首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have combined Fourier transform infrared/temperature derivative (FTIR-TDS) spectroscopy at cryogenic temperatures and flash photolysis at ambient temperature to examine the effects of polar and bulky amino acid replacements of the highly conserved distal valine 68 in sperm whale myoglobin. In FTIR-TDS experiments, the CO ligand can serve as an internal voltmeter that monitors the local electrostatic field not only at the active site but also at intermediate ligand docking sites. Mutations of residue 68 alter size, shape, and electric field of the distal pocket, especially in the vicinity of the primary docking site (state B). As a consequence, the infrared bands associated with the ligand at site B are shifted. The effect is most pronounced in mutants with large aromatic side chains. Polar side chains (threonine or serine) have only little effect on the peak frequencies. Ligands that migrate toward more remote sites C and D give rise to IR bands with altered frequencies. TDS experiments separate the photoproducts according to their recombination temperatures. The rates and extent of ligand migration among internal cavities at cryogenic temperatures can be used to interpret geminate and bimolecular O2 and CO recombination at room temperature. The kinetics of geminate recombination can be explained by steric arguments alone, whereas both the polarity and size of the position 68 side chain play major roles in regulating bimolecular ligand binding from the solvent.  相似文献   

2.
By using Fourier transform infrared photolysis difference spectroscopy combined with temperature derivative spectroscopy at cryogenic temperatures, we have measured infrared spectra of the stretching absorption on nitric oxide (NO) in the heme-bound and photodissociated states of ferrous and ferric nitrosyl myoglobin (MbNO) and a few site-specific Mb mutants. The NO absorption was utilized as a sensitive local probe of ligand interactions with active-site residues and movements within the protein. By comparison with results obtained in previous spectroscopic and structural studies of carbonmonoxy myoglobin (MbCO), the MbNO data were interpreted in structural terms. In the NO-bound state, conformational heterogeneity was inferred from the appearance of multiple bands, arising from different electrostatic interactions with active site residues, most importantly, His-64. In ferrous MbNO, a primary photoproduct site similar to site B of MbCO was found, as indicated by a characteristic NO stretching spectrum. In ferric MbNO, the His-64 side chain appears to interfere with trapping of NO in this site; only a very weak photoproduct spectrum was observed in Mb variants in which His-64 was present. Upon extended illumination, the photoproduct spectrum changed in a characteristic way, indicating that NO readily migrates to a secondary docking site C, the Xe4 cavity, in which the ligand performs librational motions on the picosecond time scale. This docking site may play a role in the physiological NO scavenging reaction. Surprisingly, NO cannot be trapped at all in secondary docking site D, the Xe1 cavity.  相似文献   

3.
Fourier transform infrared (FTIR) spectroscopy in the CO stretch bands combined with temperature derivative spectroscopy (TDS) was used to characterize intermediate states obtained by photolysis of two sperm whale mutant myoglobins, YQR (L29(B10)Y, H64(E7)Q, T67(E10)R) and YQRF (with an additional I107(G8)F replacement). Both mutants assume two different bound-state conformations, A(0) and A(3), which can be distinguished by their different CO bands near 1965 and 1933 cm(-1). They most likely originate from different conformations of the Gln-64 side chain. Within each A substate, a number of photoproduct states have been characterized on the basis of the temperature dependence of recombination in TDS experiments. Different locations and orientations of the ligand within the protein can be distinguished by the infrared spectra of the photolyzed CO. Recombination from the primary docking site, B, near the heme dominates below 50 K. Above 60 K, ligand rebinding occurs predominantly from a secondary docking site, C', in which the CO is trapped in the Xe4 cavity on the distal side, as shown by crystallography of photolyzed YQR and L29W myoglobin CO. Another kinetic state (C") has been identified from which rebinding occurs around 130 K. Moreover, a population appearing above the solvent glass transition at approximately 180 K (D state) is assigned to rebinding from the Xe1 cavity, as suggested by the photoproduct structure of the L29W sperm whale myoglobin mutant. For both the YQR and YQRF mutants, rebinding from the B sites near the heme differs for the two A substates, supporting the view that the return of the ligand from the C', C", and D states is not governed by the recombination barrier at the heme iron but rather by migration to the active site. Comparison of YQR and YQRF shows that access to the Xe4 site (C') is severely restricted by introduction of the bulky Phe side chain at position 107.  相似文献   

