首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human Ca(2+)-calmodulin (CaM) dependent protein kinase I (CaMKI) encodes a 370 amino acid protein with a calculated M(r) of 41,337. The 1.5 kb CaMKI mRNA is expressed in many different human tissues and is the product of a single gene located on human chromosome 3. CaMKI 1-306, was unable to bind Ca(2+)-CaM and was completely inactive thereby defining an essential component of the CaM-binding domain to residues C-terminal to 306. CaMKI 1-294 did not bind CaM but was fully active in the absence of Ca(2+)-CaM, indicating that residues 295-306 are sufficient to maintain CaMKI in an auto-inhibited state. CaMKI was phosphorylated on Thr177 and its activity enhanced approximately 25-fold by CaMKI kinase in a Ca(2+)-CaM dependent manner. Replacement of Thr177 with Ala or Asp prevented both phosphorylation and activation by CaMKI kinase and the latter replacement also led to partial activation in the absence of CaMKI kinase. Whereas CaMKI 1-306 was unresponsive to CaMKI kinase, the 1-294 mutant was phosphorylated and activated by CaMKI kinase in both the presence and absence of Ca(2+)-CaM although at a faster rate in its presence. These results indicate that the auto-inhibitory domain in CaMKI gates, in a Ca(2+)-CaM dependent fashion, accessibility of both substrates to the substrate binding cleft and CaMKI kinase to Thr177. Additionally, CaMKI kinase responds directly to Ca(2+)-CaM with increased activity.  相似文献   

2.
We used nuclear magnetic resonance data to determine ensembles of conformations representing the structure and dynamics of calmodulin (CaM) in the calcium-bound state (Ca(2+)-CaM) and in the state bound to myosin light chain kinase (CaM-MLCK). These ensembles reveal that the Ca(2+)-CaM state includes a range of structures similar to those present when CaM is bound to MLCK. Detailed analysis of the ensembles demonstrates that correlated motions within the Ca(2+)-CaM state direct the structural fluctuations toward complex-like substates. This phenomenon enables initial ligation of MLCK at the C-terminal domain of CaM and induces a population shift among the substates accessible to the N-terminal domain, thus giving rise to the cooperativity associated with binding. Based on these results and the combination of modern free energy landscape theory with classical allostery models, we suggest that a coupled equilibrium shift mechanism controls the efficient binding of CaM to a wide range of ligands.  相似文献   

3.
Structural studies of the calmodulin-dependent protein kinase I have shown how the calmodulin-binding domain and autoinhibitory domain interact with the active sites of the enzyme. In this work, we have studied the interaction in solution of two synthetic short and long (22- and 37-residue) peptides representing the binding and autoinhibitory domains of CaMKI with Ca2+-CaM using CD, NMR, and EPR spectroscopy. Both peptides adopt alpha-helical structure when bound to Ca2+-CaM, as detected by CD spectroscopy. Cadmium-113 NMR showed that both peptides induced cooperativity in metal ion binding between the two lobes of the protein. To directly observe the effect of the peptides upon CaM in solution, biosynthetically isotope labeled [methyl-13C-Met]CaM was prepared and studied by 1H, 13C NMR. The relaxation effects of two nitroxide spin-labeled derivatives of the short peptide showed the N-terminal portion of the CaM-binding domain interacting with the C-lobe of CaM, while the C-lobe of the peptide binds to the N-lobe of CaM. Our results are consistent with Trp303 and Met316 acting as the anchoring residues for the C- and N-lobes of CaM, respectively. The NMR spectra of the long peptide showed further differences, suggesting that additional interactions may exist between the autoinhibitory domain and CaM.  相似文献   

