首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Culturing of microalgae as an alternative feedstock for biofuel production has received a lot of attention in recent years due to their fast growth rate and ability to accumulate high quantity of lipid and carbohydrate inside their cells for biodiesel and bioethanol production, respectively. In addition, this superior feedstock offers several environmental benefits, such as effective land utilization, CO(2) sequestration, self-purification if coupled with wastewater treatment and does not trigger food versus fuel feud. Despite having all these 'theoretical' advantages, review on problems and issues related to energy balance in microalgae biofuel are not clearly addressed until now. Base on the maturity of current technology, the true potential of microalgae biofuel towards energy security and its feasibility for commercialization are still questionable. Thus, this review is aimed to depict the practical problems that are facing the microalgae biofuel industry, covering upstream to downstream activities by accessing the latest research reports and critical data analysis. Apart from that, several interlink solutions to the problems will be suggested with the purpose to bring current microalgae biofuel research into a new dimension and consequently, to revolutionize the entire microalgae biofuel industry towards long-term sustainability.  相似文献   

2.
Biofuels from microalgae is now a hot issue of great potential. However, achieving high starch productivity with photoautotrophic microalgae is still challenging. A feasible approach to enhance the growth and target product of microalgae is to conduct mixotrophic cultivation. The appropriate acetate addition combined with CO2 supply as dual carbon sources (i.e., mixotrophic cultivation) could enhance the cell growth of some microalgae species, but the effect of acetate‐mediated mixotrophic culture mode on carbohydrate accumulation in microalgae remains unclear. Moreover, there is still lack of the information concerning how to increase the productivity of carbohydrates from microalgae under acetate‐amended mixotrophic cultivation and how to optimize the engineering strategies to achieve the goal. This study was undertaken to develop an optimal acetate‐contained mixotrophic cultivation system coupled with effective operation strategies to markedly improve the carbohydrate productivity of Chlorella sorokiniana NIES‐2168. The optimal carbohydrate productivity of 695 mg/L/d was obtained, which is the highest value ever reported. The monosaccharide in the accumulated carbohydrates is mainly glucose (i.e., 85–90%), which is very suitable for bio‐alcohols fermentation. Hence, by applying the optimal process developed in this study, C. sorokiniana NIES‐2168 has a high potential to serve as a feedstock for subsequent biofuels conversion.  相似文献   

3.
The effect of the microalgae-growth promoting bacterium Azospirillum brasilense on accumulation of total carbohydrates and starch in two species of Chlorella (Chlorella vulgaris and Chlorella sorokiniana), when the bacterium and each microalga were jointly immobilized in alginate beads was studied under autotrophic conditions for 144h in synthetic medium. The interaction of the bacterium with the microalgae enhanced accumulation of total carbohydrate and starch. Cells of Chlorella accumulated the highest amounts of carbohydrate after incubation for 24h. Yet, this did not coincide with the highest affinity and volumetric productivity measured in these cultures. However, after incubation for 72h, mainly in jointly immobilized treatments of both microalgae species, the cultures reached their highest total carbohydrate content (mainly as starch) and also the highest affinity and volumetric productivity. These results demonstrate the potential of A. brasilense to affect carbohydrates and starch accumulation in Chlorella spp. when both microorganisms are co-cultured, which can be an important tool for applications of microalgae.  相似文献   

4.
Microalgal biomass seems to be a promising feedstock for biofuel generation. Microalgae have relative high photosynthetic efficiencies, high growth rates, and some species can thrive in brackish water or seawater and wastewater from the food- and agro-industrial sector. Today, the main interest in research is the cultivation of microalgae for lipids production to generate biodiesel. However, there are several other biological or thermochemical conversion technologies, in which microalgal biomass could be used as substrate. However, the high protein content or the low carbohydrate content of the majority of the microalgal species might be a constraint for their possible use in these technologies. Moreover, in the majority of biomass conversion technologies, carbohydrates are the main substrate for production of biofuels. Nevertheless, microalgae biomass composition could be manipulated by several cultivation techniques, such as nutrient starvation or other stressed environmental conditions, which cause the microalgae to accumulate carbohydrates. This paper attempts to give a general overview of techniques that can be used for increasing the microalgal biomass carbohydrate content. In addition, biomass conversion technologies, related to the conversion of carbohydrates into biofuels are discussed.  相似文献   

