首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
《Cellular signalling》2014,26(6):1213-1225
Spatial and temporal organization of signal transduction is critical to link different extracellular stimuli with distinct cellular responses. A classical example of hormones and growth factors creating functional diversity is illustrated by the multiple signaling pathways activated by the protein kinase C (PKC) family of serine/threonine protein kinases. The molecular requirements for diacylglycerol (DAG) and calcium (Ca2 +) to promote PKC membrane translocation, the hallmark of PKC activation, have been clarified. However, the underlying mechanisms that establish selectivity of individual PKC family members to facilitate differential substrate phosphorylation and varied signal output are still not fully understood. It is now well believed that the coordinated control and functional diversity of PKC signaling involves the formation of PKC isozyme-specific protein complexes in certain subcellular sites. In particular, interaction of PKC isozymes with compartment and signal-organizing scaffolds, including receptors for activated C-kinase (RACKs), A-kinase-anchoring proteins (AKAPs), 14-3-3, heat shock proteins (HSP), and importins target PKC isozymes to specific cellular locations, thereby delivering PKC isozymes into close proximity of their substrates. In addition, several annexins (Anx), including AnxA1, A2, A5 and A6, display specific and distinct abilities to interact and promote membrane targeting of different PKC isozymes. Together with the ability of annexins to create specific membrane microenvironments, this is likely to enable PKCs to phosphorylate certain substrates and regulate their downstream effector pathways in specific cellular sites. This review aims to summarize the capacity of annexins to modulate the localization and activity of PKC family members and participate in the spatiotemporal regulation of PKC signaling in health and disease.  相似文献   

2.
Protein kinase C (PKC)1 isozymes comprise a family of related cytosolic kinases that translocate to the cell particulate fraction on stimulation. The activated enzyme is thought to be on the plasma membrane. However, phosphorylation of protein substrates occurs throughout the cell and is inconsistent with plasma membrane localization. Using an isozyme-specific monoclonal antibody we found that, on activation, this PKC isozyme translocates to myofibrils in cardiac myocytes and to microfilaments in fibroblasts. Translocation of this activated PKC isozyme to cytoskeletal elements may explain some of the effects of PKC on cell contractility and morphology. In addition, differences in the translocation site of individual isozymes--and, therefore, phosphorylation of different substrates localized at these sites--may explain the diverse biological effects of PKC.  相似文献   

3.
Individual protein kinase C (PKC) isozymes have been implicated in many cellular responses important in lung health and disease, including permeability, contraction, migration, hypertrophy, proliferation, apoptosis, and secretion. New ideas on mechanisms that regulate PKC activity, including the identification of a novel PKC kinase, 3-phosphoinositide-dependent kinase-1 (PDK-1), that regulates phosphorylation of PKC, have been advanced. The importance of targeted translocation of PKC and isozyme-specific binding proteins (like receptors for activated C-kinase and caveolins) is well established. Phosphorylation state and localization are now thought to be key determinants of isozyme activity and specificity. New concepts on the role of individual PKC isozymes in proliferation and apoptosis are emerging. Opposing roles for selected isozymes in the same cell system have been defined. Coupling to the Wnt signaling pathway has been described. Phenotypes for PKC knockout mice have recently been reported. More specific approaches for studying PKC isozymes and their role in cell responses have been developed. Strengths and weaknesses of different experimental strategies are reviewed. Future directions for investigation are identified.  相似文献   