4.
The activation of six target enzymes by calmodulin phosphorylated on Tyr99 (PCaM) and the binding affinities of their respective calmodulin binding domains were tested. The six enzymes were: myosin light chain kinase (MLCK), 3'-5'-cyclic nucleotide phosphodiesterase (PDE), plasma membrane (PM) Ca2+-ATPase, Ca2+-CaM dependent protein phosphatase 2B (calcineurin), neuronal nitric oxide synthase (NOS) and type II Ca2+-calmodulin dependent protein kinase (CaM kinase II). In general, tyrosine phosphorylation led to an increase in the activatory properties of calmodulin (CaM). For plasma membrane (PM) Ca2+-ATPase, PDE and CaM kinase II, the primary effect was a decrease in the concentration at which half maximal velocity was attained (Kact). In contrast, for calcineurin and NOS phosphorylation of CaM significantly increased the Vmax. For MLCK, however, neither Vmax nor Kact were affected by tyrosine phosphorylation. Direct determination by fluorescence techniques of the dissociation constants with synthetic peptides corresponding to the CaM-binding domain of the six analysed enzymes revealed that phosphorylation of Tyr99 on CaM generally increased its affinity for the peptides.  相似文献   

5.
Calmodulin (CaM)-dependent myosin light chain kinase (MLCK) plays a key role in activation of smooth muscle contraction. A soybean isoform of CaM, SCaM-4 (77% identical to human CaM) fails to activate MLCK, whereas SCaM-1 (90.5% identical to human CaM) is as effective as CaM. We exploited this difference to gain insights into the structural requirements in CaM for activation of MLCK. A chimera (domain I of SCaM-4 and domains II-IV of SCaM-1) behaved like SCaM4, and analysis of site-specific mutants of SCaM-1 indicated that K30E and G40D mutations were responsible for the reduction in activation of MLCK. Competition experiments showed that SCaM-4 binds to the CaM-binding site of MLCK with high affinity. Replacement of CaM in skinned smooth muscle by exogenous CaM or SCaM-1, but not SCaM-4, restored Ca(2+)-dependent contraction. K30E/M36I/G40D SCaM-1 was a poor activator of contraction, but site-specific mutants, K30E, M36I and G40D, each restored Ca(2+)-induced contraction to CaM-depleted skinned smooth muscle, consistent with their capacity to activate MLCK. Interpretation of these results in light of the high-resolution structures of (Ca(2+))(4)-CaM, free and complexed with the CaM-binding domain of MLCK, indicates that a surface domain containing Lys(30) and Gly(40) and residues from the C-terminal domain is created upon binding to MLCK, formation of which is required for activation of MLCK. Interactions between this activation domain and a region of MLCK distinct from the known CaM-binding domain are required for removal of the autoinhibitory domain from the active site, i.e., activation of MLCK, or this domain may be required to stabilize the conformation of (Ca(2+))(4)-CaM necessary for MLCK activation.  相似文献   

6.
Smooth muscle contraction is activated by phosphorylation of the 20-kDa light chains of myosin catalyzed by Ca(2+)/calmodulin (CaM)-dependent myosin light chain kinase (MLCK). According to popular current theory, the CaM involved in MLCK regulation is Ca(2+)-free and dissociated from the kinase at resting cytosolic free Ca(2+) concentration ([Ca(2+)](i)). An increase in [Ca(2+)](i) saturates the four Ca(2+)-binding sites of CaM, which then binds to and activates actin-bound MLCK. The results of this study indicate that this theory requires revision. Sufficient CaM was retained after skinning (demembranation) of rat tail arterial smooth muscle in the presence of EGTA to support Ca(2+)-evoked contraction, as observed previously with other smooth muscle tissues. This tightly bound CaM was released by the CaM antagonist trifluoperazine (TFP) in the presence of Ca(2+). Following removal of the (Ca(2+))(4)-CaM-TFP(2) complex, Ca(2+) no longer induced contraction. The addition of exogenous CaM to TFP-treated tissue at a [Ca(2+)] subthreshold for contraction or even in the absence of Ca(2+) (presence of 5 mm EGTA), followed by washout of unbound CaM, restored Ca(2+)-induced contraction; this required MLCK activation, since it was blocked by the MLCK inhibitor ML-9. The data suggest, therefore, that a specific pool of cellular CaM, tightly bound to myofilaments at resting [Ca(2+)](i), or even in the absence of Ca(2+), is responsible for activation of contraction following a local increase in [Ca(2+)]. This mechanism would allow for localized changes in [Ca(2+)] in regions of the cell distant from the myofilaments to regulate distinct Ca(2+)-dependent processes without triggering a contractile response. Immobilized CaM, therefore, resembles troponin C, the Ca(2+)-binding regulatory protein of striated muscle, which is also bound to the thin filament in a Ca(2+)-independent manner.  相似文献   