5.
Microalgae in genus Chlorella and Scenedesmus are common in aquatic ecosystems and are widely used for various studies on algal growth and applications. Macroalgae may play an important role for control of microalgal growth, attributable to their rich content of bioactive compounds. In this study, the brown seaweed Ascophyllum nodosum was extracted with 70% acetone and the extract was used to treat the green microalgae, Chlorella vulgaris and Scenedesmus sp. Cell density and chlorophyll a concentration were used as growth indexes to evaluate the effects of A. nodosum extract (ANE) on the microalgae. The ANE with concentrations > 1% exhibited significant capability of inhibition of the growth of microalgae by over 80%. On the contrary, 1% ANE caused varying degrees of acceleration of cell proliferation and chlorophyll a synthesis in C. vulgaris and Scenedesmus sp., respectively. Analysis of antioxidant activities of the enzymes superoxide dismutase (SOD) and catalase (CAT) revealed the impact of ANE on the antioxidant defense system of the microalgae. The SOD and CAT activities were significantly depressed by high concentrations (> 2%) ANE, while a slight increase of the enzyme activities was observed with 1% ANE at the early period, which could be correlated to the growth response. Therefore, the mechanism of microalgae control could be related to the interaction between the ANE and the antioxidant defense systems. Phlorotannins are proposed as the principal algistatic components in the ANE which could be utilized in controlling microalgae growth.  相似文献   

6.
The effect of the bacterium Azospirillum brasilense jointly immobilized with Chlorella vulgaris or C. sorokiniana in alginate beads on total carbohydrates and starch was studied under dark and heterotrophic conditions for 144h in synthetic growth medium supplemented with either d-glucose or Na-acetate as carbon sources. In all treatments, enhanced total carbohydrates and starch content per culture and per cell was obtained after 24h; only jointly immobilized C. vulgaris growing on d-glucose significantly increased total carbohydrates and starch content after 96h. Enhanced accumulation of carbohydrate and starch under jointly immobilized conditions was variable with time of sampling and substrate used. Similar results occurred when the microalgae was immobilized alone. In both microalgae growing on either carbon sources, the bacterium promoted accumulation of carbohydrates and starch; when the microalgae were immobilized alone, they used the carbon sources for cell multiplication. In jointly immobilized conditions with Chlorella spp., affinity to carbon source and volumetric productivity and yield were higher than when Chlorella spp. were immobilized alone; however, the growth rate was higher in microalgae immobilized alone. This study demonstrates that under heterotrophic conditions, A. brasilense promotes the accumulation of carbohydrates in two strains Chlorella spp. under certain time-substrate combinations, producing mainly starch. As such, this bacterium is a biological factor that can change the composition of compounds in microalgae in dark, heterotrophic conditions.  相似文献   

7.
The potential of microalgae as a source of renewable energy has received considerable interest, but if microalgal biofuel production is to be economically viable and sustainable, further optimization of mass culture conditions are needed. Wastewaters derived from municipal, agricultural and industrial activities potentially provide cost-effective and sustainable means of algal growth for biofuels. In addition, there is also potential for combining wastewater treatment by algae, such as nutrient removal, with biofuel production. Here we will review the current research on this topic and discuss the potential benefits and limitations of using wastewaters as resources for cost-effective microalgal biofuel production.  相似文献   

8.
Oleaginous microalgae are considered as promising sources of biofuels and biochemicals due to their high lipid content and other high-value components such as pigments, carbohydrate and protein. This study aimed to develop an efficient biorefinery process for utilizing all of the components in oleaginous microalgae. Acetone extraction was used to recover microalgal pigments prior to processes for the other products. Microalgal lipids were converted into biodiesel (fatty acid methyl ester, FAME) through a conventional two-step process of lipid extraction followed by transesterification, and alternatively a one-step direct transesterification. The comparable FAME yields from both methods indicate the effectiveness of direct transesterification. The operating parameters for direct transesterification were optimized through response surface methodology (RSM). The maximum FAME yield of 256 g/kg-biomass was achieved when using chloroform:methanol as co-solvents for extracting and reacting reagents at 1.35:1 volumetric ratio, 70 °C reaction temperature, and 120 min reaction time. The carbohydrate content in lipid-free microalgal biomass residues (LMBRs) was subsequently acid hydrolyzed into sugars under optimized conditions from RSM. The maximum sugar yield obtained was 44.8 g/kg-LMBRs and the protein residues were recovered after hydrolysis. This biorefinery process may contribute greatly to zero-waste industrialization of microalgae based biofuels and biochemicals.  相似文献   

