首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbohydrate mimetic peptides are designable, and they can carry T-cell epitopes and circumvent tolerance. A mimic-based human immunodeficiency virus (HIV) vaccine can be a viable alternative to carbohydrate-based antigens if the diversity of epitopes found on gp120 can be recapitulated. To improve existing mimics, an attempt was made to study the structural correlates of the observed polyspecificity of carbohydrate mimetic peptides based on the Y(P/R)Y motif in more detail. A carbohydrate mimetic peptide, D002 (RGGLCYCRYRYCVCVGR), bound a number of lectins with different specificities. Although this peptide reacted strongly with both lotus and concanavalin A (ConA) lectins, it bound to lotus stronger than ConA. By varying the central motif RYRY, five versions were produced in multiple antigen peptide format, and their avidity for lotus and ConA lectins was tested by surface plasmon resonance. Although the kinetic parameters were similar, the version based on the sequence YPYRY had an optimal affinity for both lectins as well as improved avidity for wheat germ agglutinin and phytohemagglutinin. Thus, as far as lectin specificity is concerned, YPYRY had improved multiple antigenic properties. Both RYRY and YPYRY precipitated antibodies from human IgG for intravenous use that bound to gp120 in vitro and immunoprecipitated gp120 from transfected CHO-PI cells. Thus, Y(P/R)Y motifs mimic multiple carbohydrate epitopes, many of which are found on HIV, and preimmune human IgG antibodies that bind to HIV carbohydrates cross-react to a comparable extent with both RYRY and YPYRY carbohydrate mimetic peptides.  相似文献   

2.
The use of vaginal microbicides containing human immunodeficiency virus (HIV)-neutralizing antibodies (nAbs) is a promising strategy to prevent HIV-1 infection. Although antibodies are predominantly manufactured using mammalian cells, elastin-like peptide (ELP) fusion technology improves the stability of recombinant, plant-produced proteins and facilitates their purification, making plants an alternative platform for antibody production. We generated transgenic tobacco plants accumulating four different formats of the anti-HIV-1 antibody 2G12 in the endoplasmic reticulum (ER), i.e. with ELP on either the light or heavy chain, on both, or on neither. Detailed analysis of affinity-purified antibodies by surface plasmon resonance spectroscopy showed that the kinetic binding parameters of all formats were identical to 2G12 lacking ELP produced in Chinese hamster ovary (CHO) cells. Importantly, protein purification from seeds by inverse transition cycling (ITC) did not affect the binding kinetics. Analysis of heavy chain N-glycans from leaf-derived antibodies showed that retrieval to the ER was efficient for all formats. In seeds, however, N-glycans on the naked antibody were extensively trimmed compared with those on the ELP fusion formats, and were localized to a different subcellular compartment. The in vitro HIV-neutralization properties of the tobacco-derived 2G12 were equivalent to or better than those of the CHO counterpart.  相似文献   

3.
Human immunodeficiency virus (HIV)/AIDS continues to spread worldwide, and most of the HIV-infected people living in developing countries have little or no access to highly active antiretroviral therapy. The development of efficient and low-cost microbicides to prevent sexual transmission of HIV should be given high priority because there is no vaccine available yet. Cyanovirin-N (CVN) is an entry inhibitor of HIV and many other viruses, and it represents a new generation of microbicide that has specific and potent activity, a different mechanism of action, and unusual chemicophysical stability. In vitro and in vivo antiviral tests suggested that the anti-HIV effect of CVN is stronger than a well-known gp120-targeted antibody (2G12) and another microbicide candidate, PRO2000. CVN is a cyanobacteria-derived protein that has special structural features, making the artificial production of this protein very difficult. In order to develop an efficient and relatively low-cost approach for large-scale production of recombinant CVN to satisfy medical use, this protein has been expressed in many systems by trial and error. Here, to summarize the potential and remaining challenges for the development of this protein into an HIV prevention agent, the progress in the structural mechanism determination, heterologous production and pharmacological evaluation of CVN is reviewed.  相似文献   