7.
Ca(2+)-saturated calmodulin (CaM) directly associates with and activates CaM-dependent protein kinase I (CaMKI) through interactions with a short sequence in its regulatory domain. Using heteronuclear NMR (13)C-(15)N-(1)H correlation experiments, the backbone assignments were determined for CaM bound to a peptide (CaMKIp) corresponding to the CaM-binding sequence of CaMKI. A comparison of chemical shifts for free CaM with those of the CaM.CaMKIp complex indicate large differences throughout the CaM sequence. Using NMR techniques optimized for large proteins, backbone resonance assignments were also determined for CaM bound to the intact CaMKI enzyme. NMR spectra of CaM bound to either the CaMKI enzyme or peptide are virtually identical, indicating that calmodulin is structurally indistinguishable when complexed to the intact kinase or the peptide CaM-binding domain. Chemical shifts of CaM bound to a peptide (smMLCKp) corresponding to the calmodulin-binding domain of smooth muscle myosin light chain kinase are also compared with the CaM.CaMKI complexes. Chemical shifts can differentiate one complex from another, as well as bound versus free states of CaM. In this context, the observed similarity between CaM.CaMKI enzyme and peptide complexes is striking, indicating that the peptide is an excellent mimetic for interaction of calmodulin with the CaMKI enzyme.  相似文献   

8.
Dynamic light scattering (DLS) has been used to assess the influence of eleven different synthetic peptides, comprising the calmodulin (CaM)-binding domains of various CaM-binding proteins, on the structure of apo-CaM (calcium-free) and Ca(2+)-CaM. Peptides that bind CaM in a 1:1 and 2:1 peptide-to-protein ratio were studied, as were solutions of CaM bound simultaneously to two different peptides. DLS was also used to investigate the effect of Ca(2+) on the N- and C-terminal CaM fragments TR1C and TR2C, and to determine whether the two lobes of CaM interact in solution. The results obtained in this study were comparable to similar solution studies performed for some of these peptides using small-angle x-ray scattering. The addition of Ca(2+) to apo-CaM increased the hydrodynamic radius from 2.5 to 3.0 nm. The peptides studied induced a collapse of the elongated Ca(2+)-CaM structure to a more globular form, decreasing its hydrodynamic radius by an average of 25%. None of the peptides had an effect on the conformation of apo-CaM, indicating that either most of the peptides did not interact with apo-CaM, or if bound, they did not cause a large conformational change. The hydrodynamic radii of TR1C and TR2C CaM fragments were not significantly affected by the addition of Ca(2+). The addition of a target peptide and Ca(2+) to the two fragments of CaM, suggest that a globular complex is forming, as has been seen in nuclear magnetic resonance solution studies. This work demonstrates that dynamic light scattering is an inexpensive and efficient technique for assessing large-scale conformational changes that take place in calmodulin and related proteins upon binding of Ca(2+) ions and peptides, and provides a qualitative picture of how this occurs. This work also illustrates that DLS provides a rapid screening method for identifying new CaM targets.  相似文献   

9.
Myosin II regulatory light chain (RLC) phosphorylation by Ca(2+)/calmodulin (CaM)-dependent myosin light chain kinase (MLCK) is implicated in many cellular actin cytoskeletal functions. We examined MLCK activation quantitatively with a fluorescent biosensor MLCK where Ca(2+)-dependent increases in kinase activity were coincident with decreases in fluorescence resonance energy transfer (FRET) in vitro. In cells stably transfected with CaM sensor MLCK, increasing [Ca(2+)](i) increased MLCK activation and RLC phosphorylation coincidently. There was no evidence for CaM binding but not activating MLCK at low [Ca(2+)](i). At saturating [Ca(2+)](i) MLCK was not fully activated probably due to limited availability of cellular Ca(2+)/CaM.  相似文献   

