首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although estrogen is known to activate endothelial nitric oxide synthase (eNOS) in the vascular endothelium, the molecular mechanism responsible for this effect remains to be elucidated. In studies of both human umbilical vein endothelial cells (HUVECs) and simian virus 40-transformed rat lung vascular endothelial cells (TRLECs), 17beta-estradiol (E2), but not 17alpha-E2, caused acute activation of eNOS that was unaffected by actinomycin D and was specifically blocked by the pure estrogen receptor antagonist ICI-182,780. Treatment of both TRLECs and HUVECs with 17beta-E2 stimulated the activation of Akt, and the PI3K inhibitor wortmannin blocked the 17beta-E2-induced activation of Akt. 17beta-E2-induced Akt activation was also inhibited by ICI-182,780, but not by actinomycin D. Either treatment with wortmannin or exogenous expression of a dominant negative Akt in TRLECs decreased the 17beta-E2-induced eNOS activation. Moreover, 17beta-E2-induced Akt activation actually enhances the phosphorylation of eNOS. 17beta-E2-induced Akt activation was dependent on both extracellular and intracellular Ca(2+). We further examined the 17beta-E2-induced Akt activity in Chinese hamster ovary (CHO) cells transiently transfected with cDNAs for estrogen receptor alpha (ERalpha) or estrogen receptor beta (ERbeta). 17beta-E2 stimulated the activation of Akt in CHO cells expressing ERalpha but not in CHO cells expressing ERbeta. Our findings suggest that 17beta-E2 induced eNOS activation through an Akt-dependent mechanism, which is mediated by ERalpha via a nongenomic mechanism.  相似文献   

2.
Vitamin E, a dietary factor, is essential for reproduction in animals. It is an antioxidant present in all mammalian cells. Previously, we showed that ascorbic acid (AA) acted as an inhibitory neurotransmitter in the hypothalamus by scavenging nitric oxide (NO). Earlier studies have shown the antioxidant synergism between vitamin E and ascorbic acid (AA). Therefore, it was of interest to evaluate the effect of vitamin E on luteinizing hormone-releasing hormone (LHRH) and AA release. Medial basal hypothalami from adult male rats of the Sprague Dawley strain were incubated with Krebs-Ringer bicarbonate buffer or graded concentrations of a water soluble form of vitamin E, tocopheryl succinate polyethylene glycol 1000 (TPGS, 22-176 microM) for 1 hr. Subsequently, the tissues were incubated with vitamin E or combinations of vitamin. E + N-methyl-D-aspartic acid (NMDA), an excitatory amino acid for 30 min to study the effect of prior and continued exposure to vitamin E on NMDA-induced LHRH release. AA and LHRH released into the incubation media were determined by high-performance liquid chromatography and radioimmunoassay, respectively. Vitamin E stimulated both LHRH and AA release. The minimal effective concentrations were 22 and 88 microM, respectively. NMDA stimulated LHRH release as previously shown and this effect was not altered in the combined presence of vitamin E plus NMDA. However, AA release was significantly reduced in the combined presence of vitamin E plus NMDA. To evaluate the role of NO in vitamin E-induced LHRH and AA release, the tissues were incubated with vitamin E or combinations of vitamin E + NG-monomethyl-L-arginine (NMMA), a competitive inhibitor of NO synthase. NMMA significantly suppressed vitamin E-induced LHRH and AA release indicating a role of NO in the release of both LHRH and AA. The data suggest that vitamin E plays a role in the hypothalamic control of LHRH and AA release and that the release is mediated by NO.  相似文献   

3.
4.
Release of arachidonic acid from rat liver cells is stimulated after a 6-hour incubation with 9-cis retinoic acid, all trans retinoic acid, the selective peroxisome proliferator-activated receptor-gamma synthetic thiazolidinedione, ciglitazone, the cyclopentenones, 15-deoxy-Delta(12,14) PGJ2 and PGA1 and the non-steroidal anti-inflammatory drugs, celecoxib and indomethacin. The rates of the release stimulated by 15-deoxy-Delta(12,14) PGJ2 differ from those observed with celecoxib. Arachidonic acid release by9-cis retinoic acid in the presence of either ciglitazone or trans retinoic acid is synergistic. It is additive in the presence of celecoxib. Cycloheximide and actinomycin inhibit the release of arachidonic acid stimulated by 15-deoxy-Delta(12,14) PGJ2 but not by celecoxib. The findings indicate that agonists of the peroxisome proliferator-activated receptor-gamma and retinoic acid receptors stimulate the release of arachidonic acid. The mechanisms involved may differ in the cases of 15-deoxy-Delta(12,14) PGJ2 and celecoxib.  相似文献   