4.
The leukocyte adhesion molecule L-selectin has an important role in the initial steps of leukocyte extravasation during inflammation and lymphocyte homing. Its cytoplasmic domain is involved in signal transduction after L-selectin cross-linking and in the regulation of receptor binding activity in response to intracellular signals. However, the signaling events occurring at the level of the receptor are largely unknown. This study therefore addressed the question of whether protein kinases associate with the cytoplasmic domain of the receptor and mediate its phosphorylation. Using a glutathione S-transferase fusion protein of the L-selectin cytoplasmic domain, we isolated a kinase activity from cellular extracts of the human leukemic Jurkat T-cell line that phosphorylated L-selectin on serine residues. This kinase showed characteristics of the protein kinase C (PKC) family. Moreover, the Ca(2+)-independent PKC isozymes theta and iota were found associated with the cytoplasmic domain of L-selectin. Pseudosubstrate inhibitors of these isozymes abolished phosphorylation of the cytoplasmic domain, demonstrating that these kinases are responsible for the phosphorylation. Analysis of proteins specifically bound to the phosphorylated cytoplasmic tail of L-selectin revealed that PKCalpha and -theta are strongly associated with the phosphorylated cytoplasmic domain of L-selectin. Binding of these isozymes to L-selectin was also found in intact cells after phorbol ester treatment inducing serine phosphorylation of the receptor. Furthermore, stimulation of Jurkat T-cells by CD3 cross-linking induced association of PKCalpha and -theta with L-selectin, indicating a role of these kinases in the regulation of L-selectin through the T-cell receptor complex. The phosphorylation-regulated association of PKC isozymes with the cytoplasmic domain of L-selectin indicates an important role of this kinase family in L-selectin signal transduction.  相似文献   

5.
D Ron  M G Kazanietz 《FASEB journal》1999,13(13):1658-1676
Protein kinase C (PKC), a family of related serine-threonine kinases, is a key player in the cellular responses mediated by the second messenger diacylglycerol (DAG) and the phorbol ester tumor promoters. The traditional view of PKCs as DAG/phospholipid-regulated proteins has expanded in the last few years by three seminal discoveries. First, PKC activity and maturation is controlled by autophosphorylation and transphosphorylation mechanisms, which includes phosphorylation of PKC isozymes by phosphoinositide-dependent protein kinases (PDKs) and tyrosine kinases. Second, PKC activity and localization are regulated by direct interaction with different types of interacting proteins. Protein-protein interactions are now recognized as important mechanisms that target individual PKCs to different intracellular compartments and confer selectivity by associating individual isozymes with specific substrates. Last, the discovery of novel phorbol ester receptors lacking kinase activity allows us to speculate that some of the biological responses elicited by phorbol esters or by activation of receptors coupled to elevation in DAG levels could be mediated by PKC-independent pathways.  相似文献   

6.
Protein kinases, and the signal transduction pathways in which they participate, are now recognized to be medicinally attractive targets of opportunity. Inhibitors of the protein kinase family not only hold great promise as therapeutic agents, but are also of profound utility in the characterization of signaling pathways. The direct visualization of protein kinase activity in living cells provides a genuine assessment of the efficacy and selectivity of these inhibitors in a physiological setting. In addition, the ability to visualize the activity of a protein kinase in real time furnishes a direct measurement of the activation of specific signaling pathways in response to extracellular stimuli. We have developed two series of fluorescent substrates for protein kinase C (PKC) using a strategy that positions the reporter-group directly on the residue undergoing phosphorylation. The first series of PKC substrates is based, in part, on the Ca(+2) indicators developed by Tsien and his collaborators during the 1980s. In this case, phosphorylation of the substrate creates a divalent metal ion binding site. Upon metal ion coordination, a fluorescence change transpires via a mechanism analogous to that described for the Ca(+2) indicators. The second series of PKC sensors was identified via the preparation and subsequent screen of a library of fluorescently-labeled PKC peptide substrates. The lead derivative displays a phosphorylation-induced fluorescence change that allows the visualization of real-time PKC activity in both cell lysates and living cells. Furthermore, immunodepletion experiments demonstrate that the fluorescently-tagged peptide is selectively, if not exclusively, phosphorylated by the conventional PKCs. Both of the protein kinase biosensor strategies take advantage of the ease with which peptides can be modified to create libraries of structurally altered analogs. However, the inherent synthetic mutability of peptides is not just limited to library construction. For example, it may ultimately be possible to simultaneously monitor multiple protein kinases by affixing fluorophores with distinct photophysical properties to appropriately designed active site-directed peptides.  相似文献   