4.
Recombination of carbon monoxide to myoglobin mutants YQR and YQRF was studied using transient infrared absorption spectroscopy and Fourier transform infrared-temperature derivative spectroscopy (FTIR-TDS). Photoproduct states B, C', C" and D associated with ligands residing in different protein cavities have been identified. After photolysis, ligands migrate to primary docking site B and subsequently rebind or escape to a secondary site (C) within the Xe4 cavity. For YQR, a global analysis of the isothermal rebinding kinetics below 160 K and the TDS data reveal a correlation between the enthalpy barriers governing the two processes. Above 120 K, a protein conformational change in both YQR and YQRF converts photoproduct C' into C" with markedly slowed kinetics. Above approximately 180 K, ligands migrate to the proximal Xe1 site (D) and also exit into the solvent, from where they rebind in a bimolecular reaction.  相似文献   

5.
Agmon N 《Biophysical journal》2004,87(3):1537-1543
Protein relaxation, ligand binding, and ligand migration into a hydrophobic cavity in myoglobin are unified by a bounded diffusion model which produces an accurate fit to complex ligand rebinding data over eight decades in time and a 160 K temperature range, in qualitative agreement with time-resolved x-ray crystallography. Protein relaxation operates in a cyclic manner to move the ligand away from the binding site.  相似文献   

6.
Structural dynamics of myoglobin   总被引:3,自引:0,他引:3  
Conformational fluctuations have been invoked to explain the observation that the diffusion of small ligands through a protein is a global phenomenon, as suggested (for example) by the oxygen induced fluorescence quenching of buried tryptophans. In enzymes processing large substrates, a channel to the catalytic site is often seen in the crystal structure; on the other hand in small globular proteins, it is not known if the cavities identified in the interior space are important in controlling their function by defining specific pathways in the diffusion to the active site. This point is addressed in this paper, which reports some relevant results obtained on myoglobin, the hydrogen atom of molecular biology. Protein conformational relaxations have been extensively investigated with myoglobin because the photosensivity of the adduct with CO, O2 and NO allows us to follow events related to the migration of the ligand through the matrix. Results obtained by laser photolysis, molecular dynamics simulations, X-ray diffraction of intermediate states of wt type and mutant myoglobins are briefly summarized. Crystallographic data on the photochemical intermediate of a new triple mutant of sperm whale myoglobin (Mb-YQR) show, for the first time, the photolyzed CO* sitting in one of the Xe-binding cavities, removed from the heme group. These results support the viewpoint that pre-existing 'packing defects' in the protein interior play a major role in controlling the dynamics of ligand binding, including oxygen, and thereby acquire a survival value.  相似文献   

7.
Nienhaus K  Deng P  Kriegl JM  Nienhaus GU 《Biochemistry》2003,42(32):9633-9646
We have studied CO binding to the heme and CO migration among protein internal cavities after photodissociation in sperm whale carbonmonoxy myoglobin (MbCO) mutant L29W using Fourier transform infrared (FTIR) spectroscopy combined with temperature derivative spectroscopy (TDS) and kinetic experiments at cryogenic temperatures. Photoproduct intermediates, characterized by CO at particular locations in the protein, were selectively enhanced by applying special laser illumination protocols. These studies were performed on the L29W mutant protein and a series of double mutants constructed so that bulky amino acid side chains block passageways between cavities or fill these sites. Binding of xenon was also employed as an alternative means of occluding cavities. All mutants exhibit two conformations, A(I) and A(II), with distinctly different photoproduct states and ligand binding properties. These differences arise mainly from different positions of the W29 and H64 side chains in the distal heme pocket [Ostermann, A., et al. (2000) Nature 404, 205-208]. The detailed knowledge of the interplay between protein structure, protein dynamics, and ligand migration at cryogenic temperatures allowed us to develop a dynamic model that explains the slow CO and O(2) bimolecular association observed after flash photolysis at ambient temperature.  相似文献   