5.
Gender is an important determinant of clinical outcome across a broad spectrum of kidney diseases, but the mechanism(s) responsible for the protective effect of female gender have not been fully elucidated. Remnant kidney glomerular injury is limited in female rats compared with male rats despite similar elevations in glomerular capillary pressure. In vitro, mechanical strain leads to the activation of p44/42 mitogen-activated kinase (p44/42 MAPK) and Jun N-terminal kinase/stress-activated protein kinase (SAPK) in glomerular mesangial cells (MC). Accordingly, we studied the effect of 17beta-estradiol on mechanical strain-induced signal transduction in MC. Exposure of MC to mechanical strain increased p44/42 MAPK activation (3-fold) and SAPK activation (2.5-fold), and kinase activation was inhibited by pretreatment with 17beta-estradiol (10(minus sign8) to 10(minus sign11) m) for 24 h in a dose-dependent manner. Mechanical strain-induced nuclear translocation of p44/42 MAPK and SAPK and nuclear protein binding to AP-1 were also attenuated by 17beta-estradiol. The inhibitory effects of 17beta-estradiol were not reproduced by the cell-impermeable estrogen, BSA/17beta-estradiol, nor did preincubation with 17beta-estradiol lead to actin cytoskeleton disassembly or impaired stress fiber formation. However, 17beta-estradiol did increase base-line levels of the dual specificity phosphatase MKP-1. The inhibitory effects of 17beta-estradiol on p44/42 MAPK activation and SAPK activation, translocation, and AP-1 binding were all abrogated by the estrogen receptor antagonist, ICI-182,780. We conclude that attenuation of mechanical strain-induced MAPK activation by 17beta-estradiol is dependent on intracellular estrogen receptor. The attenuation of stretch-induced kinase activation may be due, at least in part, to an effect of 17beta-estradiol on MKP-1 expression. Together, these findings add insight into the protective effect of gender on renal disease progression.  相似文献   

6.
We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activity in human peripheral monocytes by acting on an estrogen surface receptor. NO release was measured in real time with an amperometric probe. 17beta-estradiol exposure to monocytes stimulated NO release within seconds in a concentration-dependent manner, whereas 17alpha-estradiol had no effect. 17beta-estradiol conjugated to BSA (E2-BSA) also stimulated NO release, suggesting mediation by a membrane surface receptor. Tamoxifen, an estrogen receptor inhibitor, antagonized the action of both 17beta-estradiol and E2-BSA, whereas ICI 182,780, a selective inhibitor of the nuclear estrogen receptor, had no effect. We further showed, using a dual emission microfluorometry in a calcium-free medium, that the 17beta-estradiol-stimulated release of monocyte NO was dependent on the initial stimulation of intracellular calcium transients in a tamoxifen-sensitive process. Leeching out the intracellular calcium stores abolished the effect of 17beta-estradiol on NO release. RT-PCR analysis of RNA obtained from the cells revealed a strong estrogen receptor-alpha amplification signal and a weak beta signal. Taken together, a physiological dose of estrogen acutely stimulates NO release from human monocytes via the activation of an estrogen surface receptor that is coupled to increases in intracellular calcium.  相似文献   

