首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of tissue transglutaminase on the water-soluble proteins in bovine lens homogenates are described. Addition of liver transglutaminase and Ca2+ to calf lens homogenates resulted not only in the appearance of 50- and 57-kDa dimers, but also in a decrease in the amount of beta B1 crystallin and the almost complete disappearance of beta B3 and beta A3. This is not the result of Ca2+-induced proteolysis, since histamine completely inhibits this phenomenon. It may be concluded that these polypeptides are involved in beta-crystallin crosslinking by transglutaminase. This notion was confirmed by using beta B1- and beta Bp-specific antisera. Both sera reacted with the 57-kDa dimer; the beta Bp-specific antiserum also reacted with the 50-kDa dimer. No reaction in the region 50-57 kDa was detectable when EDTA was used instead of Ca2+. Using reconstituted mixtures of beta B1- and beta Bp-crystallin chains, and N-terminally truncated derivatives thereof, it was shown that in the beta B1/beta Bp dimer, glutamine residue -9 of beta Bp crosslinks to one of the lysine residues in the N-terminal extension of beta B1.  相似文献   

2.
3.
To understand the functions of the two ryanodine receptor isoforms (α- and β-RyRs) in nonmammalian skeletal muscles, we determined [3H]ryanodine binding to these isoforms purified from bullfrog skeletal muscle. In 0.17 M-NaCl medium, both isoforms demonstrated similar Ca2+ dependent ryanodine binding activities, while the Ca2+ sensitivity for activation of β-RyR was increased in 1 M-NaCl medium. This enhancement in Ca2+ sensitivity depended on the kind of salts used. These results imply that α- and β-RyRs may have similar properties as Ca2+-induced Ca2+ release channels in bullfrog skeletal muscle.  相似文献   

4.
Male Anopheles mosquitoes coagulate their seminal fluids via cross-linking of a substrate, called Plugin, by the seminal transglutaminase AgTG3. Formation of the “mating plug” by cross-linking Plugin is necessary for efficient sperm storage by females. AgTG3 has a similar degree of sequence identity (∼30%) to both human Factor XIII (FXIII) and tissue transglutaminase 2 (hTG2). Here we report the solution structure and in vitro activity for the cross-linking reaction of AgTG3 and Plugin. AgTG3 is a dimer in solution and exhibits Ca2+-dependent nonproteolytic activation analogous to cytoplasmic FXIII. The C-terminal domain of Plugin is predominantly α-helical with extended tertiary structure and oligomerizes in solution. The specific activity of AgTG3 was measured as 4.25 × 10−2 units mg−1. AgTG3 is less active than hTG2 assayed using the general substrate TVQQEL but has 8–10× higher relative activity when Plugin is the substrate. Mass spectrometric analysis of cross-linked Plugin detects specific peptides including a predicted consensus motif for cross-linking by AgTG3. These results support the development of AgTG3 inhibitors as specific and effective chemosterilants for A. gambiae.  相似文献   

5.

Background

Celiac disease (CD) is an intestinal inflammatory condition that develops in genetically susceptible individuals after exposure to dietary wheat gliadin. The role of post-translational modifications of gliadin catalyzed by tissue transglutaminase (tTG) seems to play a crucial role in CD. However, it remains to be established how and where tTG is activated in vivo. We have investigated whether gliadin peptides modulate intracellular Ca2+ homeostasis and tTG activity.

Methods/Principal Findings

We studied Ca2+ homeostasis in Caco-2 cells by single cell microfluorimetry. Under our conditions, A-gliadin peptides 31–43 and 57–68 rapidly mobilized Ca2+ from intracellular stores. Specifically, peptide 31–43 mobilized Ca2+ from the endoplasmic reticulum (ER) and mitochondria, whereas peptide 57–68 mobilized Ca2+ only from mitochondria. We also found that gliadin peptide-induced Ca2+ mobilization activates the enzymatic function of intracellular tTG as revealed by in situ tTG activity using the tTG substrate pentylamine-biotin. Moreover, we demonstrate that peptide 31–43, but not peptide 57–68, induces an increase of tTG expression. Finally, we monitored the expression of glucose-regulated protein-78 and of CCAAT/enhancer binding protein-homologous protein, which are two biochemical markers of ER-stress, by real-time RT-PCR and western blot. We found that chronic administration of peptide 31–43, but not of peptide 57–68, induces the expression of both genes.