10.
Ca(2+)-activated calmodulin (CaM) regulates many target enzymes by docking to an amphiphilic target helix of variable sequence. This study compares the equilibrium Ca2+ binding and Ca2+ dissociation kinetics of CaM complexed to target peptides derived from five different CaM-regulated proteins: phosphorylase kinase. CaM-dependent protein kinase II, skeletal and smooth myosin light chain kinases, and the plasma membrane Ca(2+)-ATPase. The results reveal that different target peptides can tune the Ca2+ binding affinities and kinetics of the two CaM domains over a wide range of Ca2+ concentrations and time scales. The five peptides increase the Ca2+ affinity of the N-terminal regulatory domain from 14- to 350-fold and slow its Ca2+ dissociation kinetics from 60- to 140-fold. Smaller effects are observed for the C-terminal domain, where peptides increase the apparent Ca2+ affinity 8- to 100-fold and slow dissociation kinetics 13- to 132-fold. In full-length skeletal myosin light chain kinase the inter-molecular tuning provided by the isolated target peptide is further modulated by other tuning interactions, resulting in a CaM-protein complex that has a 10-fold lower Ca2+ affinity than the analogous CaM-peptide complex. Unlike the CaM-peptide complexes, Ca2+ dissociation from the protein complex follows monoexponential kinetics in which all four Ca2+ ions dissociate at a rate comparable to the slow rate observed in the peptide complex. The two Ca2+ ions bound to the CaM N-terminal domain are substantially occluded in the CaM-protein complex. Overall, the results indicate that the cellular activation of myosin light chain kinase is likely to be triggered by the binding of free Ca2(2+)-CaM or Ca4(2+)-CaM after a Ca2+ signal has begun and that inactivation of the complex is initiated by a single rate-limiting event, which is proposed to be either the direct dissociation of Ca2+ ions from the bound C-terminal domain or the dissociation of Ca2+ loaded C-terminal domain from skMLCK. The observed target-induced variations in Ca2+ affinities and dissociation rates could serve to tune CaM activation and inactivation for different cellular pathways, and also must counterbalance the variable energetic costs of driving the activating conformational change in different target enzymes.  相似文献   

11.
Several crystal and NMR structures of calmodulin (CaM) in complex with fragments derived from CaM-regulated proteins have been reported recently and reveal novel ways for CaM to interact with its targets. This review will discuss and compare features of the interaction between CaM and its target domains derived from the plasma membrane Ca2+-pump, the Ca2+-activated K+-channel, the Ca2+/CaM-dependent kinase kinase and the anthrax exotoxin. Unexpected aspects of CaM/target interaction observed in these complexes include: (a) binding of the Ca2+-pump domain to only the C-terminal part of CaM (b) dimer formation with fragments of the K+-channel (c) insertion of CaM between two domains of the anthrax exotoxin (d) binding of Ca2+ ions to only one EF-hand pair and (e) binding of CaM in an extended conformation to some of its targets. The mode of interaction between CaM and these targets differs from binding conformations previously observed between CaM and peptides derived from myosin light chain kinase (MLCK) and CaM-dependent kinase IIalpha (CaMKIIalpha). In the latter complexes, CaM engulfs the CaM-binding domain peptide with its two Ca2+-binding lobes and forms a compact, ellipsoid-like complex. In the early 1990s, a model for the activation of CaM-regulated proteins was developed based on this observation and postulated activation through the displacement of an autoinhibitory or regulatory domain from the target protein upon binding of CaM. The novel structures of CaM-target complexes discussed here demonstrate that this mechanism of activation may be less general than previously believed and seems to be not valid for the anthrax exotoxin, the CaM-regulated K+-channel and possibly also not for the Ca2+-pump.  相似文献   