4.
5.
Synthetic peptides derived from GB virus C (GBV‐C) have previously been studied in our group for the development of new systems capable of diagnosing diseases caused by this humanotropic virus. We also recently described specific peptide domains of the E2 envelop protein of GBV‐C that have the capacity to interfere with the HIV‐1 fusion peptide, produce a notable decrease in cellular membrane fusion, and perturb HIV‐1 infectivity in a dose‐dependent manner. The present work discloses the design and synthesis of both linear and cyclic branched peptides based on a previously reported N‐terminal sequence of the GBV‐C E2 protein. Immunoassays and cell–cell fusion assays were performed to evaluate their diagnostic value to detect anti‐GBV‐C antibodies in HIV‐1 patients, as well as their putative anti‐HIV‐1 activity as entry inhibitors. Our results showed that chemical modifications of the selected E2(7–26) linear peptide to afford cyclic architecture do not result in an enhanced inhibition of gp41 HIV‐1‐mediated cell–cell fusion nor improved sensitivity in the detection of GBV‐C antibodies in HIV‐1 co‐infected patients. Thus, the ELISA data reinforce the potential utility of linear versions of the E2(7–26) region for the development of new peptide‐based immunosensor devices for the detection of anti‐GBV‐C antibodies in HIV‐1 co‐infected patients. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
Expression of measles virus antigens in Streptococcus gordonii   总被引:1,自引:0,他引:1  
The measles virus proteins haemagglutinin (HA) and fusion protein (F), which together mediate attachment and penetration of the virus in the host cell and can elicit production of neutralising antibodies in the course of natural infection were expressed in the vaccine vector Streptococcus gordonii, a Gram-positive bacterium normally present in the human oral cavity. HA and F were expressed as fusion proteins attached to the bacterial surface, and were both found to be immunogenic when the recombinant S. gordonii were inoculated subcutaneously in mice.  相似文献   

7.
Passive immunotherapy using anti-HIV broadly neutralizing monoclonal antibodies (mAbs) has shown promise as an HIV treatment, reducing mother-to-child-transmission (MTCT) of simian/human immunodeficiency virus (SHIV) in non-human primates and decreasing viral rebound in patients who ceased receiving anti-viral drugs. In addition, a cocktail of potent mAbs may be useful as mucosal microbicides and provide an effective therapy for post-exposure prophylaxis. However, even highly neutralizing HIV mAbs used today may lose their effectiveness if resistance occurs, requiring the rapid production of new or engineered mAbs on an ongoing basis in order to counteract the viral resistance or the spread of a certain HIV-1 clade in a particular region or patient. Plant-based expression systems are fast, inexpensive and scalable and are becoming increasingly popular for the production of proteins and monoclonal antibodies. In the present study, Agrobacterium-mediated transient transfection of plants, utilizing two species of Nicotiana, have been tested to rapidly produce high levels of an HIV 89.6PΔ140env and several well-studied anti-HIV neutralizing monoclonal antibodies (b12, 2G12, 2F5, 4E10, m43, VRC01) or a single chain antibody construct (m9), for evaluation in cell-based viral inhibition assays. The protein-A purified plant-derived antibodies were intact, efficiently bound HIV envelope, and were equivalent to, or in one case better than, their counterparts produced in mammalian CHO or HEK-293 cells in both neutralization and antibody dependent viral inhibition assays. These data indicate that transient plant-based transient expression systems are very adaptable and could rapidly generate high levels of newly identified functional recombinant HIV neutralizing antibodies when required. In addition, they warrant detailed cost-benefit analysis of prolonged incubation in plants to further increase mAb production.  相似文献   