Conclusions

By inducing Ca2+ mobilization from the ER, peptide 31–43 could promote an ER-stress pathway that may be relevant in CD pathogenesis. Furthermore, peptides 31–43 and 57–68, by activating intracellular tTG, could alter inflammatory key regulators, and induce deamidation of immunogenic peptides and gliadin–tTG crosslinking in enterocytes and specialized antigen-presenting cells.  相似文献   

6.
Single canine cardiac ryanodine receptor channels were incorporated into planar lipid bilayers. Single-channel currents were sampled at 1–5 kHz and filtered at 0.2–1.0 kHz. Channel incorporations were obtained in symmetrical solutions (20 mM HEPES-Tris, pH 7.4, and pCa 5). Unitary Ca2+ currents were monitored when 2–30 mM Ca2+ was added to the lumenal side of the channel. The relationship between the amplitude of unitary Ca2+ current (at 0 mV holding potential) and lumenal [Ca2+] was hyperbolic and saturated at ∼4 pA. This relationship was then defined in the presence of different symmetrical CsCH3SO3 concentrations (5, 50, and 150 mM). Under these conditions, unitary current amplitude was 1.2 ± 0.1, 0.65 ± 0.1, and 0.35 ± 0.1 pA in 2 mM lumenal Ca2+; and 3.3 ± 0.4, 2.4 ± 0.2, and 1.63 ± 0.2 pA in 10 mM lumenal Ca2+ (n > 6). Unitary Ca2+ current was also defined in the presence of symmetrical [Mg2+] (1 mM) and low [Cs+] (5 mM). Under these conditions, unitary Ca2+ current in 2 and 10 mM lumenal Ca2+ was 0.66 ± 0.1 and 1.52 ± 0.06 pA, respectively. In the presence of higher symmetrical [Cs+] (50 mM), Mg2+ (1 mM), and lumenal [Ca2+] (10 mM), unitary Ca2+ current exhibited an amplitude of 0.9 ± 0.2 pA (n = 3). This result indicates that the actions of Cs+ and Mg2+ on unitary Ca2+ current were additive. These data demonstrate that physiological levels of monovalent cation and Mg2+ effectively compete with Ca2+ as charge carrier in cardiac ryanodine receptor channels. If lumenal free Ca2+ is 2 mM, then our results indicate that unitary Ca2+ current under physiological conditions should be <0.6 pA.  相似文献   

7.
Ca2+/calmodulin-dependent kinase IIα (CaMKIIα) is essential for synaptic plasticity and learning by decoding synaptic Ca2+ oscillations. Despite decades of extensive research, new mechanisms underlying CaMKIIα’s function in synapses are still being discovered. Here, we discover that Shank3 is a specific binding partner for autoinhibited CaMKIIα. We demonstrate that Shank3 and GluN2B, via combined actions of Ca2+ and phosphatases, reciprocally bind to CaMKIIα. Under basal condition, CaMKIIα is recruited to the Shank3 subcompartment of postsynaptic density (PSD) via phase separation. Rise of Ca2+ concentration induces GluN2B-mediated recruitment of active CaMKIIα and formation of the CaMKIIα/GluN2B/PSD-95 condensates, which are autonomously dispersed upon Ca2+ removal. Protein phosphatases control the Ca2+-dependent shuttling of CaMKIIα between the two PSD subcompartments and PSD condensate formation. Activation of CaMKIIα further enlarges the PSD assembly and induces structural LTP. Thus, Ca2+-induced and phosphatase-checked shuttling of CaMKIIα between distinct PSD nano-domains can regulate phase separation-mediated PSD assembly and synaptic plasticity.Subject terms: Cell biology, Molecular biology  相似文献   