7.
Murine embryonic palate mesenchyme (MEPM) cells are responsive to a number of endogenous factors found in the local embryonic tissue environment. Recently, it was shown that activation of the cyclic AMP (cAMP) or the transforming growth factor β (TGFβ) signal transduction pathways modulates the proliferative response of MEPM cells to epidermal growth factor (EGF). Since the mitogen-activated protein kinase (MAPK) cascade is a signal transduction pathway that mediates cellular responsiveness to EGF, we examined the possibility that several signaling pathways which abrogate EGF-stimulated proliferation do so via the p42/p44 MAPK signaling pathway. We demonstrate that EGF stimulates MAPK phosphorylation and activity in MEPM cells maximally at 5 minutes. Tyrosine phosphorylation and activation of MAPK was unaffected by treatment of MEPM cells with TGFβ or cholera toxin. Similarly, TGFβ altered neither EGF-induced MAPK tyrosine phosphorylation nor activity. However, the calcium ionophore, A23187, significantly increased MAPK phosphorylation which was further increased in the presence of EGF, although calcium mobilization reduced EGF-induced proliferation. Despite the increase in phosphorylation, we could not demonstrate induction of MAPK activity by A23187. Like EGF, phorbol ester, under conditions which activate PKC isozymes in MEPM cells, increased MAPK phosphorylation and activity but was also growth inhibitory to MEPM cells. The MEK inhibitor, PD098059, only partially abrogated EGF-induced phosphorylation. Likewise, depletion of PKC isozymes partially abrogated EGF-induced MAPK phosphorylation. Inhibition of both MEK and PKC isozymes resulted in a marked decrease in MAPK activity, confirming that EGF uses multiple pathways to stimulate MAPK activity. These data indicate that the MAPK cascade does not mediate signal transduction of several agents that inhibit growth in MEPM cells, and that there is a dissociation of the proliferative response and MAP kinase activation. Furthermore, other signaling pathways known to play significant roles in differentiation of palatal tissue converge with the MAPK cascade and may use this pathway in the regulation of alternative cellular processes. J. Cell. Physiol. 176:266–280, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
Profilin, a cytoskeletal protein, is emerging as an important link between signal transduction pathways and cytoskeletal dynamics. Profilin is phosphorylated on its C-terminal serine by protein kinase C (PKC). The protein kinase used for the in vitro phosphorylation studies reported earlier was a mixture of isozymes, and therefore, attempts were made to address the isozyme specificity on profilin phosphorylation under in vitro conditions. Profilin was subjected to phosphorylation by PKCalpha, PKCepsilon, and PKCzeta isozymes individually, and it was observed that profilin phosphorylation is cofactor-independent. PKCzeta phosphorylates profilin to a higher extent, but exhibits cofactor dependency with respect to phosphoinositides. The stoichiometry of phosphorylation was measured in the presence of these different isozymes, and a maximum stoichiometry of 0.8 (mole phosphate incorporated/mole profilin) was obtained in the presence of PKCzeta. Phosphorylation of profilin by PKCzeta was maximal in the presence of phosphatidylinositol4,5-bisphosphate (PI4,5-P2) when compared to the other phosphoinositides studied.  相似文献   