9.
10.
Mechanisms of response to salinity in halotolerant microalgae   总被引:3,自引:0,他引:3  
Summary A limited number of organic solutes are used by microalgae to adjust their internal osmotic pressure in response to changing external salinities. Glycerol and proline are used by the most extremely halotolerant algae. Only glycerol allows growth at salinities approaching saturation. In addition to organic osmoregulatory solutes, inorganic ions also play an important role in osmoregulation. The ability of microalgae to maintain intracellular ions at levels compatible with metabolic functions may set upper limits for their salt tolerance. Requirements for NaCl in the external medium for nutrient transport may define the lower salinity limits for growth observed for some euryhaline algae.Osmotic upshocks generally cause severe temporary inhibition of photosynthesis in euryhaline microalgae. Extensive osmotic downshocks have little effect on photosynthesis in microalgae with strong cell walls, while wall-less species appear to be more sensitive. Rapid glycerol synthesis takes place in response to increased external salinity inChlamydomonas pulsatilla both in light and dark. Starch supplies carbon for glycerol synthesis in the dark and also during the initial periods of inhibition of photosynthesis in the light. Turnover of osmoregulatory solutes such as glycerol and isofloridoside may be an important aspect of the osmoregulatory mechanism.At salinities beyond the growth limit for the green flagellateChlamydomonas pulsatilla, resting spores are formed that enable this alga to survive extreme salinities.  相似文献   

11.
Despite the great interest in microalgae as a potential source of biofuel to substitute for fossil fuels, little information is available on the effects of bacterial symbionts in mass algal cultivation systems. The bacterial communities associated with microalgae are a crucial factor in the process of microalgal biomass and lipid production and may stimulate or inhibit growth of biofuel-producing microalgae. In addition, we discuss here the potential use of bacteria to harvest biofuel-producing microalgae. We propose that aggregation of microalgae by bacteria to achieve >90% reductions in volume followed by centrifugation could be an economic approach for harvesting of biofuel-producing microalgae. Our aims in this review are to promote understanding of the effects of bacterial communities on microalgae and draw attention to the importance of this topic in the microalgal biofuel field.  相似文献   

12.
In the past decade, considerable progress has been made in developing the appropriate biotechnology for microalgal mass cultivation aimed at establishing a new agro-industry. This review points out the main biological constraints affecting algal biotechnology outdoors and the requirements for making this biotechnology economically viable. One of them is the availability of a wide variety of algal species and improved strains that favorably respond to varying environmental conditions existing outdoors. It is thus just a matter of time and effort before a new methodology like genetic engineering can and will be applied in this field as well. The study of stress physiology and adaptation of microalgae has also an important application in further development of the biotechnology for mass culturing of microalgae. In outdoor cultures, cells are exposed to severe changes in light and temperature much faster than the time scale required for the cells to acclimate. A better understanding of those parameters and the ability to rapidly monitor those conditions will provide the growers with a better knowledge on how to optimize growth and productivity. Induction of accumulation of high value products is associated with stress conditions. Understanding the physiological response may help in providing a better production system for the desired product and, at a later stage, give an insight of the potential for genetic modification of desired strains. The potential use of microalgae as part of a biological system for bioremediation/detoxification and wastewater treatment is also associated with growing the cells under stress conditions. Important developments in monitoring and feedback control of the culture behavior through application of on-line chlorophyll fluorescence technique are in progress. Understanding the process associated with those unique environmental conditions may help in choosing the right culture conditions as well as selecting strains in order to improve the efficiency of the biological process.  相似文献   