8.
Rat pancreatic islet homogenates catalyze the incorporation of [2,5–3-H]histamine into endogenous proteins recovered in both the stacking gel and a Mr 84000 protein separated by polyacrylamide electrophoresis. The labelling of these proteins represents a Ca2+-dependent process inhibited by glycine methylester, but not sarcosine methylester, and enhanced after preincubation of the islets at a high concentration of D-glucose. Although transglutaminase activity is found in both soluble and particlate subcelluler fractions, the endogenous transglutaminase substrates were located mainly in paarticulate, possibly membrane-associated, material.  相似文献   

9.
The effects of gibberellic acid (GA3) and calcium ions on the production of α-amylase and acid phosphatase by isolated aleurone layers of barley (Hordeum vulgare L. cv Himalaya) were studied. Aleurone layers not previously exposed to GA3 or Ca2+ show qualitative and quantitative changes in hydrolase production following incubation in either GA3 or Ca2+ or both. Incubation in H2O or Ca2+ results in the production of low levels of α-amylase or acid phosphatase. The addition of GA3 to the incubation medium causes a 10- to 20-fold increase in the amounts of these enzymes released from the tissue, and addition of Ca2+ at 10 millimolar causes a further 8- to 9-fold increase in α-amylase release and a 75% increase in phosphatase release. Production of α-amylase isoenzymes is also modified by the levels of GA3 and Ca2+ in the incubation medium. α-Amylase 2 is produced under all conditions of incubation, while α-amylase 1 appears only when layers are incubated in GA3 or GA3 plus Ca2+. The synthesis of α-amylases 3 and 4 requires the presence of both GA3 and Ca2+ in the incubation medium. Laurell rocket immuno-electrophoresis shows that two distinct groups of α-amylase antigens are present in incubation media of aleurone layers incubated with both GA3 and Ca2+, while only one group of antigens is found in media of layers incubated in GA3 alone. Strontium ions can be substituted for Ca2+ in increasing hydrolase production, although higher concentrations of Sr2+ are required for maximal response. We conclude that GA3 is required for the production of α-amylase 1 and that both GA3 and either Ca2+ or Sr2+ are required for the production of isoenzymes 3 and 4 of barley aleurone α-amylase.  相似文献   

10.
Presynaptic nicotinic acetylcholine receptors (nAChRs) have long been implicated in the modulation of CNS circuits. We previously reported that brief exposure to low concentrations of nicotine induced sustained potentiation of glutamatergic transmission at ventral hippocampal (vHipp)-striatal synapses. Here, we exploited nAChR subtype-selective antagonists and agonists and α7*nAChR knockout mutant mice (α7-/-) to elucidate the signaling mechanisms underlying nAChR-mediated modulation of synaptic transmission. Using a combination of micro-slices culture from WT and α7-/-mice, calcium imaging, and immuno-histochemical techniques, we found that nicotine elicits localized and oscillatory increases in intracellular Ca2+ along vHipp axons that persists for up to 30 minutes. The sustained phase of the nicotine-induced Ca2+ response was blocked by α-BgTx but not by DHβE and was mimicked by α7*nAChR agonists but not by non-α7*nAChR agonists. In vHipp slices from α7-/- mice, nicotine elicited only transient increases of axonal Ca2+ signals and did not activate CaMKII. The sustained phase of the nicotine-induced Ca2+ response required localized activation of CaMKII, phospholipase C, and IP3 receptor mediated Ca2+-induced Ca2+ release (CICR). In conclusion, activation of presynaptic nAChRs by nicotine elicits Ca2+ influx into the presynaptic axons, the sustained phase of the nicotine-induced Ca2+ response requires that axonal α7*nAChR activate a downstream signaling network in the vHipp axons.  相似文献   

