of these chemical constituents in the species. The magnitude of the heterosis appeared to be greater in the hybrids of N. tomentosiformis or N. otophora crossed to N. sylvestris than those between the Tomentosae members or involving Burley 21 as the parent. An exception was the hybrid Burley 21 × N. tomentosiformis which showed heterosis for oxidase activities.
Zusammenfassung Acht Nicotiana-Spezies einschl. der vermutlichen Eltern von N. tabacum, Kostoffs Amphidiploid (N. sylvestris × N. tomentosiformis) und 19 Sorten wurden auf ihren Gehalt an Polyphenolen und auf die Polyphenoloxidase- und Peroxidaseaktivität in den Blättern und/oder Wurzeln in einem Pflanzen-Kleinversuch verglichen. Bei den Spezies ergaben sich größere Abweichungen für diese chemischen Substanzen als bei den Sorten. N. tomentosiformis hatte den höchsten Polyphenolgehalt. Wurzelextrakte enthielten mehr Polyphenoloxidase als Blattextrakte, der Peroxidasegehalt dürfte aber die Konzentration in den Blättern nicht übersteigen. Kostoffs Amphidiploid schien mehr dem Elter mit niedriger Oxidase-aktivität und niedrigem Polyphenolgehalt zu ähneln. Eine weitere Untersuchung anhand von ausgewachsenen grünen Blättern von Burley 21 als Elter-Spezies und ihren F1-Hybriden bestätigte die quantitativen Unterschiede in diesen chemischen Bestandteilen der Spezies. Das Ausmaß der Heterosis schien stärker in den Hybriden von N. tomentosiformis oder N. otophora bei Kreuzung mit N. sylvestris als innerhalb der Tomentosae oder bei Einbeziehung von Burley 21 als Elter. Eine Ausnahme bildete die Hybride aus Burley 21 × N. tomentosiformis, die bezüglich der Oxidaseaktivität Heterosis zeigte.


Contribution from the Tobacco and Health Research Institute, and the Department of Agronomy, University of Kentucky, Lexington, Kentucky 40 506. This investigation was supported by a contract with the Agricultural Research Service, U.S. Department of Agriculture, administered by the Crops Research Division, Plant Industry Station, Beltsville, Maryland.  相似文献   

6.
Polymorphism of a photosystem I subunit caused by alloploidy in Nicotiana   总被引:3,自引:2,他引:1  
The photosystem I complex from Nicotiana tabacum, which has an alloploid genome, contains subunits of 17.5 and 18.5 kilodaltons whose N-terminal amino acid sequences are highly homologous. Comparative analysis of photosystem I subunits among N. tabacum and its ancestral plants, N. tomentosiformis and N. sylvestris, revealed that the 17.5 kilodalton subunit of N. tabacum derives from N. sylvestris, and the 18.5 kilodalton subunit from N. tomentosiformis.  相似文献   

7.
Summary We compared the single-copy DNA sequences of the tetraploid tobacco plant, Nicotiana tabacum, with those of its diploid progenitors N. sylvestris and N. tomentosiformis. We observed that 65% of N. sylvestris and N. tomentosiformis single-copy DNA fragments reacted with each other using moderately stringent hybridization conditions (60° C, 0.18 M Na+). An additional 10% sequence homology was detected when the hybridization temperature was reduced by 10° C. The thermal stability of interspecific single-copy DNA duplexes indicated that they were approximately 6% more mispaired than homologous single-copy DNA duplexes. In contrast, we observed almost no single-copy DNA divergence between N. tabacum and its diploid progenitors. Greater than 99% of N. sylvestris and N. tomentosiformis single-copy DNAs reacted with N. tabacum DNA using moderately stringent hybridization conditions. The thermal stability of these duplexes indicated that they contained no more sequence mismatch than homologous single-copy duplexes. Together, our results show that significant single-copy DNA sequence divergence has occurred between the diploid N. sylvestris and N. tomentosiformis genomes. However, by applying our experimental criteria these single-copy DNAs are indistinguishable from their counterparts in the hybrid N. tabacum nucleus.  相似文献   

8.
Interspecific hybrid plants between Nicotiana suaveolens and N. tabacum exhibit lethal symptoms at the seedling stage and cannot grow to maturity. In this investigation, an attempt was made to clarify the genomic factors responsible for this lethality. N. suaveolens was crossed to N. sylvestris (genomic constitution: SS) and N. tomentosiformis (TT), these latter two species being the progenitors of N. tabacum (SSTT). From the cross N. suaveolens x N. tomentosiformis, many seedlings were obtained through ovule culture, and these subsequently grew to maturity without exhibiting any lethality. In the reciprocal crossing between N. sauvelons and N. sylvestris, only a few hybrid seedlings were obtained through ovlue culture and all died after unfolding their cotyledons when cultured at 28 °C. This lethality could be avoided by culturing the ovules at 36 °C. These features of hybrid lethality resembled those observed in the interspecific hybrid between N. suaveolens and N. tabacum. These findings suggest that the S genome in N. tabacum is responsible for the lethality exhibited in the hybrid between N. suaveolens and N. tabacum.  相似文献   