8.
9.
Protein structures are flexible both in solution and in the solid state. X-ray crystallographically determined thermal factors monitor the flexibility of protein atoms. A method utilizing such factors is proposed to delineate protein regions through which a ligand can exchange between binding site and bulk solvent. It is based on the assumption that thermally excited protein regions are excellent candidates for opening a ligand channel. Computationally simple and inexpensive, the method analyzes directions from which thermal factors can propagate within the protein, resulting in thermal motion paths (TMPs). Applications to engineered T4 lysozymes, where an artificial internal cavity can host hydrophobic molecules, and to sperm whale myoglobins, where the active site is completely buried, yielded results in agreement with other independent structural observations and with previous hypotheses. Further new features could also be suggested. The proposed TMP analysis could aid molecular dynamics simulation studies as well as time-resolved and site-directed mutagenesis experimental studies, especially given its modest computational expense and its direct roots in experimental results based on thermal factors determined in high-resolution crystallographic studies. Proteins 31:201–213,1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Dynamics of ligand binding to myoglobin.   总被引:61,自引:0,他引:61  
Myoglobin rebinding of carbon monoxide and dioxygen after photodissociation has been observed in the temperature range between 40 and 350 K. A system was constructed that records the change in optical absorption at 436 nm smoothly and without break between 2 musec and 1 ksec. Four different rebinding processes have been found. Between 40 and 160 K, a single process is observed. It is not exponential in time, but approximately given by N(t) = (1 + t/to)-n, where to and n are temperature-dependent, ligand-concentration independent, parameters. At about 170 K, a second and at 200 K, a third concentration-independent process emerge. At 210 K, a concentration-dependent process sets in. If myoglobin is embedded in a solid, only the first three can be seen, and they are all nonexponential. In a liquid glycerol-water solvent, rebinding is exponential. To interpret the data, a model is proposed in which the ligand molecule, on its way from the solvent to the binding site at the ferrous heme iron, encounters four barriers in succession. The barriers are tentatively identified with known features of myoglobin. By computer-solving the differential equation for the motion of a ligand molecule over four barriers, the rates for all important steps are obtained. The temperature dependences of the rates yield enthalpy, entropy, and free-energy changes at all barriers. The free-energy barriers at 310 K indicate how myoglobin achieves specificity and order. For carbon monoxide, the heights of these barriers increase toward the inside; carbon monoxide consequently is partially rejected at each of the four barriers. Dioxygen, in contrast, sees barriers of about equal height and moves smoothly toward the binding site. The entropy increases over the first two barriers, indicating a rupturing of bonds or displacement of residues, and then smoothly decreases, reaching a minimum at the binding site. The magnitude of the decrease over the innermost barrier implies participation of heme and/or protein. The nonexponential rebinding observed at low temperatures and in solid samples implies that the innermost barrier has a spectrum of activation energies. The shape of the spectrum has been determined; its existence can be explained by assuming the presence of many conformational states for myoglobin. In a liquid at temperatures above about 230 K, relaxation among conformational states occurs and rebinding becomes exponential.  相似文献   

11.
Ligand binding to proteins often causes large conformational changes. A typical example is maltose-binding protein (MBP), a member of the family of periplasmic binding proteins of Gram-negative bacteria. Upon binding of maltose, MBP undergoes a large structural change that closes the binding cleft, i.e. the distance between its two domains decreases. In contrast, binding of the larger, nonphysiological ligand beta-cyclodextrin does not result in closure of the binding cleft. We have investigated the dynamic properties of MBP in its different states using time-resolved tryptophan fluorescence anisotropy. We found that the 'empty' protein exhibits strong internal fluctuations that almost vanish upon ligand binding. The measured relaxation times corresponding to internal fluctuations can be interpreted as originating from two types of motion: wobbling of tryptophan side-chains relative to the protein backbone, and orientational fluctuations of entire domains. After binding of a ligand, domain motions are no longer detectable and the fluctuations of some of the tryptophan side-chains become rather restricted. This transformation into a more rigid state is observed upon binding of both ligands, maltose and the larger beta-cyclodextrin. The fluctuations of tryptophan side-chains in direct contact with the ligand, however, are affected in a slightly different way by the two ligands.  相似文献   