9.
Rho-associated kinase (Rho-kinase/ROCK/ROK) is a serine/threonine kinase and plays an important role in various cellular functions. The cAMP-dependent protein kinase (protein kinase A/PKA) and protein kinase C (PKC) are also serine/threonine kinases, and directly and/or indirectly take part in the signal transduction pathways of Rho-kinase. They have similar phosphorylation site motifs, RXXS/T and RXS/T. The purpose of this study was to identify whether sites phosphorylated by Rho-kinase could be targets for PKA and PKC and to find peptide substrates that are specific to Rho-kinase, i.e., with no phosphorylation by PKA and PKC. A total of 18 substrates for Rho-kinase were tested for phosphorylation by PKA and PKC. Twelve of these sites were easily phosphorylated. These results mean that Rho-kinase substrates can be good substrates for PKA and/or PKC. On the other hand, six Rho-kinase substrates showing no or very low phosphorylation efficiency (<20%) for PKA and PKC were identified. Kinetic parameters (K(m) and k(cat)) showed that two of these peptides could be useful as substrates specific to Rho-kinase phosphorylation.  相似文献   

10.
Abstract: Protein kinase C (PKC) activity, western blot analysis of PKCα, β, γ, ε, and ζ by isozyme-specific antibodies, and in vitro phosphorylation of endogenous substrate proteins were studied in the mice brain after pentyl-enetetrazole-induced chemoshock. The PKC isozymes and endogenous substrates in the crude cytosolic and membrane fractions were partially purified by DE-52 columns eluted with buffer A containing 100 or 200 m M KCI. This method consistently separates cytosolic and membrane proteins and various PKC isoforms. The 100 m M KCI eluates from DE-52 columns contain more PKC α and β in both cytosol and membrane than the 200 m M KCI eluates, whereas PKCγ, ε, and ζappear in equal amounts in these two eluates. The kinase activity assayed by phosphorylation of exogenous histone was increased in the chemoshocked mice in both the cytosol and membrane of 200 m M KCI eluates. In further analysis by immunoblotting, this increased activity was found to be due to the increase in content of PKC7 isozyme. As for novel-type ε and ζ isozymes, they were not altered in the chemoshocked mice. From autoradiography, the endogenous substrate 17-kDa neurogranin, which was shown below 21 kDa, was mostly eluted by 100 m M KCI from the DE-52 column, whereas 43-kDa neuromodulin, which was also demonstrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, only appeared in the 200 m M KCI eluates. The in vitro phosphorylation of neuromodulin was found to be increased in the chemoshocked mice. Therefore, the increased phosphorylation of neuromodulin and increased content of the PKCγ isoform were involved in the pentylenetetrazole-induced chemoshock.  相似文献   

11.
Studies focused on the cAMP-dependent protein kinase (PKA) have led to the identification of conserved active-site residues involved in Ser/Thr protein kinase catalysis and have ruled out a role for Cys residues in the catalytic mechanism. Protein kinase C (PKC) is a Ser/Thr protein kinase isozyme family. We recently reported that the peptide-substrate analog N-biotinyl-Arg-Arg-Arg-Cys-Leu-Arg-Arg-Leu (N-biotinyl-RRRCLRRL) spontaneously forms intermolecular disulfide bridges with the active-site region of PKC isozymes concomitant with inactivation of histone kinase catalysis. Because Cys does not participate in PKC catalysis, one can analyze the active-site topology of PKC by examining which catalytic reactions are sterically hindered when the inactivator peptide is tethered to Cys in the active-site region of the enzyme. In this report, we show that N-biotinyl-RRRCLRRL inactivates the bulky PKC-catalyzed histone phosphorylation reaction, the comparatively less bulky PKC-catalyzed phosphorylation of a series of octapeptide, hexapeptide, and pentapeptide substrates, the intramolecular autophosphorylation reaction of PKC, and the least bulky PKC-catalyzed reaction, ATP hydrolysis, in a dithiothreitol-sensitive manner with comparable efficacy. Our results provide evidence that the covalent linkage of N-biotinyl-RRRCLRRL to the active-site region of PKC sterically hinders PKC catalysis, even in the absence of peptide and protein substrates.  相似文献   

