首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
血管紧张素转化酶抑制肽的研究进展   总被引:21,自引:0,他引:21  
血管紧张素转化酶 (angiotensin I convertingenzyme ,ACE)在血压调节方面起着重要的作用 ,当其受到抑制时血压就会降低。许多合成的ACE抑制剂被广泛地应用于临床 ,但会造成多种副作用。近年来 ,对天然ACE抑制肽的研究表明 ,一些来源于蛋白酶解产生的活性肽可以对ACE起到有效的抑制作用。综述了血管紧张素转化酶的抑制肽的降压原理 ,种类和来源以及结构特点等的研究进展 ,并对其应用前景进行了展望。  相似文献   

2.
螺旋藻源血管紧张素转化酶抑制肽的纯化和鉴定   总被引:2,自引:0,他引:2  
血管紧张素转化酶(ACE)抑制剂通过影响肾素-血管紧张素系统,对减缓和抑制高血压具有重要的作用.该研究通过超滤、凝胶过滤色谱、反相高效液相色谱等方法,从钝顶螺旋藻的木瓜蛋白酶水解液中分离、纯化得到一种血管紧张素转化酶(ACE)抑制肽,并利用基质辅助激光解吸电离-飞行时间质谱(MALDI-TOF-MS)和氨基酸测序对纯化肽进行鉴定.此外,对其抑制类型和体外模拟消化环境稳定性也进行了研究.结果表明,分子质量范围为0~3000ku的酶解液ACE抑制活性最高,IC50值为(1.03±0.04)g/L.该部分酶解液通过纯化获得ACE抑制肽,IC50值为(0.0094±0.0002)g/L,相当于(27.36±0.14)μmol/L,序列经鉴定为Val-Glu-Pro.Lineweaver-Burk图和Dixon图表明该ACE抑制肽为非竞争性抑制剂,Ki值为(23.59±0.54)μmol/L.体外稳定性实验显示,该抑制肽在胃蛋白酶、胰凝乳蛋白酶、胰蛋白酶等胃肠蛋白酶的消化下能够保持良好的抑制活性,表明螺旋藻源ACE抑制肽可以用于降血压功能食品和药剂方面,具有很好的发展前景.  相似文献   

3.
研究了新型乳酪蛋白源抗高血压活性肽GAP-A的分子量与一级结构,并检测了其对体外血管紧张素转化酶(ACE)的抑制活性及体内降血压效果。结果显示:抗高血压活性肽GAP-A分子量为M2,氨基酸序列为B1-B2-B3;GAP-A在体外对ACE有很强的抑制活性,抑制率为79.6%;GAP-A对自发性高血压大鼠(spontaneously hypertensive rats,SHR)有显著的降血压作用,而对血压正常的SD大鼠的血压没有影响。  相似文献   

4.
血管紧张素转换酶的结构功能及相关抑制剂   总被引:2,自引:0,他引:2  
血管紧张素转化酶(angiotensin converting enzyme, ACE, EC 3.4.15.1)是一种位于细胞膜上, 依赖锌离子的羧二肽酶, 催化水解十肽血管紧张素I羧基末端两个氨基酸, 生成具有血管收缩作用的八肽血管紧张素II。ACE在血压调节系统renin - angiotensin system (RAS系统)中具有重要作用, 从ACE的结构功能、基因多态性及其抑制剂等方面进行了详细综述。发现体细胞ACE两个活性中心催化血管紧张素I和缓激肽的机制不同, 因此以体细胞ACE单个活性中心为靶点的研究, 将会为研制开发副作用更少, 安全性更高的ACE抑制剂提供新的途径。  相似文献   

5.
蛇毒中的降压组分—血管紧张素转化酶抑制剂   总被引:1,自引:0,他引:1  
梁宁生  汤圣希 《蛇志》1993,5(3):2-5
蛇毒中的一些多肽能够竞争性的抑制血管紧张素转化酶,起到降血压的作用,这些多肽波称为血管紧张素转化酶抑制剂(Angiotensin ConvertingEnzyme Iinhibitor——ACEI)。有关 ACEI 的研究和应用,是近年来心血管药物的一大进展,它可用于抗充血性心  相似文献   

