首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolic engineering for microbial production of shikimic acid   总被引:8,自引:0,他引:8  
Shikimic acid is a high valued compound used as a key starting material for the synthesis of the neuramidase inhibitor GS4104, which was developed under the name Tamiflu for treatment of antiviral infections. An excellent alternative to the isolation of shikimic acid from fruits of the Illicium plant is the fermentative production by metabolic engineered microorganisms. Fermentative production of shikimic acid was most successfully carried out by rational designed Escherichia coli strains by blocking the aromatic amino acid pathway after the production of shikimic acid. An alternative is to produce shikimic acid as a result of dephosphorylation of shikimate-3-phosphate. Engineering the uptake of carbon, the regulatory circuits, central metabolism and the common aromatic pathway including shikimic acid import that have all been targeted to effect higher productivities and lower by-product formation are discussed.  相似文献   

2.
莽草酸是大肠杆菌合成芳香族氨基酸的中间代谢物,也是抗流感药物"达菲"的重要合成前体。合成莽草酸需要截断莽草酸途径,导致芳香族氨基酸无法合成,因此面临细胞生长受到抑制的问题。使用动态调控策略通过将细胞生长和莽草酸的合成相互分离,可以提高菌株的生产性能。通过使用生长偶联型启动子和降解决定子(Degrons),组建动态分子开关。利用该动态分子开关实现细胞生长与莽草酸合成分离,在5L发酵罐中经过72h发酵得到了14.33g/L的莽草酸。结果表明,这种动态分子开关可以通过调控靶蛋白丰度来改变碳流量平衡,使菌株获得更优秀的生产性能。  相似文献   

3.
Shikimic acid properties and its available analytical techniques are discussed. Plants having the highest content of shikimic acid are shown. The existing isolation methods are analyzed and the most optimal approaches to extracting this acid from natural sources (plants and microorganisms) are considered.  相似文献   

4.
Shikimic acid is an industrially important chiral compound used as a key ingredient in formulation of drug Oseltamivir phosphate (Tamiflu) for the treatment of swine/avian flu. The high cost and limited availability of shikimic acid isolated from plants has detained the use of this valuable building block of the drug. It is a versatile compound having many characteristic properties for many synthetic reactions particularly in pharmaceuticals and cosmetic industries. By virtue of being a natural product, the relevant biochemical pathway in microorganisms can be harnessed into fermentation processes to produce shikimic acid. This is an excellent alternative for the sustainable and efficient production of shikimic acid over the tedious and cumbersome process of plant based extraction methods. Various strategies of shikimic acid production are reviewed and an account of comparison of their challenges, promises and restraint is presented. Furthermore, present review attempts to focus on the market trend of shikimic acid due to its high demand with particular emphasis laid on the pandemics of swine flu. This review not only covers the recent advances in shikimic acid production but also highlights the versatile applications and its market scenario. The concluding remarks and its potential as a commercial bulk chemical are discussed in the light of current research.  相似文献   

5.
Shikimic acid has various pharmaceutical and industrial applications. It is the sole chemical building block for the antiviral drug oseltamivir (Tamiflu®) and one of the potent pharmaceutical intermediates with three chiral centres. Here we report a modified strain of Bacillus megaterium with aroK (shikimate kinase) knock out to block the aromatic biosynthetic pathway downstream of shikimic acid. Homologous recombination based gene disruption approach was used for generating aroK knock out mutant of B. megaterium. Shake flask cultivation showed shikimic acid yield of 2.98 g/L which is ~6 times more than the wild type (0.53 g/L). Furthermore, the shikimate kinase activity was assayed and it was 32 % of the wild type. Effect of various carbon sources on the production of shikimic acid was studied and fructose (4 %, w/v) was found to yield maximum shikimic acid (4.94 g/L). The kinetics of growth and shikimic acid production by aroK knockout mutant was studied in 10 L bioreactor and the yield of shikimic acid had increased to 6 g/L which is ~12 fold higher over the wild type. It is evident from the results that aroK gene disruption had an immense effect in enhancing the shikimic acid production.  相似文献   

6.
The alcohol dehydrogenases (ADHs) from Lactobacillus kefir and Rhodococcus sp., which earlier turned out to be suitable for a chemoenzymatic one-pot synthesis with organocatalysts, were immobilized with their cofactors on a commercially available superabsorber based on a literature known protocol. The use of the immobilized ADH from L. kefir in the reduction of acetophenone as a model substrate led to high conversion (>95%) in the first reaction cycle, followed by a slight decrease of conversion in the second reaction cycle. A comparable result was obtained when no cofactor was added although a water rich reaction media was used. The immobilized ADHs also turned out to be suitable catalysts for the diastereoselective reduction of an organocatalytically prepared enantiomerically enriched aldol adduct, leading to high conversion, diastereomeric ratio and enantioselectivity for the resulting 1,3-diols. However, at a lower catalyst and cofactor amount being still sufficient for biotransformations with “free” enzymes the immobilized ADH only showed high conversion and >99% ee for the first reaction cycle whereas a strong decrease of conversion was observed already in the second reaction cycle, thus indicating a significant leaching effect of catalyst and/or cofactor.  相似文献   