12.
13.
In fast-spiking neurons such as those in the medial nucleus of the trapezoid body (MNTB) in the auditory brainstem, Kv3.1 potassium channels are required for high frequency firing. The Kv3.1b splice variant of this channel predominates in the mature nervous system and is a substrate for phosphorylation by protein kinase C (PKC) at Ser-503. In resting neurons, basal phosphorylation at this site decreases Kv3.1 current, reducing neuronal ability to follow high frequency stimulation. We used a phospho-specific antibody to determine which PKC isozymes control serine 503 phosphorylation in Kv3.1b-tranfected cells and in auditory neurons in brainstem slices. By using isozyme-specific inhibitors, we found that the novel PKC-delta isozyme, together with the novel PKC-epsilon and conventional PKCs, contributed to the basal phosphorylation of Kv3.1b in MNTB neurons. In contrast, only PKC-epsilon and conventional PKCs mediate increases in phosphorylation produced by pharmacological activation of PKC in MNTB neurons or by metabotropic glutamate receptor activation in Kv3.1/mGluR1-cotransfected cells. We also measured the time course of dephosphorylation and recovery of basal phosphorylation of Kv3.1b following brief high frequency electrical stimulation of the trapezoid body, and we determined that the recovery process is mediated by both novel PKC-delta and PKC-epsilon isozymes and by conventional PKCs. The association between Kv3.1b and PKC isozymes was confirmed by reciprocal coimmunoprecipitation of Kv3.1b with multiple PKC isozymes. Our results suggest that the Kv3.1b channel is regulated by both conventional and novel PKC isozymes and that novel PKC-delta contributes specifically to the maintenance of basal phosphorylation in auditory neurons.  相似文献   

14.
To generate an adaptive response from the mammalian immune system requires that antigen bind to cognate receptors on T and B cells, a process which activates intracellular signaling pathways. Crosslinking the B cell antigen receptor (BCR) ultimately activates cell proliferation in both higher and lower vertebrates. Recent studies suggest that many functional components of these intracellular pathways were evolutionarily conserved among the vertebrates. Antibody-mediated crosslinking of surface immunoglobulin leads to tyrosine phosphorylation on presumptive accessory molecules of the teleost BCR as well as several intracellular proteins. Crosslinking the teleost BCR also triggers calcium influx and activation of protein kinase C (PKC) which are hallmark components of the phosphatidyl inositol signal transduction pathway in mammalian lymphocytes. The activation of teleost PKC ultimately generates dually-phosphorylated forms of mitogen activated protein kinase. The latter enzyme is viewed as a key cytoplasmic control point for integrating signals arriving from several kinase/phosphatase pathways in mammalian cells. Preliminary evidence suggests that intracellular signaling mediated through antigen receptor complexes may be very sensitive to external factors, including heavy metals such as mercuric chloride which can alter calcium flux and tyrosine phosphorylation patterns in teleost leukocytes. As the process of lymphocyte activation in teleost fish is better understood, it may be possible to provide aquaculturists, environmental regulators and fisheries managers with better information on those natural and man-made conditions which interfere with the development of protective immune responses in natural and captive finfish populations.  相似文献   

15.
Long-term treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) down-regulates select protein kinase C (PKC) isozymes and may differentially affect PKC substrates. We investigated the role of PKC down-regulation on phosphorylation of two PKC substrates, the 43 kDa growth-associated protein (GAP-43) and the myristoylated alanine-rich C-kinase substrate (MARCKS) in SK-N-SH human neuroblastoma cells. Cells were treated with 70 nM TPA for 15 min, 17 or 72 h. Phosphorylation of MARCKS and GAP-43 was elevated throughout 72 h of TPA. The magnitude and peptidic sites of phosphorylation in GAP-43 and MARCKS were similar after all TPA treatments. GAP-43, but not MARCKS, content was increased after 17 and 72 h of TPA. The ratio of GAP-43 phosphorylation to content was elevated throughout 17 h but returned to control by 72 h as content increased. PKC epsilon and alpha isozyme content was greatly reduced after 72 h of TPA but membranes retained 23% of PKC activity. Only PKC epsilon translocated to membranes after 15 min TPA. GAP-43 content after 72 h of TPA was increased in subcellular fractions in which significant PKC epsilon isozyme concentration remained. These results demonstrate that continuous TPA differentially affected phosphorylation of PKC substrate proteins and regulation of PKC isozyme content in SK-N-SH cells.  相似文献   