12.
Band III is a near-infrared electronic transition at ~13,000 cm(-1) in heme proteins that has been studied extensively as a marker of protein conformational relaxation after photodissociation of the heme-bound ligand. To examine the influence of the heme pocket structure and ligand dynamics on band III, we have studied carbon monoxide recombination in a variety of myoglobin mutants after photolysis at 3 K using Fourier transform infrared temperature-derivative spectroscopy with monitoring in three spectral ranges, (1) band III, the mid-infrared region of (2) the heme-bound CO, and (3) the photodissociated CO. Here we present data on mutant myoglobins V68F and L29W, which both exhibit pronounced ligand movements at low temperature. From spectral and kinetic analyses in the mid-infrared, a small number of photoproduct populations can be distinguished, differing in their distal heme pocket conformations and/or CO locations. We have decomposed band III into its individual photoproduct contributions. Each photoproduct state exhibits a different "kinetic hole-burning" (KHB) effect, a coupling of the activation enthalpy for rebinding to the position of band III. The analysis reveals that the heme pocket structure and the photodissociated CO markedly affect the band III transition. A strong kinetic hole-burning effect results only when the CO ligand resides in the docking site on top of the heme group. Migration of CO away from the heme group leads to an overall blue shift of band III. Consequently, band III can be used as a sensitive tool to study ligand dynamics after photodissociation in heme proteins.  相似文献   

13.
Structural dynamics of liganded myoglobin.   总被引:5,自引:0,他引:5       下载免费PDF全文
X-ray crystallography can reveal the magnitudes and principal directions of the mean-square displacements of every atom in a protein. This structural information is complementary to the temporal information obtainable by spectroscopic techniques such as nuclear magnetic resonance. Determination of the temperature dependence of the mean-square displacements makes it possible to separate large conformational motions from simple thermal vibrations. The contribution of crystal lattice disorder to the overall apparent displacement can be estimated by Mössbauer spectroscopy. This technique has been applied to high resolution x-ray diffraction data from sperm whale myoglobin in its Met iron and oxy cobalt forms. Both crystal structures display regions of large conformational motions, particularly at the chain termini and in the region of the proximal histidine. Overall, the mean-square displacement increases with increasing distance from the center of gravity of the molecule. Some regions of the heme pocket in oxy cobalt myoglobin are more rigid than the corresponding regions in Met myoglobin.  相似文献   

14.
The association reaction of CO and O2 with heme is expected to reflect the differences in the electronic structures of the two ligands. CO binding should be controlled by a high spin/low spin transition while oxygen binding is spin-allowed. Dioxygen should thus bind substantially faster than CO. The experimental association rates of the two ligands are, however, almost identical. We propose that the reaction is triggered in both cases by a fast structural intermediate which allows the CO molecule to bind adiabatically. A suitable structural transition has been identified recently by inelastic neutron scattering.  相似文献   

15.
Crystal structures of the reactive short-lived species that occur in chemical or binding reactions can be determined using X-ray crystallography via time-resolved or kinetic trapping approaches. Recently, various kinetic trapping methods have been used to determine the structure of intermediates in ligand binding to myoglobin.  相似文献   

16.
Myoglobin (Mb) is a model system for ligand binding and migration. The energy barriers (ΔG) for ligand migration in Mb have been studied in the past by experiment and theory and significant differences between different approaches were found. From experiment, it is known that Mb can assume a large number of conformational substates. In this work, these substates are investigated as a possible source of the differences in migration barriers. We show that the initial structure significantly affects the calculated ΔG for a particular transition and that fluctuations in barrier heights δΔG are of similar magnitude as the free energy barriers themselves. The sensitivity of ΔG to the initial structure is compared to other sources of errors. Different protein structures can affect the calculated ΔG by up to 4 kcal/mol, whereas differences between simple point charge models and more elaborate multipolar charge models for the CO-ligand are smaller by a factor of two. Analysis of the structural changes underlying the large effect of the conformational substate reveals the importance of coupling between protein and ligand motion for migration.  相似文献   