11.
The marine diatom Amphora coffeaeformis required Ca2+ and bicarbonate for motility. Movement was inhibited by the Ca2+-blocking agents ruthenium red and α-isopropyl-α-[(N-methyl-N-homoveratryl)-α- aminopropyl]-3,4,5-trimethoxy phenyl acetonitrile and the metabolic energy uncoupler, carbonyl cyanide 3-chlorophenylhydrazone. 3-(3′,4-Dichlorophenyl)-1,1-Dimethyl urea was without effect on cells at a concentration that prevented O2 production in the light. Although Sr2+ could replace Ca2+ in the attachment of cells to glass, it did not substitute for Ca2+ in motility.  相似文献   

12.
Alteration in the L-type current density is one aspect of the electrical remodeling observed in patients suffering from cardiac arrhythmias. Changes in channel function could result from variations in the protein biogenesis, stability, post-translational modification, and/or trafficking in any of the regulatory subunits forming cardiac L-type Ca2+ channel complexes. CaVα2δ1 is potentially the most heavily N-glycosylated subunit in the cardiac L-type CaV1.2 channel complex. Here, we show that enzymatic removal of N-glycans produced a 50-kDa shift in the mobility of cardiac and recombinant CaVα2δ1 proteins. This change was also observed upon simultaneous mutation of the 16 Asn sites. Nonetheless, the mutation of only 6/16 sites was sufficient to significantly 1) reduce the steady-state cell surface fluorescence of CaVα2δ1 as characterized by two-color flow cytometry assays and confocal imaging; 2) decrease protein stability estimated from cycloheximide chase assays; and 3) prevent the CaVα2δ1-mediated increase in the peak current density and voltage-dependent gating of CaV1.2. Reversing the N348Q and N812Q mutations in the non-operational sextuplet Asn mutant protein partially restored CaVα2δ1 function. Single mutation N663Q and double mutations N348Q/N468Q, N348Q/N812Q, and N468Q/N812Q decreased protein stability/synthesis and nearly abolished steady-state cell surface density of CaVα2δ1 as well as the CaVα2δ1-induced up-regulation of L-type currents. These results demonstrate that Asn-663 and to a lesser extent Asn-348, Asn-468, and Asn-812 contribute to protein stability/synthesis of CaVα2δ1, and furthermore that N-glycosylation of CaVα2δ1 is essential to produce functional L-type Ca2+ channels.  相似文献   

13.

Introduction

The possible role of UCP2 in modulating mitochondrial Ca2+-uptake (mCa2+-uptake) via the mitochondrial calcium uniporter (MCU) is highly controversial.

Methods

Thus, we analyzed mCa2+-uptake in isolated cardiac mitochondria, MCU single-channel activity in cardiac mitoplasts, dual Ca2+-transients from mitochondrial ((Ca2+)m) and intracellular compartment ((Ca2+)c) in the whole-cell configuration in cardiomyocytes of wild-type (WT) and UCP2-/- mice.

Results

Isolated mitochondria showed a Ru360 sensitive mCa2+-uptake, which was significantly decreased in UCP2-/- (229.4±30.8 FU vs. 146.3±23.4 FU, P<0.05). Single-channel registrations confirmed a Ru360 sensitive voltage-gated Ca2+-channel in mitoplasts, i.e. mCa1, showing a reduced single-channel activity in UCP2-/- (Po,total: 0.34±0.05% vs. 0.07±0.01%, P<0.05). In UCP2-/- cardiomyocytes (Ca2+)m was decreased (0.050±0.009 FU vs. 0.021±0.005 FU, P<0.05) while (Ca2+)c was unchanged (0.032±0.002 FU vs. 0.028±0.004 FU, P>0.05) and transsarcolemmal Ca2+-influx was inhibited suggesting a possible compensatory mechanism. Additionally, we observed an inhibitory effect of ATP on mCa2+-uptake in WT mitoplasts and (Ca2+)m of cardiomyocytes leading to an increase of (Ca2+)c while no ATP dependent effect was observed in UCP2-/-.