6.
肾素-血管紧张素系统的新调节分子:ACE2   总被引:2,自引:0,他引:2  
Li YT  Cheng GF 《生理科学进展》2006,37(2):179-181
血管紧张素转化酶(angiotensin—converting enzyme,ACE)为含锌的金属蛋白酶,是肾素-血管紧张素系统(renin—angiotensin system,RAS)重要的调节分子。血管紧张素转化酶2(angiotensin—con—verting enzyme2,ACE2)是迄今发现的唯一的ACE同系物(homologue),它主要分布于睾丸、肾脏和心脏。ACE2可水解血管紧张素Ⅰ(angiotensinⅠ,AngⅠ)和血管紧张素Ⅱ(angiotensinⅡ,AngⅡ)羧基端的1个氨基酸残基,分别形成Ang1-9和有血管舒张作用的Ang1-7。ACE2的生理病理作用还不甚明了,传统的ACE抑制剂不能抑制ACE2的活性。ACE2在心血管、肾脏系统的作用可能与ACE相反.与ACE共同调节心脏、肾脏等脏器的正常功能。  相似文献   

7.
庹康秀  廖共山  雷丹青 《蛇志》2012,(4):349-351
目的利用高效液相色谱法测定可口革囊星虫酶解物中具有抑制血管紧张素转化酶(ACE)活性的活性肽。方法用HPLC测定血管紧张素转换酶抑制肽活性,在该色谱条件下,可通过测定由ACE水解马尿酰组氨酰亮氨酸后产生的马尿酸峰面积或含量得到酶解液的活性。结果酶解物在质量浓度为0.48mg/ml时对ACE的抑制率为17.62%。结论可口革囊星虫蛋白经碱性蛋白酶水解后得到的酶解物活性较高。  相似文献   

8.
用HPLC法从中药中筛选血管紧张素转化酶抑制剂   总被引:1,自引:0,他引:1  
本文发展了一种从中药中筛选血管紧张素转化酶(ACE)抑制剂的高效液相色谱法.以马尿酰-组氨酰-亮氨酸为反应底物,人体血浆中内生的ACE作为反应用酶,反应所生成的马尿酸为检测指标,未加酶抑制剂的反应为空白对照.用阳性药物卡托普利对本方法进行了验证.应用本方法对中药提取物进行了ACE抑制活性的筛选,其中地龙的ACE抑制活性最强,其IC50值为2.57 mg/mL.用HPLC法筛选中药ACEI且有很好的精密度和准确性.  相似文献   

9.
血管紧张肽转化酶2与肾素-血管紧张肽系统的研究进展   总被引:2,自引:0,他引:2  
肾素-血管紧张肽系统(RAS)在维持血压稳态、水盐平衡,及局部组织器官的正常功能等方面具有重要的作用。局部RAS的失衡将导致这些器官的疾病。血管紧张肽转化酶2(ACE2)是ACE的同源物,作为RAS的重要负调节因子,平衡血管紧张肽Ⅱ的产生,维持循环系统和局部组织中RAS的稳态。本文综述了在心血管、肺、肾、肝等器官的多种急、慢性疾病患者或动物模型中,RAS与ACE2所发挥的重要作用。  相似文献   

10.
人源血管紧张素转化酶-C结构域在毕赤酵母中的表达   总被引:1,自引:0,他引:1  
血管紧张素转化酶 (ACE,EC3.4.15.1) 在调节血压方面具有重要作用,研究证实,ACE-C结构域是体内使血管紧张素I (AngI) 分解的主要活性位点。PCR扩增ACE-C结构域基因片段,克隆至分泌表达载体pPIC9K,转化毕赤酵母GS115,阳性克隆再次电转,用G418筛选高拷贝的酵母菌落进行表达条件优化,获得0.5 g/L的蛋白表达量及7.178 U/mL的酶活力。经Ni+亲和层析纯化,获得纯度大于97%的目的蛋白。Captopril对酶的抑制试验证明ACE-C结构域可望成为新一代抗高血压药物ACE抑制剂筛选的理想酶靶。  相似文献   