9.
Tezuka T  Kuboyama T  Matsuda T  Marubashi W 《Planta》2007,226(3):753-764
Hybrid seedlings from the cross between Nicotiana tabacum, an allotetraploid composed of S and T subgenomes, and N. debneyi die at the cotyledonary stage. This lethality involves programmed cell death (PCD). We carried out reciprocal crosses between the two progenitors of N. tabacum, N. sylvestris and N. tomentosiformis, and N. debneyi to reveal whether only the S subgenome in N. tabacum is related to hybrid lethality. Hybrid seedlings from reciprocal crosses between N. sylvestris and N. debneyi showed lethal characteristics identical to those from the cross between N. tabacum and N. debneyi. Conversely, hybrid seedlings from reciprocal crosses between N. tomentosiformis and N. debneyi were viable. Furthermore, hallmarks of PCD were observed in hybrid seedlings from the cross N. debneyi × N. sylvestris, but not in hybrid seedlings from the cross N. debneyi × N. tomentosiformis. We also carried out crosses between monosomic lines of N. tabacum lacking the Q chromosome and N. debneyi. Using Q-chromosome-specific DNA markers, hybrid seedlings were divided into two groups, hybrids possessing the Q chromosome and hybrids lacking the Q chromosome. Hybrids possessing the Q chromosome died with characteristics of PCD. However, hybrids lacking the Q chromosome were viable and PCD did not occur. From these results, we concluded that the Q chromosome belonging to the S subgenome of N. tabacum encodes gene(s) leading to hybrid lethality in the cross N. tabacum × N. debneyi.  相似文献   

10.
11.
Nicotiana tabacum (tobacco, 2n = 4x = 48) is an allotetraploid with 24 S‐genome chromosomes (from a diploid related to N. sylvestris) and 24 T‐genome chromosomes (from a diploid related to N. tomentosiformis). The BY‐2 suspension cell culture, derived from N. tabacum cultivar Bright Yellow 2, has been used extensively for research in molecular and cell biology for almost 40 years; a Web of Knowledge search reveals that it has been used over 150 times since 2008 alone, largely for cell cycle and plant physiology studies. However, we show that this culture is unstable and, as with other long‐term cultures, exists as a community of cells with different karyotypes reflected in different chromosome numbers, morphologies and distributions of satellite repeats, At least one rearranged chromosome type was found in all cells investigated in detail. In comparison with N. tabacum, one satellite repeat, NTRS, has become dispersed across several chromosomes and there is complete homogenization of 35S rRNA genes towards T‐genome type rDNA units. Karyotype divergence should be considered when using BY‐2 cells for plant physiology or cell cycle/development studies in the future. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 459–471.  相似文献   

12.
ABamHI family of highly repeated DNA sequences of theNicotiana tabacum nuclear genome, denoted as a HRS60-family, was recently isolated. It comprises about 2% of the tobacco nuclear genome. Monomeric units are 182–184 bp long. Members of the HRS60-family isolated till now are closely related. DNA-DNA hybridization experiments with DNA of the two tobacco progenitors,N. tomentosiformis andN. sylvestris, revealed that the HRS60-family was present in many copies inN. sylvestris, the amount being about 1.7 times that inN. tabacum. InN. tomentosiformis as well as in some other species of the genusNicotiana, the HRS60-family is present in a small amount. Sequences related to the HRS60-family were revealed using DNA-DNA hybridization at low stringency. With respect to quantity, the HRS60-family could be considered as a species-specific DNA repeat which may be a useful genetic marker in genetic manipulations withN. tabacum.  相似文献   

13.
Nicotiana tabacum (2n=48) is a natural amphidiploid with component genomes S and T. We used non-radioactive in situ hybridization to provide physical chromosome markers for N. tabacum, and to determine the extant species most similar to the S and T genomes. Chromosomes of the S genome hybridized strongly to biotinylated total DNA from N. sylvestris, and showed the same physical localization of a tandemly repeated DNA sequence, HRS 60.1, confirming the close relationship between the S genome and N. sylvesfris. Results of dot blot and in situ hybridizations of N. tabacum DNA to biotinylated total genomic DNA from N. tomentosiformis and N. otophora suggested that the T genome may derive from an introgressive hybrid between these two species. Moreover, a comparison of nucleolus-organizing chromosomes revealed that the nucleolus organizer region (NOR) most strongly expressed in N. tabacum had a very similar counterpart in N. otophora. Three different N. tabacum genotypes each had up to 9 homozygous translocations between chromosomes of the S and T genomes. Such translocations, which were either unilateral or reciprocal, demonstrate that intergenomic transfer of DNA has occurred in the amphidiploid, possibly accounting for some results of previous genetic and molecular analyses. Molecular cytogenetics of N. tabacum has identified new chromosome markers, providing a basis for physical gene mapping and showing that the amphidiploid genome has diverged structurally from its ancestral components.  相似文献   