7.
Wong CM  Tsang SY  Yao X  Chan FL  Huang Y 《Steroids》2008,73(3):272-279
HYPOTHESIS: Potassium (K(+)) channel activation contributes in part to estrogen-mediated vasorelaxation. However, the underlying mechanism is still unclear. We hypothesize that estrogen increases K(+) currents via membrane-associated, non-genomic interaction and that steroid hormones have differential effects on different types of K(+) channels. EXPERIMENTAL: Human large-conductance Ca(2+)-activated K(+) channels (BK(Ca)) and human voltage-gated K(+) channels (K(V1.5)) were expressed in Xenopus oocytes, and K(+) currents elicited by voltage clamp were measured. RESULTS: Both 17beta-estradiol and BSA-conjugated 17beta-estradiol increased the BK(Ca) current in a concentration-dependent manner and this effect was abolished by tetraethylammonium ions and iberiotoxin (putative BK(Ca) channel blockers). 17beta-estradiol-stimulated increase in the BK(Ca) current was unaffected by treatment with ICI 182,780 (classic estrogen receptor antagonist), tamoxifen (estrogen receptor agonist/antagonist), actinomycin D (RNA synthesis inhibitor), or cycloheximide (protein synthesis inhibitor). In contrast, progesterone reduced the BK(Ca) current in the absence or presence of NS 1619 (BK(Ca) channel activator). Progesterone also inhibited 17beta-estradiol-stimulated increase in the BK(Ca) current. Finally, progesterone but not 17beta-estradiol reduced the K(V1.5) current. CONCLUSIONS: The present results show that 17beta-estradiol stimulates BK(Ca) channels without affecting K(V1.5) channels. This effect is ICI 182,780-insensitive and is likely mediated via a membrane-bound binding site. Progesterone inhibits both BK(Ca)- and K(V1.5)-encoded currents. The present results suggest that inhibition of K(+) channels may contribute in part to its reported antagonism against 17beta-estradiol-mediated vascular relaxation via BK(Ca) channels.  相似文献   

8.
The breast cancer resistance protein (BCRP) is abundant in the placenta and protects the fetus by limiting placental drug penetration. We hypothesize that pregnancy-specific hormones regulate BCRP expression. Hence, we examined the effects of progesterone (P4) and 17beta-estradiol (E2) on BCRP expression in the human placental BeWo cells. P4 and E2 significantly increased and decreased BCRP protein and mRNA, respectively. Likewise, treatment with P4 and E2 increased and decreased, respectively, fumitremorgin C-inhibitable mitoxantrone efflux activity of BeWo cells. Reduction in BCRP expression by E2 was abrogated by the estrogen receptor (ER) antagonist ICI-182,780. However, the progesterone receptor (PR) antagonist RU-486 had no effect on P4-mediated induction of BCRP. P4 together with E2 further increased BCRP protein and mRNA compared with P4 treatment alone. This combined effect on BCRP expression was abolished by RU-486, ICI-182,780, or both. Further analysis revealed that E2 significantly decreased ER beta mRNA and strongly induced PR(B) mRNA in a dose-dependent manner but had no effect on PR(A) and ER alpha. P4 alone had no significant effect on mRNA of ER alpha, ER beta, PR(A), and PR(B). E2 in combination with P4 increased PR(B) mRNA, but the level of induction was significantly reduced compared with E2 treatment alone. Taken together, these results indicate that E2 by itself likely downregulates BCRP expression through an ER, possibly ER beta. P4 alone upregulates BCRP expression via a mechanism other than PR. P4 in combination with E2 further increases BCRP expression, presumably via a nonclassical PR- and/or E2-mediated synthesis of PR(B).  相似文献   

9.
10.
11.
12.
In the present investigation, 17beta-estradiol (E(2)) and tamoxifen, an antiestrogen, were evaluated for their effects on the release of ascorbic acid (AA) and luteinizing hormone-releasing hormone (LHRH). Medial basal hypothalami (MBH) from adult male rats were incubated with graded concentrations of E(2) (10 (-9) to 10(-6) M) or a combination of E(2) (10(-7) M) and tamoxifen (10(-7) and 10(-6) M ) in 0.5 ml of Krebs Ringer bicarbonate buffer for 1 hr. AA and LHRH in the incubation medium were measured by high-performance liquid chromatography and radioimmunoassay, respectively. E(2) significantly elevated both AA and LHRH release and the minimal effective dose was 10(-7) M. A combination of E(2) (10(-7) M) and tamoxifen (10(-6) M) totally blocked E(2)-induced AA and LHRH release. The stimulatory effect of E(2) was also suppressed in the presence of N(G)-monomethyl-L-arginine, a competitive inhibitor of nitric oxide synthase (NOS), illustrating that the release is mediated by nitric oxide (NO). To further characterize the role of NO, the tissues were incubated with E(2) or a combination of E(2) + (6 anilino-5, 8-quinolinedione) LY 83583 (10(-6) and 10(-5) M), an inhibitor of NOS. LY 83583 was effective in suppressing E(2)-induced AA and LHRH release, demonstrating that the effect was mediated by cyclic GMP. Incubation of the tissues with E(2) or a combination of E(2) + 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (O.D.Q.) (10(-5) and 10(-4) M), a specific inhibitor of soluble guanylyl cyclase failed to alter AA release but significantly suppressed LHRH release. The role of a prostaglandin synthesis blocker in E(2)-induced AA and LHRH release was tested by incubating the tissues with E(2) or a combination of E(2) + indomethacin (1.8 x 10 (-7) or 1.8 x 10(-6) M). Indomethacin produced a significant decrease in E(2)-induced AA and LHRH release, suggesting that the release process required prostaglandins as an intracellular mediator. In conclusion, E(2) stimulated both AA and LHRH release and the effect was mediated by NO and prostaglandins.  相似文献   