Conclusion

Our results indicate regulatory effects of UCP2 on mCa2+-uptake. Furthermore, we propose, that previously described inhibitory effects on MCU by ATP may be mediated via UCP2 resulting in changes of excitation contraction coupling.  相似文献   

14.
Some aspects of the metabolism of urethane and N-hydroxyurethane in rodents   总被引:1,自引:1,他引:0  
1. Urethane and N-hydroxyurethane are interconvertible in C and C57 mice. 2. In newborn C57/DBA hybrid mice, prior treatment with 3-methylcholanthrene or urethane stimulated the N-hydroxylation of urethane; SKF 525A inhibited the N-hydroxylation at 24hr. but stimulated it at 48hr. after administration. 3. Liver homogenates of CBA and C3H mice, and of Chester Beatty and hooded rats, but not whole-body homogenates of 1-day-old C57/DBA mice or lung homogenate of 3-week-old Chester Beatty rats, metabolized urethane into N-hydroxyurethane in small but definite amounts. 4. Nitrite was detected in the bodies of newborn C57/DBA hybrid mice treated with lethal doses of urethane or N-hydroxyurethane; nitrite formation from N-hydroxyurethane was stimulated by pretreatment of the animals with 3-methylcholanthrene. 5. The rate of catabolism of N-hydroxyurethane by C57/DBA mice was faster in 8-day-old than in 1-day-old animals of the same sex, and faster in females than in males of the same age. 6. Liver slices of several species of rats and mice catabolized N-hydroxyurethane at rates that varied with the age and sex of animals of the same species; liver homogenates or microsomes were less effective than slices from the same liver. 7. The enzyme activity was destroyed by boiling or freezing the liver; it was inhibited by increasing substrate concentration and by urethane, n-butyl carbamate, cyanide, p-benzoquinone or 2,4-dinitrophenol, but not by p-chloromercuribenzoate or menadione. 8. The catabolism of N-hydroxyurethane by liver slices from adult H-strain rats was not oxygen-dependent. 9. Lung homogenates of 4-week-old female Chester Beatty rats catabolized N-hydroxyurethane at 40% of the rate of liver slices from the same source. 10. O-Acetyl- and O-ethoxycarbonyl-N-hydroxyurethane were rapidly deacylated by liver homogenates from adult hooded rats and adult C57 mice, and by human erythrocytes. 11. N-Hydroxyurethane reacted rapidly with pyridoxal phosphate at pH7·4 and 37°. 12. The rate of decomposition of N-hydroxyurethane in 0·1 n-sodium hydroxide was increased by Ni2+, Cu2+, Mn2+ and [Fe(CN)6]3− and decreased by Cr2+, Zn2+, Co2+, Mg2+ and Fe2+. 13. Attempts to synthesize sulphonates of N-hydroxyurethane gave ethyl hydrogen sulphate, probably via rearrangement of the unstable O-sulphonate.  相似文献   

15.
Contact of Jurkat T-lymphocytes with the extracellular matrix (ECM) protein laminin resulted in long-lasting α6β1-integrin-mediated Ca2+ signalling. Both Ca2+ release from thapsigargin-sensitive Ca2+ stores and capacitative Ca2+ entry via Ca2+ channels sensitive to SKF 96365 constitute important parts of this process. Inhibition of α6β1-integrin-mediated Ca2+ signalling by (1) the src kinase inhibitor PP2, (2) the PLC inhibitor U73122, and (3) the cyclic adenosine diphosphoribose (cADPR) antagonist 7-deaza-8-Br-cADPR indicate the involvement of src tyrosine kinases and the Ca2+-releasing second messengers d-myo-inositol 1,4,5-trisphosphate (InsP3) and cADPR.  相似文献   