7.
Shikimic acid is one of several industrially interesting chiral starting materials formed in the aromatic amino acid pathway of plants and microorganisms. In this study, the physiology of a shikimic acid producing strain of Escherichia coli (derived from W3110) deleted in aroL (shikimic acid kinase II gene), was compared to that of a corresponding control strain (W3110) under carbon- and phosphate-limited conditions. For the shikimic acid producing strain (referred to as W3110.shik1), phosphate limitation resulted in a higher yield of shikimic acid (0.059 +/- 0.012 vs. 0.024 +/- 0.005 c-mol/c-mol) and a lower yield of by-products from the shikimate pathway, when compared to carbon-limited condition. The yield of the by-product 3-dehydroshikimic acid (DHS) decreased from 0.076 +/- 0.028 to 0.022 +/- 0.001 c-mol/c-mol. Several other by-products were only detected under carbon-limited conditions. The latter group included 3-dehydroquinic acid (0.021 +/- 0.021 c-mol/c-mol), quinic acid (0.012 +/- 0.005 c-mol/c-mol), and gallic acid (0.002 +/- 0.001 c-mol/c-mol). For both strains, more acetate was produced under phosphate than the carbon-limited case. Considerable cell lysis was found for both strains but was higher for W3110.shik1, and increased for both strains under phosphate limitation. The advantages of the latter condition in terms of an increased shikimic acid yield was thus counteracted by an increased cell lysis, which may make downstream processing more difficult.  相似文献   

8.
A new assay for 5-enolpyruvylshikimate-3-phosphate synthase is described. This enzyme of the shikimate pathway of aromatic amino acid biosynthesis generates 5-enolpyruvylshikimate 3-phosphate and orthophosphate from phosphoenolpyruvate and shikimate 3-phosphate. The shikimate pathway is present in bacteria and plants but not in mammals. The assay employs a paper-chromatographic separation of radiolabeled substrate from product. The method is specific, is sensitive to 50 pmol of product, and is suitable for use in crude extracts of bacteria. This enzyme appears to be the primary target site of the commercial herbicide glyphosate (N-phosphonomethyl glycine). A procedure for the enzymatic synthesis of [14C]shikimate 3-phosphate from the commercially available precursor [14C]shikimic acid is also described.  相似文献   

9.
Shikimic acid is an important metabolic intermediate with various applications. This paper presents a novel control strategy for the construction of shikimic acid producing strains, without completely blocking the aromatic amino acid biosynthesis pathways. Growth phase-dependent expression and gene deletion was performed to regulate the aroK gene expression in the shikimic acid producing Escherichia coli strain, SK4/rpsM. In this strain, the aroL and aroK genes were deleted, and the aroB, aroG*, ppsA, and tktA genes were overexpressed. The relative amount of shikimic acid that accumulated in SK4/rpsM was 1.28-fold higher than that in SK4/pLac. Furthermore, a novel shikimic acid production pathway, combining the expression of the dehydroquinate dehydratase-shikimate dehydrogenase (DHQ-SDH) enzyme from woody plants, was constructed in E. coli strains. The results demonstrated that a growth phase-dependent control of the aroK gene leads to higher SA accumulation (5.33 g/L) in SK5/pSK6. This novel design can achieve higher shikimic acid production by using the same amount of medium used by the current methods and can also be widely used for modifying other metabolic pathways.  相似文献   