12.
Edema factor (EF) and CyaA are calmodulin (CaM)-activated adenylyl cyclase exotoxins involved in the pathogenesis of anthrax and whooping cough, respectively. Using spectroscopic, enzyme kinetic and surface plasmon resonance spectroscopy analyses, we show that low Ca(2+) concentrations increase the affinity of CaM for EF and CyaA causing their activation, but higher Ca(2+) concentrations directly inhibit catalysis. Both events occur in a physiologically relevant range of Ca(2+) concentrations. Despite the similarity in Ca(2+) sensitivity, EF and CyaA have substantial differences in CaM binding and activation. CyaA has 100-fold higher affinity for CaM than EF. CaM has N- and C-terminal globular domains, each binding two Ca(2+) ions. CyaA can be fully activated by CaM mutants with one defective C-terminal Ca(2+)-binding site or by either terminal domain of CaM while EF cannot. EF consists of a catalytic core and a helical domain, and both are required for CaM activation of EF. Mutations that decrease the interaction of the helical domain with the catalytic core create an enzyme with higher sensitivity to Ca(2+)-CaM activation. However, CyaA is fully activated by CaM without the domain corresponding to the helical domain of EF.  相似文献   

13.
In heart and skeletal muscle an S100 protein family member, S100A1, binds to the ryanodine receptor (RyR) and promotes Ca(2+) release. Using competition binding assays, we further characterized this system in skeletal muscle and showed that Ca(2+)-S100A1 competes with Ca(2+)-calmodulin (CaM) for the same binding site on RyR1. In addition, the NMR structure was determined for Ca(2+)-S100A1 bound to a peptide derived from this CaM/S100A1 binding domain, a region conserved in RyR1 and RyR2 and termed RyRP12 (residues 3616-3627 in human RyR1). Examination of the S100A1-RyRP12 complex revealed residues of the helical RyRP12 peptide (Lys-3616, Trp-3620, Lys-3622, Leu-3623, Leu-3624, and Lys-3626) that are involved in favorable hydrophobic and electrostatic interactions with Ca(2+)-S100A1. These same residues were shown previously to be important for RyR1 binding to Ca(2+)-CaM. A model for regulating muscle contraction is presented in which Ca(2+)-S100A1 and Ca(2+)-CaM compete directly for the same binding site on the ryanodine receptor.  相似文献   

14.
The calmodulin (CaM)-binding domain of isoform 4b of the plasma membrane Ca(2+) -ATPase (PMCA) pump is represented by peptide C28. CaM binds to either PMCA or C28 by a mechanism in which the primary anchor residue Trp-1093 binds to the C-terminal lobe of the extended CaM molecule, followed by collapse of CaM with the N-terminal lobe binding to the secondary anchor Phe-1110 (Juranic, N., Atanasova, E., Filoteo, A. G., Macura, S., Prendergast, F. G., Penniston, J. T., and Strehler, E. E. (2010) J. Biol. Chem. 285, 4015-4024). This is a relatively rapid reaction, with an apparent half-time of ~1 s. The dissociation of CaM from PMCA4b or C28 is much slower, with an overall half-time of ~10 min. Using targeted molecular dynamics, we now show that dissociation of Ca(2+)-CaM from C28 may occur by a pathway in which Trp-1093, although deeply embedded in a pocket in the C-terminal lobe of CaM, leaves first. The dissociation begins by relatively rapid release of Trp-1093, followed by very slow release of Phe-1110, removal of C28, and return of CaM to its conformation in the free state. Fluorescence measurements and molecular dynamics calculations concur in showing that this alternative path of release of the PMCA4b CaM-binding domain is quite different from that of binding. The intermediate of dissociation with exposed Trp-1093 has a long lifetime (minutes) and may keep the PMCA primed for activation.  相似文献   

15.
Calmodulin (CaM) is an EF-hand protein composed of two calcium (Ca(2+))-binding EF-hand motifs in its N-domain (EF-1 and EF-2) and two in its C-domain (EF-3 and EF-4). In this study, we examined the structure, dynamics, and Ca(2+)-binding properties of a fragment of CaM containing only EF-2 and EF-3 and the intervening linker sequence (CaM2/3). Based on NMR spectroscopic analyses, Ca(2+)-free CaM2/3 is predominantly unfolded, but upon binding Ca(2+), adopts a monomeric structure composed of two EF-hand motifs bridged by a short antiparallel beta-sheet. Despite having an "even-odd" pairing of EF-hands, the tertiary structure of CaM2/3 is similar to both the "odd-even" paired N- and C-domains of Ca(2+)-ligated CaM, with the conformationally flexible linker sequence adopting the role of an inter-EF-hand loop. However, unlike either CaM domain, CaM2/3 exhibits stepwise Ca(2+) binding with a K (d1) = 30 +/- 5 microM to EF-3, and a K (d2) > 1000 microM to EF-2. Binding of the first equivalent of Ca(2+) induces the cooperative folding of CaM2/3. In the case of native CaM, stacking interactions between four conserved aromatic residues help to hold the first and fourth helices of each EF-hand domain together, while the loop between EF-hands covalently tethers the second and third helices. In contrast, these aromatic residues lie along the second and third helices of CaM2/3, and thus are positioned adjacent to the loop between its "even-odd" paired EF-hands. This nonnative hydrophobic core packing may contribute to the weak Ca(2+) affinity exhibited by EF-2 in the context of CaM2/3.  相似文献   