17.
A quadruple mutant of sperm whale myoglobin was constructed to mimic the structure found in Ascaris suum hemoglobin. The replacements include His(E7)-->Gln, Leu(B10)-->Tyr, Thr(E10)--> Arg, and Ile(G8)-->Phe. Single, double, and triple mutants were characterized to dissect out the effects of the individual substitutions. The crystal structures of the deoxy and oxy forms of the quadruple mutant were determined and compared with that of native Ascaris hemoglobin. Tyr(B10) myoglobin displays low O(2) affinity, high dissociation rate constants, and heterogeneous kinetic behavior, suggesting unfavorable steric interactions between the B10 phenol side chain and His(E7). In contrast, all mutants containing the Tyr(B10)/Gln(E7) pair show high O(2) affinity, low dissociation rate constants, and simple, monophasic kinetic behavior. Replacement of Ile(107) with Phe enhances nanosecond geminate recombination singly and in combination with the Tyr(B10)/Gln(E7)/Arg(E10) mutation by limiting access to the Xe4 site. These kinetic results and comparisons with native Ascaris hemoglobin demonstrate the importance of distal pocket cavities in governing the kinetics of ligand binding. The approximately 150-fold higher O(2) affinity of Ascaris hemoglobin compared with that for Tyr(B10)/Gln(E7)-containing myoglobin mutants appears to be the result of favorable proximal effects in the Ascaris protein, due to a staggered orientation of His(F8), the lack of a hydrogen bonding lattice between the F4, F7, and F8 residues, and the presence of a large polar Trp(G5) residue in the interior portion of the proximal heme pocket.  相似文献   

18.
Periplasmic binding proteins from Gram-negative bacteria possess a common architecture, comprised of two domains linked by a hinge region, a fold which they share with the neurotransmitter-binding domains of ionotropic glutamate receptors (GluRs). Glutamine-binding protein (GlnBP) is one such protein, whose crystal structure has been solved in both open and closed forms. Multi-nanosecond molecular dynamics simulations have been used to explore motions about the hinge region and how they are altered by ligand binding. Glutamine binding is seen to significantly reduce inter-domain motions about the hinge region. Essential dynamics analysis of inter-domain motion revealed the presence of both hinge-bending and twisting motions, as has been reported for a related sugar-binding protein. Significantly, the influence of the ligand on GlnBP dynamics is similar to that previously observed in simulations of rat glutamate receptor (GluR2) ligand-binding domain. The essential dynamics analysis of GlnBP also revealed a third class of motion which suggests a mechanism for signal transmission in GluRs.  相似文献   

19.
The absorption and resonance Raman spectra and the azide binding kinetics of ferric horse heart myoglobin (Mb) and mini myoglobin (a chemically truncated form of horse heart Mb containing residues 32-139) have been compared. The steady-state spectra show that an additional six-coordinated low-spin form (not present in entire horse heart Mb, which is purely six-coordinated high spin) predominates in mini Mb. The distal histidine is possibly the sixth ligand in this species. The presence of two species corresponds to a kinetic biphasicity for mini Mb that is not observed for horse heart Mb. Azide binds to horse heart Mb much more slowly than to sperm whale Mb. This difference may result from a sterically hindered distal pocket in horse heart Mb. In both cases, the rate constants level off at high azide concentrations, implying the existence of a rate-limiting step (likely referable to the dissociation of the axial sixth ligand). The faster rate constant of mini Mb is similar to that of sperm whale Mb, whereas the slower one is similar to that of entire horse heart Mb.  相似文献   

20.
The results of extended (80-ns) molecular dynamics simulations of wild-type and YQR triple mutant of sperm whale deoxy myoglobin in water are reported and compared with the results of the simulation of the intermediate(s) obtained by photodissociation of CO in the wild-type protein. The opening/closure of pathways between preexistent cavities is different in the three systems. For the photodissociated state, we previously reported a clear-cut correlation between the opening probability and the presence of the photolyzed CO in the proximity of the passage; here we show that in wild-type deoxy myoglobin, opening is almost random. In wild-type deoxy myoglobin, the passage between the distal pocket and the solvent is strictly correlated to the presence/absence of a water molecule that simultaneously interacts with the distal histidine side chain and the heme iron; conversely, in the photodissociated myoglobin, the connection with the bulk solvent is always open when CO is in the vicinity of the A pyrrole ring. In YQR deoxy myoglobin, the mutated Gln(E7)64 is stably H-bonded with the mutated Tyr(B10)29. The essential dynamics analysis unveils a different behavior for the three systems. The motion amplitude is progressively restricted in going from wild-type to YQR deoxy myoglobin and to wild-type myoglobin photoproduct. In all cases, the principal motions involve mainly the same regions, but their directions are different. Analysis of the dynamics of the preexisting cavities indicates large fluctuations and frequent connections with the solvent, in agreement with the earlier hypothesis that some of the ligand may escape from the protein through these pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号