10.
Nicotinic acid adenine dinucleotide phosphate (NAADP) mobilizes Ca2+ through a mechanism totally independent of cyclic ADP-ribose or inositol trisphosphate. Fluorescent analogs of NAADP were synthesized in this study to facilitate further characterization of this novel Ca2+ release mechanism. The base-exchange reaction catalyzed by ADP-ribosyl cyclase was utilized to convert nicotinamide 1,N6-ethenoadenine dinucleotide phosphate to a fluorescent product, nicotinic acid 1,N6-ethenoadenine dinucleotide phosphate (etheno-NAADP). The excitation spectrum of the product showed two maxima at 275 nm and 300 nm and an emission maximum at 410 nm. An aza derivative of etheno-NAADP was also synthesized by sequential treatments with NaOH and nitrite. The product, nicotinic acid 1,N6-etheno-2-aza-adenine dinucleotide phosphate (etheno-aza-NAADP) had excitation maxima at 280 nm and 360 nm and an emission maximum at 470 nm. The fluorescence of both analogs was sensitive to polarity and exhibited a 3–4-fold enhancement going from an aqueous buffer to an organic solvent. Proton-NMR measurements confirmed the presence of the etheno ring in both analogs. In the aza derivative the proton at the 2-position of the adenine ring was absent, consistent with the conversion of the 2-carbon to a nitrogen. Both analogs could activate Ca2+ release from sea urchin egg homogenates and the half-maximal concentrations for etheno-aza-NAADP and etheno-NAADP were at about 2.5 μM and 5 μM, respectively. At sub-threshold concentrations, both analogs could also function as antagonists, inactivating the NAADP-sensitive Ca2+ release with a half-maximal concentration of 60–80 nM. Microinjection of etheno-aza-NAADP into live eggs activated Ca2+ increase and triggered a cortical exocytotic reaction confirming its effectiveness in vivo. These fluorescent analogs are potentially useful for visualizing the novel Ca2+ stores that are sensitive to NAADP in live cells.  相似文献   

11.
Acute ethanol consumption leads to the accumulation of triglycerides (TGs) in hepatocytes. The increase in lipogenesis and reduction of fatty acid oxidation are implicated as the mechanisms underlying ethanol-induced hepatic TG accumulation. Although glycerol-3-phosphate (Gro3P), formed by glycerol kinase (GYK) or glycerol-3-phosphate dehydrogenase 1 (GPD1), is also required for TG synthesis, the roles of GYK and GPD1 have been the subject of some debate. In this study, we examine (1) the expression of genes involved in Gro3P production in the liver of C57BL/6J mice in the context of hepatic TG accumulation after acute ethanol intake, and (2) the role of GPD1 in the progression of ethanol-induced fatty liver using GPD1 null mice. As a result, in C57BL/6J mice, ethanol-induced hepatic TG accumulation began within 2 h and was 1.7-fold greater than that observed in the control group after 6 h. The up-regulation of GPD1 began 2 h after administering ethanol, and significantly increased 6 h later with the concomitant escalation in the glycolytic gene expression. The incorporation of 14C-labelled glucose into TG glycerol moieties increased during the same period. On the other hand, in GPD1 null mice carrying normal GYK activity, no significant increase in hepatic TG level was observed after acute ethanol intake. In conclusion, GPD1 and glycolytic gene expression is up-regulated by ethanol, and GPD1-mediated incorporation of glucose into TG glycerol moieties together with increased lipogenesis, is suggested to play an important role in ethanol-induced hepatic TG accumulation.  相似文献   

12.
13.
The inhibitory effects of 29 commercial powdered spices on the growth and toxin production of three species of toxigenic Aspergillus were observed by introducing these materials into culture media for mycotoxin production. Of the 29 samples tested, cloves, star anise seeds, and allspice completely inhibited the fungal growth, whereas most of the others inhibited only the toxin production. Eugenol extracted from cloves and thymol from thyme caused complete inhibition of the growth of both Aspergillus flavus and Aspergillus versicolor at 0.4 mg/ml or less. At a concentration of 2 mg/ml, anethol extracted from star anise seeds inhibited the growth of all the strains.  相似文献   

14.
The inhibitory effects of 29 commercial powdered spices on the growth and toxin production of three species of toxigenic Aspergillus were observed by introducing these materials into culture media for mycotoxin production. Of the 29 samples tested, cloves, star anise seeds, and allspice completely inhibited the fungal growth, whereas most of the others inhibited only the toxin production. Eugenol extracted from cloves and thymol from thyme caused complete inhibition of the growth of both Aspergillus flavus and Aspergillus versicolor at 0.4 mg/ml or less. At a concentration of 2 mg/ml, anethol extracted from star anise seeds inhibited the growth of all the strains.  相似文献   