13.
14.
1,25(OH)(2)-Vitamin D(3) [1,25(OH)(2)D(3)], PTH and 17beta-estradiol increase intracellular Ca(2+) levels ([Ca(2+)](i)) in rat enterocytes by stimulating inner Ca(2+) store mobilization and voltage-dependent Ca(2+) channels through non-genomic activation of second-messenger cascades. The participation of store-operated Ca(2+) (SOC) channels in 17beta-estradiol regulation of enterocyte [Ca(2+)](i) has also been suggested. The aim of this work was to investigate whether PTH and/or 17beta-estradiol exert additive or synergistic effects acting in concert with the classic intestinal calciotropic hormone 1,25(OH)(2)D(3). Fura-2-loaded rat duodenal cells were stimulated using rPTH (10 nM), 17beta-estradiol (0.1 nM) or 1,25(OH)(2)D(3) (0.1 nM). The resulting Ca(2+) signal was characterized by an almost immediate rise in [Ca(2+)](i) (within 30 s) rapidly reaching peak levels, followed by a plateau phase that remained sustained as long as the cells were exposed to the stimulus. The addition of PTH at the sustained phase induced by 1,25(OH)(2)D(3) or, conversely, the addition of the secosteroid after the PTH-induced effect, did not induce additional increases in [Ca(2+)](i). Simultaneous treatment with both hormones resulted in an elevation of [Ca(2+)](i) equivalent to the maximal level caused by either agonist alone, suggesting common components for [Ca(2+)]i stimulation by PTH and 1,25(OH)(2)D(3). Treatment with 17beta-estradiol at the sustained phase induced by 1,25(OH)(2)D(3) or, conversely, treatment with the secosteroid after the 17beta-estradiol effect, induced additional increments in [Ca(2+)](i) (58 % and 63 %, respectively). Simultaneous treatment of enterocytes with both steroids potentiated their individual effects to the same extent as when added sequentially, also indicative of additive actions mediated by different sources of calcium signaling cascades. Moreover, 17beta-estradiol failed to further increase the 1,25(OH)(2)D(3)-induced initial Ca(2+) elevation in Ca(2+)-free medium, thus suggesting that extracellular influx mechanisms rather than intracellular Ca(2+) mobilization account for estrogen potentiation of 1,25(OH)(2)D(3) modulation of [Ca(2+)](i) in duodenal cells.  相似文献   

15.
Jiang XR  Sowell JW  Zhu BT 《Steroids》2006,71(5):334-342
Estrogen receptor (ER) pure antagonists such as ICI-182,780 (fulvestrant) are effective alternatives to tamoxifen (an ER antagonist/weak partial agonist) in the treatment of postmenopausal, receptor-positive human breast cancers. Structurally, these pure antagonists contain the basic core structure of 17beta-estradiol (E(2)) with a long side chain attached to its C-7alpha position. We explored and compared in this study various synthetic routes for preparing a number of C-7alpha-substituted derivatives of E(2), which are highly useful for the design and synthesis of high-affinity ER antagonists, ER-based imaging ligands, and other ER-based multi-functional agents. Using E(2) as the starting material and 1-iodo-6-benzyloxyhexane as a precursor for the C-7alpha side chain, a seven-step synthetic procedure afforded 3,17beta-bis(acetoxy)-7alpha-(6-hydroxyhexanyl)-estra-1,3,5(10)-triene (one of the derivatives prepared) in an overall yield of approximately 45% as compared to other known procedures that afforded substantially lower overall yield (8-27%). The synthetic steps for this representative compound include: (1) protection of the C-3 and C-17beta hydroxyls of E(2) using methoxymethyl groups; (2) hydroxylation of the C-6 position of the bismethoxymethyl ether of E(2); (3) Swern oxidation of the C-6 hydroxy to the ketone group; (4) C-7alpha alkylation of the C-6 ketone derivative of E(2); (5) deprotection of the two methoxymethyl groups; (6) reprotection of the C-3 and C-6 free hydroxyls with acetyl groups; (7) removal of the C-6 ketone and the benzyl group on the side chain by catalytic hydrogenation in acetic acid. As predicted, two of the representative C-7alpha-substituted derivatives of E(2) synthesized in the present study retained strong binding affinities (close to those of E(2) and ICI-182,780) for the human ERalpha and ERbeta subtypes as determined using the radioligand-receptor binding assays.  相似文献   