8.
Semisynthetic analogues of PSC-RANTES, a potent anti-HIV protein   总被引:2,自引:0,他引:2  
New HIV prevention methods are needed, and among those currently being explored are "microbicides", substances applied topically to prevent HIV acquisition during sexual intercourse. The chemokine analogue PSC-RANTES (N(alpha)(n-nonanoyl)-des-Ser(1)-[ L-thioprolyl(2), L-cyclohexylglycyl(3)]-RANTES(4-68)) is a highly potent HIV entry inhibitor which has shown promising efficacy in its initial evaluation as a candidate microbicide. However, a way must be found to produce the molecule by cheaper means than total chemical synthesis. Since the only noncoded structures are located at the N-terminus, a possible solution would be to produce a protein fragment representing all but the N-terminal region using low-cost recombinant production methods and then to attach, site specifically, a short synthetic fragment containing the noncoded N-terminal structures. Here, we describe the evaluation of a range of different conjugation chemistries in order to identify those with potential for development as economical routes to production of a PSC-RANTES analogue with antiviral activity as close as possible to that of the parent protein. The strategies tested involved linkage through oxime, hydrazone/hydrazide, and Psi[CH2-NH] bonds, as well as through a peptide bond obtained either by a thiazolidine rearrangement or by direct alpha-amino acylation of a protein fragment in which 4 of the 5 lysine residues of the native sequence were replaced by arginine (the fifth lysine is essential for activity). Where conjugation involved replacement of one or more residues with a linker moiety, the point in the main chain at which the linker was introduced was varied. The resulting panel of 22 PSC-RANTES analogues was evaluated for anti-HIV activity in an entry inhibition assay. The [Arg (25,45,56,57)] PSC-RANTES analogue has comparable potency to PSC-RANTES, and one of the oxime linked analogues, 4L-57, has potency only 5-fold lower, with scope for improvement. Both represent promising leads for development as microbicide compounds that could be produced at low cost via semisynthesis.  相似文献   

9.
10.
Proteins from the inner core of HIV-1, such as the capsid protein (p24), are involved in crucial processes during the virus life cycle. The p24 protein plays an active structural role in the Gag protein and in its mature form. This work describes the production of a peptide derived from the p24 C-terminal, TLRAEQASQEVKNWMTETLLVQNA, using recombinant technology. This region (p24-3) is involved in interfaces during the p24 dimerization, which occurs during capsid assembly. The p24-3 sequence was obtained by a synthetic gene strategy and inserted into the pET 32a expression vector to produce soluble fusion protein in Escherichia coli BL21(DE3). This strategy leads to an incorporation of three amino acid residues (AMA) in the N-terminal of the native sequence to form the recombinant p24-3 (rp24-3). The rp24-3 was purified by reverse phase chromatography to homogeneity, as inferred by mass spectrometry and protein sequence analysis. Structural studies using circular dichroism and steady-state fluorescence showed that the rp24-3 is structured by helical and beta elements. As a function of its hydrophobic character it can self-associate forming oligomers. We present in this paper the first development of a suitable expression system for rp24-3, which provides high amounts of the peptide. This strategy will allow the development of new antiviral (HIV) agents.  相似文献   

11.
Ye L  Wen Z  Dong K  Wang X  Bu Z  Zhang H  Compans RW  Yang C 《PloS one》2011,6(5):e14813
Several conserved neutralizing epitopes have been identified in the HIV Env protein and among these, the MPER of gp41 has received great attention and is widely recognized as a promising target. However, little success has been achieved in eliciting MPER-specific HIV neutralizing antibodies by a number of different vaccine strategies. We investigated the ability of HA/gp41 chimeric protein-based vaccines, which were designed to enhance the exposure of the MPER in its native conformation, to induce MPER-specific HIV neutralizing antibodies. In characterization of the HA/gp41 chimeric protein, we found that by mutating an unpaired Cys residue (Cys-14) in its HA1 subunit to a Ser residue, the modified chimeric protein HA-C14S/gp41 showed increased reactivity to a conformation-sensitive monoclonal antibody against HA and formed more stable trimers in VLPs. On the other hand, HA-C14S/gp41 and HA/gp41 chimeric proteins expressed on the cell surfaces exhibited similar reactivity to monoclonal antibodies 2F5 and 4E10. Immunization of guinea pigs using the HA-C14S/gp41 DNA or VLP vaccines induced antibodies against the HIV gp41 as well as to a peptide corresponding to a segment of MPER at higher levels than immunization by standard HIV VLPs. Further, sera from vaccinated guinea pigs were found to exhibit HIV neutralizing activities. Moreover, sera from guinea pigs vaccinated by HA-C14S/gp41 DNA and VLP vaccines but not the standard HIV VLPs, were found to neutralize HIV pseudovirions containing a SIV-4E10 chimeric Env protein. The virus neutralization could be blocked by a MPER-specific peptide, thus demonstrating induction of MPER-specific HIV neutralizing antibodies by this novel vaccine strategy. These results show that induction of MPER-specific HIV neutralizing antibodies can be achieved through a rationally designed vaccine strategy.  相似文献   