15.
AIMS: We previously reported that the aldehyde dehydrogenase encoded by ALD3 but not ALD6 was responsible, in part, for the increased acetic acid found in Icewines based on the expression profile of these genes during fermentation. We have now completed the expression profile of the remaining yeast aldehyde dehydrogenase genes ALD2, ALD4 and ALD5 during these fermentations to determine their contribution to acetic acid production. The contribution of acetaldehyde stress as a signal to stimulate ALD expression during these fermentations was investigated for all ALD genes. The expression of glycerol-3-phosphate encoded by GPD2 was also followed during these fermentations to determine its role in addition to the role we already identified for GPD1 in the elevated glycerol produced during Icewine fermentation. METHODS AND RESULTS: Icewine juice (38.5 degrees Brix, 398 +/- 5 g l(-1) sugar), diluted Icewine juice (20.8 degrees Brix, 196 +/- 4 g l(-1) sugar) and the diluted juice with sugar levels equal to the original Icewine juice (36.6 degrees Brix, 395 +/- 6 g l(-1) sugar) were fermented in duplicate using the commercial wine yeast K1-V1116. Acetic acid and glycerol production increased 8.4- and 2.7-fold in the Icewine vs the diluted juice fermentation, respectively, accompanied by a fourfold transient increase in acetaldehyde in the Icewine condition during the first week. Both mitochondrial aldehyde dehydrogenases encoded by ALD4 and ALD5 were expressed, with ALD5 expression highest at the start of all fermentations and ALD4 expression increasing during the first week of each condition. ALD2, ALD4, ALD5 and GPD2 showed no differential expression between the three fermentation conditions indicating their lack of involvement in elevating acetic acid and glycerol in Icewine. When yeast fermenting the diluted fermentation was exposed to exogenous acetaldehyde, the transient spike in acetaldehyde increased the expression of ALD3 but this response alone was not sufficient to cause an increase in acetic acid. Expression of the other aldehyde dehydrogenases was unaffected by the acetaldehyde addition. CONCLUSIONS: The aldehyde dehydrogenases encoded by ALD2, ALD4 and ALD5 do not contribute to the elevated acetic acid production during Icewine fermentation. Expression of GPD2 was not upregulated in high sugar fermentations and does not reflect the elevated levels of glycerol found in these wines. Acetaldehyde at a concentration produced during Icewine fermentation stimulates the expression of ALD3, but has no impact on the expression of ALD2, -4, -5 and -6. Upregulation of ALD3 alone in the dilute fermentation is not sufficient to increase acetic acid in wine and requires additional responses found in cells under hyperosmotic stress. SIGNIFICANCE AND IMPACT OF THE STUDY: This work confirms that increased acetic acid and glycerol production during Icewine fermentation follows upregulation of ALD3 and GPD1 respectively, but upregulation of ALD3 alone is not sufficient to increase acetic acid production. Additional responses of cells under osmotic stress are required to increase acetic acid in Icewine.  相似文献   

16.
以马尾松松针为原料,采用超声波提取法从松针粉中提取莽草酸,通过考察料液比((VH2O∶m松针粉,mL:g)、提取时间、提取温度及超声波功率等因素对松针中总莽草酸含量的影响,并在单因素试验的基础上,选取料液比、提取时间、超声波功率3个变量,进行Box-Behnken中心组合设计优化,获得马尾松松针中莽草酸的最佳提取工艺参数为料液比1∶26,提取时间为46min,超声波功率为359 W,此条件下莽草酸的提取率为1.948%。  相似文献   

17.
Ethyl (S)-4-chloro-3-hydroxy butanoate (ECHB) is a building block for the synthesis of hypercholesterolemia drugs. In this study, various microbial reductases have been cloned and expressed in Escherichia coli. Their reductase activities toward ethyl-4-chloro oxobutanoate (ECOB) have been assayed. Amidst them, Baker's yeast YDL124W, YOR120W, and YOL151W reductases showed high activities. YDL124W produced (S)-ECHB exclusively, whereas YOR120W and YOL151W made (R)-form alcohol. The homology models and docking models with ECOB and NADPH elucidated their substrate specificities and enantioselectivities. A glucose dehydrogenase-coupling reaction was used as NADPH recycling system to perform continuously the reduction reaction. Recombinant E. coli cell co-expressing YDL124W and Bacillus subtilis glucose dehydrogenase produced (S)-ECHB exclusively.  相似文献   

18.
19.
Different physiological and nutritional parameters affect the fermentative production of shikimic acid. In our study, Citrobacter freundii initially produced 0.62 g/L of shikimic acid in 72 h. However, when process optimization was employed, 5.11 g/L of shikimic acid was produced in the production medium consisting of glucose (5.0 %), asparagine (4.5 %), CaCO3 (2.0 %), at pH 6.0, when inoculated with 6 % inoculum and incubated at 30 ± 1 °C, 200 rpm for 60 h. Preliminary fed-batch studies have resulted in the production of 9.11 g/L of shikimic acid on feeding the production medium by 20 g/L of glucose at 24 h of the fermentation run. Production of similar amount of shikimic acid was observed when the optimized conditions were employed in a 10-L bioreactor as obtained in shake flask conditions. A total of 9.11 g/L of shikimic acid was produced in 60 h. This is approximately 14.69-fold increase in shikimic acid production when compared to the initial un-optimized production conditions. This has also resulted in the reduction of the production time. The present study provides useful information to the industrialists seeking environmentally benign technology for the production of bulk biomolecules through manipulation of various chemical parameters.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号