16.
Tang S  Xiao V  Wei L  Whiteside CI  Kotra LP 《Proteins》2008,72(1):447-460
Protein kinase C (PKC) isozymes are an important class of enzymes in cell signaling and as drug targets. They are involved in specific pathways and have selectivity towards certain ligands, despite their high sequence similarities. Ruboxistaurin is a specific inhibitor of PKC-beta. To understand the molecular determinants for the selectivity of ruboxistaurin, we derived the three-dimensional structures of the kinase domains of PKC-alpha, -betaI, and -zeta using homology modeling. Several binding orientations of ruboxistaurin in the binding sites of these PKC catalytic domains were analyzed, and a putative alternative binding site for PKC-zeta was identified in its kinase domain. The calculated free energy of binding correlates well with the IC(50) of the inhibitor against each PKC isozyme. A residue-based energy decomposition analysis attributed the binding free energy to several key residues in the catalytic sites of these enzymes, revealing potential protein-ligand interactions responsible for ligand binding. The contiguous binding site revealed in the catalytic domain of PKC-zeta provides avenues for selective drug design. The details of structural nuances for specific inhibition of PKC isozymes are presented in the context of the three-dimensional structures of this important class of enzymes.  相似文献   

17.
We have previously found that the protein kinase C (PKC) inhibitor, CGP 41 251, blocks oncogenic ras-p21 protein- and beta-PKC-induced oocyte maturation, but only weakly inhibits insulin-induced oocyte maturation (which requires activation of wild-type endogenous ras-p21). Because the dose-response curves for inhibition of oncogenic p21- and beta-PKC-induced oocyte maturation by CGP 41 251 superimpose and because the ras-p21-inactivating antibody, Y13-259, does not inhibit beta-PKC-induced oocyte maturation, we concluded that the oncogenic, but not wild-type, protein requires beta-PKC as a downstream target. Because multiple isoforms of PKC exist and several of these, such as epsilon-PKC, have been found to be important on ras signal transduction pathways, we have investigated which PKC isoforms are critical to each ras protein. For this purpose, we used PKC-isoform-specific inhibitors, which have been shown to inhibit selectively the function and translocation of PKC isoforms in vitro and in vivo. Specifically, the peptides KLFIMN, QEVIRN, and EAVSLKPT each inhibit beta-1, beta-2, and epsilon-PKC, respectively, but do not cross-inhibit other PKC isoforms. We find that the epsilon-PKC inhibitory peptide strongly blocks insulin- but not oncogenic ras-p21-induced oocyte maturation whereas the beta-2 inhibitory peptide more strongly inhibits oncogenic ras-p21-induced oocyte maturation, corroborating our previous studies. The beta-1 inhibitory peptide has little effect on either protein. We conclude that selective inhibition of individual PKC isoforms permits the distinction between signal transduction initiated by oncogenic and activated wild-type p21 proteins and implicate different specific PKC isoforms in mitogenic signal transduction by each of these proteins. The ability to dissect the role of individual PKC isozymes in this regulation is of therapeutic significance.  相似文献   