12.
The first evidence that plants represent a valid, safe and cost-effective alternative to traditional expression systems for large-scale production of antigens and antibodies was described more than 10 years ago. Since then, considerable improvements have been made to increase the yield of plant-produced proteins. These include the use of signal sequences to target proteins to different cellular compartments, plastid transformation to achieve high transgene dosage, codon usage optimization to boost gene expression, and protein fusions to improve recombinant protein stability and accumulation. Thus, several HIV/SIV antigens and neutralizing anti-HIV antibodies have recently been successfully expressed in plants by stable nuclear or plastid transformation, and by transient expression systems based on plant virus vectors or Agrobacterium-mediated infection. The current article gives an overview of plant expressed HIV antigens and antibodies and provides an account of the use of different strategies aimed at increasing the expression of the accessory multifunctional HIV-1 Nef protein in transgenic plants.  相似文献   

13.
Six peptide fragments of the envelope protein E of the tick-borne encephalitis virus involving the predicted T-helper epitopes were synthesized. Their ability to induce antibodies without conjugation with any high-molecular-mass carrier was studied in mice of three lines. Five of six synthesized peptides exhibited immunogenic properties, which differed in dependence on the haplotype of immunized mice. The peptide binding to the antiviral antibodies was studied, and two peptides were revealed that demonstrated a high ability to recognize the viral antibodies in the horse and human sera. These peptides are promising for the development of diagnostic agents for the tick-borne encephalitis virus.  相似文献   

14.
Six peptide fragments of the envelope protein E of the tick-borne encephalitis virus involving the predicted T-helper epitopes were synthesized. Their ability to induce antibodies without conjugation with any high-molecular-mass carrier was studied in mice of three lines. Five of six synthesized peptides exhibited immunogenic properties, which differed in dependence on the haplotype of immunized mice. The peptide binding to the antiviral antibodies was studied, and two peptides were revealed that demonstrated a high ability to recognize the viral antibodies in the horse and human sera. These peptides are promising for the development of diagnostic agents for the tick-borne encephalitis virus.  相似文献   

15.
Viral vaccine vectors have emerged as an attractive strategy for the development of a human immunodeficiency virus (HIV) vaccine. Recombinant Newcastle disease virus (rNDV) stands out as a vaccine vector since it has a proven safety profile in humans, it is a potent inducer of both alpha interferon (IFN-α) and IFN-β) production, and it is a potent inducer of dendritic cell (DC) maturation. Our group has previously generated an rNDV vector expressing a codon-optimized HIV Gag protein and demonstrated its ability to induce a Gag-specific CD8(+) T cell response in mice. In this report we demonstrate that the Gag-specific immune response can be further enhanced by the targeting of the rNDV-encoded HIV Gag antigen to DCs. Targeting of the HIV Gag antigen was achieved by the addition of a single-chain Fv (scFv) antibody specific for the DC-restricted antigen uptake receptor DEC205 such that the DEC205 scFv-Gag molecule was encoded for expression as a fusion protein. The vaccination of mice with rNDV coding for the DC-targeted Gag antigen induced an enhanced Gag-specific CD8(+) T cell response and enhanced numbers of CD4(+) T cells and CD8(+) T cells in the spleen relative to vaccination with rNDV coding for a nontargeted Gag antigen. Importantly, mice vaccinated with the DEC205-targeted vaccine were better protected from challenge with a recombinant vaccinia virus expressing the HIV Gag protein. Here we demonstrate that the targeting of the HIV Gag antigen to DCs via the DEC205 receptor enhances the ability of an rNDV vector to induce a potent antigen-specific immune response.  相似文献   

16.
Humoral immunity to HIV-1: neutralisation and antibody effector functions   总被引:1,自引:1,他引:0  
Several features of HIV have frustrated efforts to develop a vaccine able to induce broadly neutralising antibodies. The enormous genetic diversity of HIV is a major factor, accompanied by the camouflaged nature of the envelope spike, upon which HIV depends for cellular entry and to which antibodies must bind to neutralise. The picture is further complicated by the presence of nonfunctional envelope glycoproteins on the surface of HIV that are immunogenic. Consequently, HIV attracts antibodies that do not directly neutralise the virus but still activate complement and engage Fc receptors, which can both enhance and inhibit infection. The various effects that anti-envelope antibodies have on HIV infection will be reviewed here. Further research is needed to determine if these in vitro-characterised activities have relevance in vivo, and if some of the undesirable effects of non-neutralising antibodies can be avoided or the beneficial effects harnessed.  相似文献   