13.
The biochemical composition of microalgae can be modulated through the environmental conditions prevailing during growth. The simultaneous effects of irradiance and temperature on the biochemical composition of Pavlova lutheri were evaluated using an experimental star factorial design. Five levels were tested for each parameter (temperature, 10, 14, 18, 22 and 26°C; irradiance, 60, 105, 150, 195 and 240 μmol photons m−2 s−1), whereas the carbohydrate, protein, lipid, pigments and elementary compound contents were measured as response variables. Additionally, in order to rapidly measure parameters to define the status of the culture, the validation of the relationships between biochemical parameters and physiological status were estimated through regression analysis. It was observed that irradiance and temperature play a major role in the determination of the biochemical composition of microalgae. Their effects are synergistic, and it can be observed that a trend in behaviour at a certain temperature can be reversed at a different temperature; therefore, when selecting the environmental conditions to a culture they must be studied in a combined fashion. Although there are consistent relationships between pigment contents and elementary compounds in cells, its linearity is influenced by the irradiance of the culture and its age; therefore, they can only be applied in specific circumstances. On the other side, population biomass was well estimated in terms of carotenoid content, irrespective of the environmental conditions provided and the growth phase.  相似文献   

14.
Algal biofuels     
The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.  相似文献   

15.
Photosynthetic microalgae can capture solar energy and convert it to bioenergy and biochemical products. In nature or industrial processes, microalgae live together with bacterial communities and may maintain symbiotic relationships. In general interactions, microalgae exude dissolved organic carbon that becomes available to bacteria. In return, the bacteria remineralize sulphur, nitrogen and phosphorous to support the further growth of microalgae. In specific interactions, heterotrophic bacteria supply B vitamins as organic cofactors or produce siderophores to bind iron, which could be utilized by microalgae, while the algae supply fixed carbon to the bacteria in return. In this review, we focus on mutualistic relationship between microalgae and bacteria, summarizing recent studies on the mechanisms involved in microalgae–bacteria symbiosis. Symbiotic bacteria on promoting microalgal growth are described and the relevance of microalgae–bacteria interactions for biofuel production processes is discussed. Symbiotic microalgae–bacteria consortia could be utilized to improve microalgal biomass production and to enrich the biomass with valuable chemical and energy compounds. The suitable control of such biological interactions between microalgae and bacteria will help to improve the microalgae-based biomass and biofuel production in the future.  相似文献   

16.
The use of microalgae in a number of sectors, including biodiesel, feed and food production, is proving to be of great interest. An evaluation was made of the possible biostimulant effects on Chlorella vulgaris and Scenedesmus quadricauda of humic-like substances (HLs) extracted from agro-industrial wastes. These included digestate from the waste of an agro-livestock farm (D-HL), oil extraction residues from rape (B-HL, Brassica napus L.) and tomato residues (T-HL). The microalgal growth medium (BG11) was supplemented with HLs to evaluate their effect on biomass yield as well as carbohydrate, chlorophylls a and b, lipid and fatty acid contents. Our results showed that the HLs used in the test are effective biostimulants of C. vulgaris and S. quadricauda. The biostimulant effect seems to depend on the type of extract used for cultivating the microalgae, the concentration and the species treated. Among the extracts applied to the growth medium, D-HL and T-HL seem to have a significant effect on microalgal biomass and lipid production. Although B-HL showed no significant effect on the biomass and lipid content of C. vulgaris and S. quadricauda, its presence in the growth medium increased the saturated:unsaturated fatty acid ratio (SFA/UFA) and stimulated the sugar metabolism of the microalgae by increasing their carbohydrate and chlorophyll content.  相似文献   

17.
The aim of this study was to assess the impact of the microalgae Chlorella vulgaris on the rice seedlings at physiological conditions and under cadmium (Cd) stress. We examined the effects of C. vulgaris in the nutrient solution on rice seedlings grown hydroponically in the presence and the absence of 150 μM CdCl2, using the low (77 K) temperature and pulse amplitude modulated (PAM) chlorophyll fluorescence, P700 photooxidation measurements, photochemical activities of both photosystems, kinetic parameters of oxygen evolution, oxidative stress markers (MDA, H2O2 and proline), pigment content, growth parameters and Cd accumulation. Data revealed that the application C. vulgaris not only stimulates growth and improves the functions of photosynthetic apparatus under physiological conditions, but also reduces the toxic effect of Cd on rice seedlings. Furthermore, the presence of the green microalgae in the nutrient solution of the rice seedlings during Cd exposure, significantly improved the growth, photochemical activities of both photosystems, the kinetic parameters of the oxygen-evolving reactions, pigment content and decreased lipid peroxidation, H2O2 and proline content. Data showed that the alleviation of Cd-induced effects in rice seedlings is a result of the Cd sorption by microalgae, as well as the reduced Cd accumulation in the roots and its translocation from the roots to the shoots.  相似文献   