14.
Tezuka T  Marubashi W 《PloS one》2012,7(4):e36204

Background

Many species of Nicotiana section Suaveolentes produce inviable F1 hybrids after crossing with Nicotiana tabacum (genome constitution SSTT), a phenomenon that is often called hybrid lethality. Through crosses with monosomic lines of N. tabacum lacking a Q chromosome, we previously determined that hybrid lethality is caused by interaction between gene(s) on the Q chromosome belonging to the S subgenome of N. tabacum and gene(s) in Suaveolentes species. Here, we examined if hybrid seedlings from the cross N. occidentalis (section SuaveolentesN. tabacum are inviable despite a lack of the Q chromosome.

Methodology/Principal Findings

Hybrid lethality in the cross of N. occidentalis×N. tabacum was characterized by shoots with fading color. This symptom differed from what has been previously observed in lethal crosses between many species in section Suaveolentes and N. tabacum. In crosses of monosomic N. tabacum plants lacking the Q chromosome with N. occidentalis, hybrid lethality was observed in hybrid seedlings either lacking or possessing the Q chromosome. N. occidentalis was then crossed with two progenitors of N. tabacum, N. sylvestris (SS) and N. tomentosiformis (TT), to reveal which subgenome of N. tabacum contains gene(s) responsible for hybrid lethality. Hybrid seedlings from the crosses N. occidentalis×N. tomentosiformis and N. occidentalis×N. sylvestris were inviable.

Conclusions/Significance

Although the specific symptoms of hybrid lethality in the cross N. occidentalis×N. tabacum were similar to those appearing in hybrids from the cross N. occidentalis×N. tomentosiformis, genes in both the S and T subgenomes of N. tabacum appear responsible for hybrid lethality in crosses with N. occidentalis.  相似文献   

15.
A mutation in theCENTRORADIALIS (CEN) gene ofAntirrhinum and in theTERMINAL FLOWER 1 (TFL1) gene ofArabidopsis causes their indeterminate inflorescence to determinate. We clonedCEN/TFL1 homologs fromNicotiana tabacum, the wild-type of which has a determinate inflorescence. TheCEN gene was expressed in the inflorescnece meristem and kept its inflorescence meristem identity, whereas the tobacco homolog (NCH) was expressed at a low level throughout the plant’s development. AlthoughCEN andNCH are highly homologous genes, they may have been recruited to different developmental functions during their evolution. TwoNCH genes are derived from amphidiploidN. tabacum, but both of them hybridized with its diploid parents,N. sylvestris andN. tomentosiformis. Southern blotting, and the genomic organization ofTFL1 inArabidopsis revealed that anotherCEN homolog exists in the genome ofArabidopsis. These results suggest that there are two copies of theCEN homolog per diploid plant. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Frontier of Plant Biology” These two authors contributed to this work equally.  相似文献   

16.
Summary Two flue-cured varieties of N. tabacum were crossed to putative progenitor species and to distantly related species. Heterosis for yield, plant height, and number of leaves was largest for crosses to progenitor species, particularly to N. otophora and N. tomentosiformis. The magnitude of this heterosis appeared to be greater than estimates presented in the literature for crosses among varieties of N. tabacum. An additional study presented some evidence for the genomic basis of heterosis in crosses of N. tabacum with N. tomentosiformis and N. sylvestris.
Zusammenfassung Zwei für R?hrentrocknung geeignete Sorten von N. tabacum wurden mit vermutlichen Ausgangs- und mit entfernt verwandten Arten gekreuzt. Die Heterosis für Ertrag, Pflanzenh?he und Blattanzahl war am st?rksten bei Kreuzungen mit den Ausgangsarten, besonders mit N. otophora und N. tomentosiformis. Das Ausma? dieser Heterosis schien die in der Literatur berichteten Sch?tzungen für Kreuzungen zwischen Sorten von N. tabacum zu übertreffen. Eine weitere Untersuchung erbrachte Hinweise für die genomatische Grundlage der Heterosis bei Kreuzungen von N. tabacum mit N. tomentosiformis und N. sylvestris.


Dedicated to Dr. George F. Sprague on the occasion of his 65th birthday.