17.
Protein microbicides containing neutralizing antibodies and antiviral lectins may help to reduce the rate of infection with human immunodeficiency virus (HIV) if it is possible to manufacture the components in large quantities at a cost affordable in HIV‐endemic regions such as sub‐Saharan Africa. We expressed the antiviral lectin griffithsin (GRFT), which shows potent neutralizing activity against HIV, in the endosperm of transgenic rice plants (Oryza sativa), to determine whether rice can be used to produce inexpensive GRFT as a microbicide ingredient. The yield of OSGRFT in the best‐performing plants was 223 μg/g dry seed weight. We also established a one‐step purification protocol, achieving a recovery of 74% and a purity of 80%, which potentially could be developed into a larger‐scale process to facilitate inexpensive downstream processing. OSGRFT bound to HIV glycans with similar efficiency to GRFT produced in Escherichia coli. Whole‐cell assays using purified OSGRFT and infectivity assays using crude extracts of transgenic rice endosperm confirmed that both crude and pure OSGRFT showed potent activity against HIV and the crude extracts were not toxic towards human cell lines, suggesting they could be administered as a microbicide with only minimal processing. A freedom‐to‐operate analysis confirmed that GRFT produced in rice is suitable for commercial development, and an economic evaluation suggested that 1.8 kg/ha of pure GRFT could be produced from rice seeds. Our data therefore indicate that rice could be developed as an inexpensive production platform for GRFT as a microbicide component.  相似文献   

18.
Viruses-like particles (VLPs), assembled from capsid structural subunits of several different viruses, have found a number of biomedical applications such as vaccines and novel delivery systems for nucleic acids and small molecules. Production of recombinant proteins in different plant systems has been intensely investigated and improved upon in the last two decades. Plant-derived antibodies, vaccines, and microbicides have received great attention and shown immense promise. In the case of mucosal vaccines, orally delivered plant-produced VLPs require minimal processing of the plant tissue, thus offering an inexpensive and safe alternative to more conventional live attenuated and killed virus vaccines. For other applications which require higher level of purification, recent progress in expression levels using plant viral vectors have shown that plants can compete with traditional fermentation systems. In this review, the different methods used in the production of VLPs in green plants are described. Specific examples of expression, assembly, and immunogenicity of several plant-derived VLPs are presented.  相似文献   

19.
The E2 glycoprotein is a structural component of the hepatitis C virus (HCV) virion. It interacts with putative cellular receptors, elicits production of neutralising antibodies against the virus, and is involved in viral morphogenesis. The protein is considered as a major candidate for anti-HCV vaccine. Despite this, relatively little is known about this protein. Previous studies have focused on the antigenic and functional analysis of the glycosylated forms. This report describes expression of the ectodomain of E2 (recE2) in Escherichia coli cells, its purification, and initial characterisation of its structural and functional properties. It is demonstrated that the purified protein forms small soluble aggregates, which retain functional characteristics of its native counterpart, i.e., it interacts with a putative cellular receptor, CD81, and is recognised by both conformation-dependent and -independent anti-E2 monoclonal antibodies.  相似文献   

20.
Introduction HepatitisCvirus(HCV)isanRNAvirusthatcausesacuteor chronichepatitis,cirrhosis,andhepatocellularcarcinoma(HCC)[1,2].DespiterecentadvancesinthetherapyofHCV,eventhemostrecent combinationofpegylatedalpha-interferonandribavirinfailstoelimi nateinfectioninnearly50%ofthoseinfected[3,4].Nowadays,itis wellknownthatvaccineisstillthemostefficientwaystopreventvirus infection[5].Thestudyingofviralvaccinehasbeenhamperedbythe lackofanefficientcellculturesystem.Asaenvelopeglycoprotein,E2prot…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号