18.
Microalgae are attracting much attention as superior biodiesel producers. In particular, under stressful conditions, they accumulate organic compounds consisting entirely of carbon and hydrogen. The aim of this work was to increase intracellular fatty acid content in Dunaliella tertiolecta (Chlorophyceae), Nannochloropsis oculata (Eustigmatophyceae), and Porphyridium cruentum (Rhodophyceae) using a combination of nitrogen starvation and chemical inhibitors of carbohydrate biosynthesis. These microalgae were subjected to nitrogen starvation and their physiological changes were then observed over time. In D. tertiolecta, no significant change in total fatty acid content was detected on day 3.5 relative to the initial total fatty acid content (day 0), while total carbohydrate content dramatically increased as the nitrogen starvation period was extended. In N. oculata, total fatty acid content rapidly increased, reaching up to nearly 40% of the DCW at day 3.5. However, total carbohydrate content exhibited a gradual reduction throughout the experiment. In P. cruentum, total carbohydrate content increased up to 43% of DCW on day 3.5 and total fatty acid content increased slightly under nitrogen depletion. These data suggest that different eukaryotic microalgae use different storage products under stressful conditions. Among the three strains, D. tertiolecta showed decreased total carbohydrate content and enhanced total fatty acid content following inhibition of carbohydrate synthesis by dichlorophenyl dimethylurea and cyclohexane diamine tetra acetic acid. The results demonstrate the possibility of furthering our understanding of the fatty acid and carbohydrate biosynthesis metabolic network that responds to environmental changes in microalgae.  相似文献   

19.
绿色巴夫藻受紫外(UV-B)胁迫后的超补偿生长效应   总被引:1,自引:0,他引:1  
以绿色巴夫藻(Pavlova viridis)为实验材料,设置了18、36、54、65、86和108 J·m-2 6个UV-B辐射剂量处理组,以无紫外辐射为对照,解除胁迫后,处理组和对照组在相同接种密度和相同条件下培养12 d,测定了生长过程中的吸光值、生物量、叶绿素a、类胡萝卜素、可溶性蛋白质和胞内多糖含量.结果表明,在UV-B胁迫下,绿色巴夫藻细胞生长受到显著抑制,6个处理组细胞的相对增长率比对照下降了16.15%~60.00% (P<0.05).但在胁迫解除后,各胁迫处理的藻细胞生长指标均显著高于对照(P<0.05),证明绿色巴夫藻在胁迫后的恢复生长中出现超补偿生长现象.恢复培养第12天,最大吸光值、生物量、叶绿素a、类胡萝卜素、可溶性蛋白质和胞内多糖含量分别比对照提高了22.38%、15.00%、26.15%、23.81%、11.63%和27.58%.藻类中存在超补偿生长特性为微藻生物活性物质的开发提供了有效途径.  相似文献   

20.
Phenolic compounds regarded as important pharmaceuticals with various biological activities are found in low amounts in microalgae. The objective of this study was to increase the amount of phenolic compounds in Spirulina platensis by a two-step batch mode cultivation. The evaluation of the effect of the sudden shift from low light to high light on phenolic compound production, antioxidant activity, growth, and biomass composition of S. platensis was undertaken. The amount of phenolic compounds was significantly increased by approximately eightfold (p?<?0.01) by the light treatment. There were also increases in total amounts of carbohydrate, phycocyanin, carotenoid, malondialdehyde, and antioxidant activities while there were significant decreases in total protein amounts (p?<?0.05). The relationships between antioxidant activities and total amounts of phenolic compounds were significantly correlated at the 99% confidence level (p?<?0.01) indicating that phenolic compounds were major contributors of antioxidant activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号