16.
α-Actinins from striated muscle, smooth muscle, and nonmuscle cells are distinctive in their primary structure and Ca2+ sensitivity for the binding to F-actin. We isolated α-actinin cDNA clones from a cDNA library constructed from poly(A)+ RNA of embryonic chicken skeletal muscle. The amino acid sequence deduced from the nucleotide sequence of these cDNAs was identical to that of adult chicken skeletal muscle α-actinin. To examine whether the differences in the structure and Ca2+ sensitivity of α-actinin molecules from various tissues are responsible for their tissue-specific localization, the cDNA cloned into a mammarian expression vector was transfected into cell lines of mouse fibroblasts and skeletal muscle myoblasts. Immunofluorescence microscopy located the exogenous α-actinin by use of an antibody specific for skeletal muscle α-actinin. When the protein was expressed at moderate levels, it coexisted with endogenous α-actinin in microfilament bundles in the fibroblasts or myoblasts and in Z-bands of sarcomeres in the myotubes. These results indicate that Ca2+ sensitivity or insensitivity of the molecules does not determine the tissue-specific localization. In the cells expressing high levels of the exogenous protein, however, the protein was diffusely present and few microfilament bundles were found. Transfection with cDNAs deleted in their 3′ portions showed that the expressed truncated proteins, which contained the actin-binding domain but lacked the domain responsible for dimerization, were able to localize, though less efficiently in microfilament bundles. Thus, dimer formation is not essential for α-actinin molecules to bind to microfilaments.  相似文献   

17.
Surface expression of voltage-gated Ca2+ (Cav) channels is important for their function in calcium homeostasis in the physiology of excitable cells, but whether or not and how the α1 pore-forming subunits of Cav channels are trafficked to plasma membrane in the absence of the known Cav auxiliary subunits, β and α2δ, remains mysterious. Here we showed that 14-3-3 proteins promoted functional surface expression of the Cav2.2 α1B channel in transfected tsA-201 cells in the absence of any known Cav auxiliary subunit. Both the surface to total ratio of the expressed α1B protein and the current density of voltage step-evoked Ba2+ current were markedly suppressed by the coexpression of a 14-3-3 antagonist construct, pSCM138, but not its inactive control, pSCM174, as determined by immunofluorescence assay and whole cell voltage clamp recording, respectively. By contrast, coexpression with 14-3-3τ significantly enhanced the surface expression and current density of the Cav2.2 α1B channel. Importantly, we found that between the two previously identified 14-3-3 binding regions at the α1B C terminus, only the proximal region (amino acids 1706–1940), closer to the end of the last transmembrane domain, was retained by the endoplasmic reticulum and facilitated by 14-3-3 to traffic to plasma membrane. Additionally, we showed that the 14-3-3/Cav β subunit coregulated the surface expression of Cav2.2 channels in transfected tsA-201 cells and neurons. Altogether, our findings reveal a previously unidentified regulatory function of 14-3-3 proteins in promoting the surface expression of Cav2.2 α1B channels.  相似文献   

18.
Assembly of voltage-dependent Ca2+ channels (VDCCs) with their associated proteins regulates the coupling of VDCCs with upstream and downstream cellular events. Among the four isoforms of the Rab3-interacting molecule (RIM1 to -4), we have previously reported that VDCC β-subunits physically interact with the long α isoform of the presynaptic active zone scaffolding protein RIM1 (RIM1α) via its C terminus containing the C2B domain. This interaction cooperates with RIM1α-Rab3 interaction to support neurotransmitter exocytosis by anchoring vesicles in the vicinity of VDCCs and by maintaining depolarization-triggered Ca2+ influx as a result of marked inhibition of voltage-dependent inactivation of VDCCs. However, physiological functions have not yet been elucidated for RIM3 and RIM4, which exist only as short γ isoforms (γ-RIMs), carrying the C-terminal C2B domain common to RIMs but not the Rab3-binding region and other structural motifs present in the α-RIMs, including RIM1α. Here, we demonstrate that γ-RIMs also exert prominent suppression of VDCC inactivation via direct binding to β-subunits. In the pheochromocytoma PC12 cells, this common functional feature allows native RIMs to enhance acetylcholine secretion, whereas γ-RIMs are uniquely different from α-RIMs in blocking localization of neurotransmitter-containing vesicles near the plasma membrane. γ-RIMs as well as α-RIMs show wide distribution in central neurons, but knockdown of γ-RIMs attenuated glutamate release to a lesser extent than that of α-RIMs in cultured cerebellar neurons. The results suggest that sustained Ca2+ influx through suppression of VDCC inactivation by RIMs is a ubiquitous property of neurons, whereas the extent of vesicle anchoring to VDCCs at the plasma membrane may depend on the competition of α-RIMs with γ-RIMs for VDCC β-subunits.  相似文献   