11.
Angiotensin converting enzyme (ACE) is the dipeptidyl-carboxypeptidase of the renin-angiotensin system involved in the control of blood pressure and hydromineral metabolism. It converts angiotensin I to angiotensin II, the biologically active octapeptide. Angiotensin converting enzyme-like activity has been demonstrated in a wide range of vertebrates. The presence of ACE was investigated in tissues of two amphibian species, the frog Rana esculenta and the toad Xenopus laevis. ACE activities were determined by specific substrate hydrolysis in gut, gonads, lung, kidney, heart, liver, skin, erythrocytes, and muscle homogenates and plasma by means of high performance liquid chromatography. Significant ACE activity was found in gut, gonads, lung and kidney, while that in heart, liver, skin, erythrocytes, muscle, and plasma was very low. Testis of toad contained the highest ACE activity, while that in erythrocytes of male and female frogs was notable.  相似文献   

12.
International Journal of Peptide Research and Therapeutics - Angiotensin converting enzyme (ACE) and reactive oxygen species are crucial targets for nutritional management of hypertension. The aim...  相似文献   

13.
Angiotensin I (AI) and angiotensin II/III (AII/III) were detected by radioimmunoassay in homogenates of isolated liver granulomas from mice infected for 8 wk with Schistosoma mansoni. Angiotensin I converting enzyme (ACE) activity, which could be completely inhibited by captopril, a specific ACE inhibitor, was also present as determined by radioassay. Spontaneous angiotensin I-generating activity was detected in homogenates that received supplemental angiotensinogen (protein renin substrate). This activity was partly inhibited by pepstatin, an acid protease inhibitor, indicating the presence of angiotensinogenase(s). Trypsinization of homogenates resulted in some AI generation, which suggests that homogenates had AI precursor. Treatment of infected mice with MK421, another specific ACE inhibitor, decreased granuloma ACE activity and AII content and size. AII, and to a lesser extent AIII, inhibited mouse peritoneal macrophage migration in an in vitro assay. These data support the contention that components of the angiotensin system are in the granuloma and may serve a function in regulation of the inflammation.  相似文献   

14.
In the present research, chitooligosaccharides (COS) were carboxylated with -COCH(2)CH(2)COO(-) groups to obtain specific structural features similar to Captopril. Angiotensin I converting enzyme (ACE) inhibitory activity of carboxylated COS was studied and observed to enhance its activity with increased substitution degree. Further, Lineweaver-Burk plot analysis revealed that inhibition was competitive via obligatory binding site of the enzyme. This was accompanied with substitution of positively charged quarternized amino groups to COS with different substitution degrees, in which negative impact on ACE inhibition was observed.  相似文献   

15.
Angiotensin converting enzyme (ACE) plays an essential role in the renin–angiotensin system. It converts angiotensin I to angiotensin II and inactivates bradykinin and tachykinins. Numerous studies have been published investigating associations of the ACE gene I/D polymorphism with various pathophysiological conditions. We examined the prevalence of the ACE I/D polymorphism in a sample of healthy volunteers from western Turkey, including 1063 healthy Turkish controls. Analysis of the ACE I/D gene polymorphisms by polymerase chain reaction found frequencies of 16.1% for the II genotype, 47.7% for the ID genotype, and 36.2% for the DD genotype. The allele frequency was 39.9% for the I alleles and 60.1% for the D allele. This study demonstrates that the allele and genotype frequency values for the Turkish population are similar to previously published frequencies for Caucasian populations.  相似文献   