18.
Kang JH  Asai D  Yamada S  Toita R  Oishi J  Mori T  Niidome T  Katayama Y 《Proteomics》2008,8(10):2006-2011
The purpose of this study was to find protein kinase C (PKC) isozyme-specific peptides. A peptide library containing 1772 sequences was designed using Scansite and screened by MALDI-TOF MS and kinase activity assays for PKC isozyme-specificity. A peptide (Alphatomega; H-FKKQGSFAKKK-NH(2)) with high specificity for PKC alpha relative to other isozymes was identified. The peptide was phosphorylated to a greater extent by tissue lysates from B16 melanoma, HepG2, and human breast cancer, which had higher levels of activated PKC alpha, when compared to normal skin, liver, and human breast tissue lysates, respectively. Moreover, addition of Ro-31-7549, an inhibitor with great specificity for PKC alpha, to the phosphorylation reaction caused a dose-dependent reduction in phosphorylation, but no inhibition was identified with the addition of rottlerin and H-89. These results show that this peptide has great potential as a PKC alpha-specific substrate.  相似文献   

19.
Protein tyrosine phosphorylation has not been considered to be important for cellular activation by phospholipase C-linked vasoactive peptides. We found that endothelin, angiotensin II, and vasopressin (AVP), peptides that signal via phospholipase C activation, rapidly enhanced tyrosine phosphorylation of proteins of approximate molecular mass 225, 190, 135, 120, and 70 kDa in rat renal mesangial cells. The phosphorylated proteins were cytosolic or membrane-associated, and none were integral to the membrane, suggesting that the peptide receptors are not phosphorylated on tyrosine. Epidermal growth factor (EGF), which does not activate phospholipase C in these cells, induced the tyrosine phosphorylation of its own 175-kDa receptor, in addition to five proteins of identical molecular mass to those phosphorylated in response to endothelin, AVP, and angiotensin II. This suggests that in mesangial cells there is a common signaling pathway for phospholipase C-coupled agonists and agonists classically assumed to signal via receptor tyrosine kinase pathways, such as EGF. The phorbol ester, phorbol 12-myristate 13-acetate, and the synthetic diacylglycerol, oleoyl acetylglycerol, stimulated the tyrosine phosphorylation of proteins identical to those phosphorylated by the phospholipase C-linked peptides, suggesting that protein kinase C (PKC) activation is sufficient to active tyrosine phosphorylation. However, the PKC inhibitor, staurosporine, and down-regulation of PKC activity by prolonged exposure to phorbol esters completely inhibited tyrosine phosphorylation in response to PMA but not to endothelin, AVP, or EGF. In conclusion, endothelin, angiotensin II, and AVP enhances protein tyrosine phosphorylation via at least two pathways, PKC-dependent and PKC-independent. Although activation of PKC may be sufficient to enhance protein tyrosine phosphorylation, PKC is not necessary and may not be the primary route by which these agents act. At least one of these pathways is shared with the growth factor EGF, suggesting not only common intermediates in the signaling pathways for growth factors and vasoactive peptides but also perhaps common cellular tyrosine kinases which phosphorylate these intermediates.  相似文献   

20.
Chondrocyte 'dedifferentiation' involves the switching of the cell phenotype to one that no longer secretes extracellular matrix found in normal cartilage and occurs frequently during chondrocyte expansion in culture. It is also characterized by the differential expression of receptors and intracellular proteins that are involved in signal transduction pathways, including those associated with cell shape and actin microfilament organization. The objective of this study was to examine the modulation of chondrocyte phenotype by cultivation on polymer substrates containing poly(ethylene glycol) (PEG). We observed differential arrangement of actin organization in articular chondrocytes, depending on PEG length. When cultivated on 300 g/mol PEG substrates at day 19, chondrocytes had lost intracellular markers characteristic of the differentiated phenotype, including type II collagen and protein kinase C (PKC). On these surfaces, chondrocytes also expressed focal adhesion and signaling proteins indicative of cell attachment, spreading, and FA turnover, including RhoA, focal adhesion kinase, and vinculin. The switch to a dedifferentiated chondrocyte phenotype correlated with integrin expression. Conversely, the expression of CD44 receptors coincided with chondrogenic characteristics, suggesting that binding via these receptors could play a role in maintaining the differentiated phenotype on such substrates. These effects can be similar to those of compounds that interfere in intracellular signaling pathways and can be utilized to engineer cellular response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号