19.
The βγ-crystallin superfamily possesses a large number of versatile members, of which only a few members other than lens βγ-crystallins have been studied. Understanding the non-crystallin functions as well as origin of crystallin-like properties of such proteins is possible by exploring novel members from diverse sources. We describe a novel βγ-crystallin domain with S-type (Spherulin 3a type) Greek key motifs in protein vibrillin from a pathogenic bacterium Vibrio cholerae. This domain is a part of a large Vibrio-specific protein prevalent in Vibrio species (found in at least fourteen different strains sequenced so far). The domain contains two canonical N/D-N/D-X-X-S/T-S Ca2+-binding motifs, and bind Ca2+. Unlike spherulin 3a and other microbial homologues studied so far, βγ-crystallin domain of vibrillin self-associates forming oligomers of various sizes including dimers. The fractionated dimers readily form octamers in concentration-dependent manner, suggesting an association between these two major forms. The domain associates/dissociates forming dimers at the cost of monomeric populations in the presence of Ca2+. No such effect of Ca2+ has been observed in oligomeric species. The equilibrium unfolding of both forms follows a similar pattern, with the formation of an unfolding intermediate at sub-molar concentrations of denaturant. These properties exhibited by this βγ-crystallin domain are not shown by any other domain studied so far, demonstrating the diversity in domain properties.  相似文献   

20.
Metabotropic glutamate receptor 1α (mGluR1α), a member of the family C G protein-coupled receptors, is emerging as a potential drug target for various disorders, including chronic neuronal degenerative diseases. In addition to being activated by glutamate, mGluR1α is also modulated by extracellular Ca2+. However, the underlying mechanism is unknown. Moreover, it has long been challenging to develop receptor-specific agonists due to homologies within the mGluR family, and the Ca2+-binding site(s) on mGluR1α may provide an opportunity for receptor-selective targeting by therapeutics. In the present study, we show that our previously predicted Ca2+-binding site in the hinge region of mGluR1α is adjacent to the site where orthosteric agonists and antagonists bind on the extracellular domain of the receptor. Moreover, we found that extracellular Ca2+ enhanced mGluR1α-mediated intracellular Ca2+ responses evoked by the orthosteric agonist l-quisqualate. Conversely, extracellular Ca2+ diminished the inhibitory effect of the mGluR1α orthosteric antagonist (S)-α-methyl-4-carboxyphenylglycine. In addition, selective positive (Ro 67-4853) and negative (7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester) allosteric modulators of mGluR1α potentiated and inhibited responses to extracellular Ca2+, respectively, in a manner similar to their effects on the response of mGluR1α to glutamate. Mutations at residues predicted to be involved in Ca2+ binding, including E325I, had significant effects on the modulation of responses to the orthosteric agonist l-quisqualate and the allosteric modulator Ro 67-4853 by extracellular Ca2+. These studies reveal that binding of extracellular Ca2+ to the predicted Ca2+-binding site in the extracellular domain of mGluR1α modulates not only glutamate-evoked signaling but also the actions of both orthosteric ligands and allosteric modulators on mGluR1α.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号