16.
Angiotensin I converting enzyme (ACE) plays a major role in blood pressure regulation, catalyzing the conversion of angiotensin I to the vasoconstrictor angiotensin II. In this report we describe a two-step affinity chromatography method for preparative purification of ACE from pig lung using Concanavalin-A Sepharose 4B and affinity chromatography on Lisinopril Sepharose 6B. The same purification scheme was used to obtain Cobalt-ACE, where zinc ion located at the active site is replaced by cobalt. Cobalt-ACE visible spectrum shows a characteristic broad peak from 500 to 600 nm. The shape and maximum absorptivity of this peak changes in presence of ACE inhibitors that bind at the catalytic site.  相似文献   

17.
1. Angiotensin I hydrolases, Mr 140,000 and Mr 70,000 were separated by gel filtration from Tris-HCl buffer extract of hepatic granulomas developed in mice with schistosomiasis. Two enzymes had different substrate specificity. 2. Mr 140,000 hydrolase activity was inhibited by captopril as reported for angiotensin converting enzyme (ACE), while that of Mr 70,000 hydrolase activity was inhibited by potato carboxypeptidase inhibitor. 3. An intermediary, des-Leu10-angiotensin I and then angiotensin II were formed from angiotensin I by Mr 70,000 hydrolase. 4. The findings suggest that Mr 70,000 enzyme is tissue carboxypeptidase A, and it generates angiotensin II in granulomatous inflammation as does ACE.  相似文献   

18.
Angiotensin converting enzyme (ACE) of vascular endothelial cells is suggested to control vascular wall tonus through the conversion of angiotensin I (AI) to angiotensin II (AII) and the degradation of bradykinin. To obtain more insight into the pathophysiological significance of ACE of vascular endothelial cells, we studied the regulation of ACE produced by cultured human umbilical vein endothelial cells (EC). Phorbol 12-myristate 13-acetate (PMA) increased the cellular and medium ACE activity, accompanied by a marked morphological change in EC. N'-O'-dibutylyladenosine 3';5'-cyclic monophosphate (db-cAMP) increased only the cellular ACE activity and not the medium ACE activity. The effect of isoproterenol with 0.1mM theophylline mimicked that of db-cAMP. These findings suggest that PMA and cAMP-related agents participate in the control of vascular wall tonus through the positive regulation of ACE produced by vascular endothelial cells.  相似文献   

19.
Angiotensin-converting enzyme-2 (ACE2) is a homologue of angiotensin-I converting enzyme (ACE), the central enzyme of the renin-angiotensin system (RAS). ACE2 is abundant in human kidney and heart and has been implicated in renal and cardiac function through its ability to hydrolyze Angiotensin II. Although ACE2 and ACE are both type I integral membrane proteins and share 61% protein sequence similarity, they display distinct modes of enzyme action and tissue distribution. This study characterized ACE2 at the plasma membrane of non-polarized Chinese hamster ovary (CHO) cells and polarized Madin-Darby canine kidney (MDCKII) epithelial cells and compared its cellular localization to its related enzyme, ACE, using indirect immunofluorescence, cell-surface biotinylation, Western analysis, and enzyme activity assays. This study shows ACE2 and ACE are both cell-surface proteins distributed evenly to detergent-soluble regions of the plasma membrane in CHO cells. However, in polarized MDCKII cells under steady-state conditions the two enzymes are differentially expressed. ACE2 is localized predominantly to the apical surface ( approximately 92%) where it is proteolytically cleaved within its ectodomain to release a soluble form. Comparatively, ACE is present on both the apical ( approximately 55%) and basolateral membranes ( approximately 45%) where it is also secreted but differentially; the ectodomain cleavage of ACE is 2.5-fold greater from the apical surface than the basolateral surface. These studies suggest that both ACE2 and ACE are ectoenzymes that have distinct localization and secretion patterns that determine their role on the cell surface in kidney epithelium and in urine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号