16.
Calcium- and integrin-binding protein (CIB) is a small EF-hand calcium-binding protein that is involved in hemostasis through its interaction with the alphaIIb cytoplasmic domain of integrinalphaIIbbeta(3). We have previously demonstrated that CIB lacks structural stability in the absence of divalent metal ions but that it acquires a well-folded conformation upon addition of Ca(2+) or Mg(2+). Here, we have used fluorescence spectroscopy, NMR spectroscopy, and isothermal titration calorimetry to demonstrate that both Ca(2+)-bound CIB (Ca(2+)-CIB) and the Mg(2+)-bound protein (Mg(2+)-CIB) bind with high affinity and through a similar mechanism to alphaIIb cytoplasmic domain peptides, but that metal-free CIB (apo-CIB) binds in a different manner. The interactions are thermodynamically distinct for Ca(2+)-CIB and Mg(2+)-CIB, but involve hydrophobic interactions in each case. Since the Mg(2+) concentration inside the cell is sufficient to saturate CIB at all times, our results imply that CIB would be capable of binding to the alphaIIb cytoplasmic domain independent of an intracellular Ca(2+) stimulus in vivo. This raises the question of whether CIB can act as a Ca(2+) sensor in alphaIIbbeta(3) signaling or if other regulatory mechanisms such as fibrinogen-induced conformational changes in alphaIIbbeta(3), post-translational modifications, or the binding of other accessory proteins mediate the interactions between CIB and alphaIIbbeta(3). Differences in NMR spectra do suggest, however, that Ca(2+)-binding to the Mg(2+)- CIB-alphaIIb complex induces subtle structural changes that could further modulate the activity of alphaIIbbeta(3).  相似文献   

17.
Thermodynamic parameters of interactions of calcium-saturated calmodulin (Ca(2+)-CaM) with melittin, C-terminal fragment of melittin, or peptides derived from the CaM binding regions of constitutive (cerebellar) nitric-oxide synthase, cyclic nucleotide phosphodiesterase, calmodulin-dependent protein kinase I, and caldesmon (CaD-A, CaD-A*) have been measured using isothermal titration calorimetry. The peptides could be separated into two groups according to the change in heat capacity upon complex formation, DeltaC(p). The calmodulin-dependent protein kinase I, constitutive (cerebellar) nitric-oxide synthase, and melittin peptides have DeltaC(p) values clustered around -3.2 kJ.mol(-1).K(-1), consistent with the formation of a globular CaM-peptide complex in the canonical fashion. In contrast, phosphodiesterase, the C-terminal fragment of melittin, CaD-A, and CaD-A* have DeltaC(p) values clustered around -1.6 kJ.mol(-1).K(-1), indicative of interactions between the peptide and mostly one lobe of CaM, probably the C-terminal lobe. It is also shown that the interactions for different peptides with Ca(2+)-CaM can be either enthalpically or entropically driven. The difference in the energetics of peptide/Ca(2+)-CaM complex formation appears to be due to the coupling of peptide/Ca(2+)-CaM complex formation to the coil-helix transition of the peptide. The binding of a helical peptide to Ca(2+)-CaM is dominated by favorable entropic effects, which are probably mostly due to hydrophobic interactions between nonpolar groups of the peptide and Ca(2+)-CaM. Applications of these findings to the design of potential CaM inhibitors are discussed.  相似文献   