Paper Number 2318 of the Journal Series of the North Carolina Agricultural Experiment Station. This investigation was supported in part by Public Health Service Research Grant GM 11546 from the Division of General Medical Sciences.  相似文献   

17.
The class III pistil-specific extensin-like proteins (PELPIII) of Nicotiana tabacum accumulate in the intercellular matrix (IM) of the style transmitting tissue (TT). After pollination, the 110–140 kDa PELPIII is translocated from the IM into the pollen tube walls. PELPIII-like sequences have been found in several solanaceous species. These sequences are expressed in mature non-pollinated styles at both RNA and protein level. Of the genus Nicotiana, the species N. alata, N. x sanderae and N. sylvestris (section Alatae), and N. tomentosiformis and N. otophora (section Tomentosae) showed an expression level of PELPIII homologues similar to that in mature styles of N. tabacum. PELPIII genes were absent in the most ancient species studied, namely N. trigonophylla (section Trigonophyllae). To study the species dependence of the translocation of PELPIII into the pollen tube wall in tobacco, interspecific pollinations on N. tabacum pistils were carried out with pollen from the incongruous species N. rustica, N. trigonophylla and Petunia hybrida, where PELPIII homologues are absent in the style. Immunocytological tests showed that the N. tabacum PELPIII is translocated into the pollen tube walls of all three species. Thus, the pollen tube walls of these species do not form a barrier for IM compounds such as the 110–140 kDa PELPIII and the absence of any possible effect of PELPIII on pollen tube growth cannot be due to failure of PELPIII transport through the wall. The importance of these findings is discussed with respect to the evolutionary origin of PELPIII, the pollen pistil interaction, the function of style TT-specific proteins and the physical properties of pollen tube walls.  相似文献   

18.
19.
Hybrid lethality is expressed at 28°C in the cross Nicotiana nudicaulis×N. tabacum. The S subgenome of N. tabacum has been identified as controlling this hybrid lethality. To clarify the responsible genomic factor(s) of N. nudicaulis, we crossed N. trigonophylla (paternal progenitor of N. nudicaulis) with N. tabacum, because hybrids between N. sylvestris (maternal progenitor of N. nudicaulis) and N. tabacum are viable when grown in a greenhouse. In the cross N. trigonophylla×N. tabacum, approximately 50% of hybrids were vitrified, 20% were viable, and 20% were nonviable at 28°C. To reveal which subgenome of N. tabacum was responsible for these phenotypes, we crossed N. trigonophylla with two progenitors of N. tabacum, N. sylvestris (SS) and N. tomentosiformis (TT). In the cross N. sylvestris×N. trigonophylla, we confirmed that over half of hybrids of N. sylvestris×N. trigonophylla were vitrified, and none of the hybrids of N. trigonophylla×N. tomentosiformis were. The results imply that the S subgenome, encoding a gene or genes inducing hybrid lethality in the cross between N. nudicaulis and N. tabacum, has one or more genomic factors that induce vitrification. Furthermore, in vitrified hybrids of N. trigonophylla×N. tabacum and N. sylvestris×N. trigonophylla, we found that nuclear fragmentation, which progresses during expression of hybrid lethality, was accompanied by vitrification. This observation suggests that vitrification has a relationship to hybrid lethality. Based on these results, we speculate that when N. nudicaulis was formed approximately 5 million years ago, several causative genomic factors determining phenotypes of hybrid seedlings were inherited from N. trigonophylla. Subsequently, genome downsizing and various recombination-based processes took place. Some of the causative genomic factors were lost and some became genomic factor(s) controlling hybrid lethality in extant N. nudicaulis.  相似文献   

20.
The plant‐specific PIN‐FORMED (PIN) auxin efflux proteins have been well characterized in many plant species, where they are crucial in the regulation of auxin transport in various aspects of plant development. However, little is known about the exact roles of the PIN genes during plant development in Nicotiana species. This study investigated the PIN genes in tobacco (Nicotiana tabacum) and in two ancestral species (Nicotiana sylvestris and Nicotiana tomentosiformis). Genome‐wide analysis of the N. tabacum genome identified 20 genes of the PIN family. An in‐depth phylogenetic analysis of the PIN genes of N. tabacum, N. sylvestris and N. tomentosiformis was conducted. NtPIN4 expression was strongly induced by the application of exogenous indole‐3‐acetic acid (IAA), but was downregulated by the application of ABA, a strigolactone analogue, and cytokinin, as well as by decapitation treatments, suggesting that the NtPIN4 expression level is likely positively regulated by auxin. Expression analysis indicated that NtPIN4 was highly expressed in tobacco stems and shoots, which was further validated through analysis of the activity of the NtPIN4 promoter. We used CRISPR‐Cas9 technology to generate mutants for NtPIN4 and observed that both T0 and T1 plants had a significantly increased axillary bud growth phenotype, as compared with the wild‐type plants. Therefore, NtPIN4 offers an opportunity for studying auxin‐dependent branching processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号