16.
17.
Arachidonic acid metabolism is modulated during differentiation induced by 1alpha,25(OH)(2)D(3) in HL-60 cells. Antioxidants that affect arachidonic acid metabolism enhance this differentiation program. Ascorbate also enhances differentiation in 1alpha,25(OH)(2)D(3)-induced cells depending on the induction of cAMP. The aim of this work was to study if this cAMP rise depends on modulation of arachidonic acid metabolism by ascorbate. Cyclooxygenase inhibitors, indomethacin and aspirin, increased cAMP levels and also enhanced 1alpha,25(OH)(2)D(3)-induced differentiation in HL-60 cells. Ascorbate did not affect the release of arachidonic acid-derived metabolites but decreased the levels of TXB(2) and PGE(2), suggesting the inhibition of cyclooxygenase. On the other hand, free arachidonic acid increased both cAMP levels and differentiation in the absence or presence of 1alpha,25(OH)(2)D(3). Neither cyclooxygenase inhibitors nor ascorbate modified AA effect. Then, inhibition of cyclooxygenase activity by ascorbate could accumulate free arachidonic acid or other metabolites that increase cAMP levels and enhance differentiation in 1alpha,25(OH)(2)D(3)-induced HL-60 cells.  相似文献   

18.
19.
Vitamin D3 plays an important role in the regulation of mineral homeostasis, cell differentiation, and proliferation. However, the exact role of vitamin D3 in vascular smooth muscle cells remains unclear. In the present study, we investigated whether vitamin D3 induces vascular endothelial growth factor (VEGF) release in aortic smooth muscle A10 cells. 1,25-Dihydroxyvitamin D3 (1,25(OH)2VD3), an active form of vitamin D3, stimulated the VEGF release while 24,25-dihydroxyvitamin D3 (24,25(OH)2VD3), an inactive form of vitamin D3, had little effect on the release. The stimulatory effect of 1,25(OH)2VD3 was dose dependent in the range between 10 pM and 10 nM. 1,25(OH)2VD3 induced the phosphorylation of p38 mitogen-activated protein (MAP) kinase but 24,25(OH)2VD3 did not. PD169316 and SB203580, specific inhibitors of p38 MAP kinase, significantly reduced the 1,25(OH)2VD3-stimulated release of VEGF. On the contrary, SB202474, a negative control for p38 MAP kinase inhibitor, had little effect on the VEGF release. PD169316 attenuated the 1,25(OH)2VD3-induced phosphorylation of p38 MAP kinase. These results strongly suggest that 1,25(OH)2VD3 stimulates the release of VEGF in aortic smooth muscle cells via p38 MAP kinase activation.  相似文献   

20.
An augmented contraction and elevated thromboxane (TX) B2 release were observed, when the isolated parenchyma from Sephadex-treated rats was stimulated by 5-hydroxytryptamine (5-HT). Release of peptide leukotrienes (pLTs) was also increased by the stimuli. In the Sephadex-induced hyperresponsiveness model, DP-1904, a novel TX synthetase inhibitor, at the concentrations of 3 x 10(-7) to approximately 3 x 10(-6) M, reduced the augmented contraction. Also, indomethacin (3 x 10(-6) M), a histamine H1 antagonist and AA-2414 (10(-6) M, a TXA2 antagonist, significantly attenuated the hyperresponsiveness to 5-HT. ICI-198,615 (10(-7) M), a leukotriene receptor antagonist, partially but significantly reduced the augmented contraction. In an ex vivo study, oral DP-1904 significantly inhibited both the augmented contraction and elevated TXB2 release from Sephadex-treated rat parenchyma, but did not affect the blood eosinophilia induced by Sephadex-treatment. These results suggested that the ability to synthesize newly generated lipid mediators such as TXA2 and pLTs to exogenous 5-HT was altered upward by Sephadex injection, and so could lead to augmented contraction of established hyperresponsiveness in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号