18.
Calmodulin (CaM) is an intracellular cooperative calcium-binding protein essential for activating many diverse target proteins. Biophysical studies of the calcium-induced conformational changes of CaM disagree on the structure of the linker between domains and possible orientations of the domains. Molecular dynamics studies have predicted that Ca4(2+)CaM is in equilibrium between an extended and compact conformation and that Arg74 and Arg90 are critical to the compaction process. In this study gel permeation chromatography was used to resolve calcium-induced changes in the hydrated shape of CaM at pH 7.4 and 5.6. Results showed that mutation of Arg 74 to Ala increases the R(s) as predicted; however, the average separation of domains in Ca4(2+)-CaM was larger than predicted by molecular dynamics. Mutation of Arg90 to Ala or Gly affected the dimensions of apo-CaM more than those of Ca4(2+)-CaM. Calcium binding to CaM and mutants (R74A-CaM, R90A-CaM, and R90G-CaM) lowered the Stokes radius (R(s)). Differences between R(s) values reported here and Rg values determined by small-angle x-ray scattering studies illustrate the importance of using multiple techniques to explore the solution properties of a flexible protein such as CaM.  相似文献   

19.
The calcium-regulatory protein calmodulin (CaM) can bind with high affinity to a region in the cytoplasmic C-terminal tail of glycoprotein 41 of simian immunodeficiency virus (SIV). The amino acid sequence of this region is (1)DLWETLRRGGRW(13)ILAIPRRIRQGLELT(28)L. In this work, we have used near- and far-uv CD, and fluorescence spectroscopy, to study the orientation of this peptide with respect to CaM. We have also studied biosynthetically carbon-13 methyl-Met calmodulin by (1)H, (13)C heteronuclear multiple quantum coherence NMR spectroscopy. Two Trp-substituted peptides, SIV-W3F and SIV-W12F, were utilized in addition to the intact SIV peptide. Two half-peptides, SIV-N (residues 1-13) and SIV-C (residues 13-28) were also synthesized and studied. The spectroscopic results obtained with the SIV-W3F and SIV-W12F peptides were generally consistent with those obtained for the native SIV peptide. Like the native peptide, these two analogues bind with an alpha-helical structure as shown by CD spectroscopy. Fluorescence intermolecular quenching studies suggested binding of Trp3 to the C-lobe of CaM. Our NMR results show that SIV-N can bind to both lobes of calcium-CaM, and that it strongly favors binding to the C-terminal hydrophobic region of CaM. The SIV-C peptide binds with relatively low affinity to both halves of the protein. These data reveal that the intact SIV peptide binds with its N-terminal region to the carboxy-terminal region of CaM, and this interaction initiates the binding of the peptide. This orientation is similar to that of most other CaM-binding domains.  相似文献   

20.
The interactions between the abundant methionine residues of the calcium regulatory protein calmodulin (CaM) and several of its binding targets were probed using fluorescence spectroscopy. Tryptophan steady-state fluorescence from peptides encompassing the CaM-binding domains of the target proteins myosin light chain kinase (MLCK), cyclic nucleotide phosphodiesterase (PDE) and caldesmon site A and B (CaD A, CaD B), and the model peptide melittin showed Ca(2+)-dependent blue-shifts in their maximum emission wavelength when complexed with wild-type CaM. Blue-shifts were also observed for complexes in which the CaM methionine residues were replaced by selenomethionine, norleucine and ethionine, and when a quadruple methionine to leucine C-terminal mutant of CaM was studied. Quenching of the tryptophan fluorescence intensity was observed with selenomethionine, but not with norleucine or ethionine substituted protein. Fluorescence quenching studies with added potassium iodide (KI) demonstrate that the non-native proteins limit the solvent accessibility of the Trp in the MLCK peptide to levels close to that of the wild-type CaM-MLCK interaction. Our results show that the methionine residues from CaM are highly sensitive to the target peptide in question, confirming the importance of their role in binding interactions. In addition, we provide evidence that the nature of binding in the CaM-CaD B complex is unique compared with the other complexes studied, as the Trp residue of this peptide remains partially solvent exposed upon binding to CaM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号