首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Oxidative phosphorylation and 1 α,25-dihydroxyvitamin D3 [lα,25-(OH)2D3]synthesis in isolated mitochondria were decreased by the addition of strontium. Calcium effected a similar inhibition of 1α,25-(OH)2D3 synthesis which correlated with cation-induced mitochondrial swelling. The ultrastructural changes were found to be a consequence of experimental conditions and not a prerequisite for suppressed 1α,25-(OH)2D3 synthesis. Dietary administration of strontium or calcium also resulted in a decreased rate of 1α,25-(OH)2D3 synthesis; however, the decrease in 1-hydroxylase activity was accompanied by an induction of mitochondrial 25-hydroxyvitamin D3 24-hydroxylase activity. Such an in vivo-prompted mitochondrial response occurred in the absenee of morphological changes or extensive loss of oxidative phosphorylation activity. In contrast, no induction of 24-hydroxylase activity could be observed in acute studies using isolated mitochondria. Therefore, the in vitro action of calcium and strontium does not appear to reflect the in vivo mechanism whereby the cations act to change renal 25-hydroxyvitamin D3 (25-OHD3) hydroxylation. Results from in vitro studies corcerning the action of calcium to alter renal 25-OHD3 metabolism should be interpreted in light of the cation's capacity to decrease oxidative phosphorylation and the subsequent intramitochondrial generation of NADPH.  相似文献   

2.
We have previously discussed the action of 1 α,25-(OH)2D3, (24R) 24,25-(OH)2 D3 and (25S) 25,26-(OH)2D3 on parathyrin secretion by isolated rat parathyroid cells. In this work, we have compared these effects with those obtained with 1 α -OH D3, 25-OH D3 and 1 α -OH D2.In decreasing order, the activities were : 1 α,25-(OH)2D3> 1 α -OH D3 (24R) 24,25-(OH)2D3 > 25-OH D3 > (25S) 25,26(OH)2D3> 1 α -OH D2. The presence of two hydroxyl groups with one hydroxyl group in α position seems to have the higher activity to inhibit the parathyroid secretion. At least, the nature of the side chain conformation also plays a part upon the effect of PTH release.  相似文献   

3.
A competitive protein-binding radioassay for 24,25-dihydroxyvitamin D [24,25-(OH)2D] in human serum has been developed. Whereas small amounts of [3H]24,25-(OH)2D must be biosynthesized in order to trace the efficiency of the extraction and chromatographic procedures, tritiated 25-hydroxyvitamin D3 ([3H]25-OHD3) can be used as the assay tracer. Since 25-OHD3 and 24,25-(OH)2D3 are equipotent in their competitive displacement of [3H]25-OHD3 from rat serum, 25-OHD3 can be used as the assay standard. Liquid-gel partition chromatography on small columns of Sephadex LH-20 can reliably isolate 24,25-(OH)2D by batch elution. The purity of biosynthesized [3H]24,25-(OH)2D3 and the 24,25-(OH)2D fraction isolated from serum was confirmed by high-pressure chromatography on 0.2 × 50 cm columns of 10-μm silica. Serum 24,25-(OH)2D levels averaged 16% of the serum 25-OHD concentrations in normal subjects. Since chronic hemodialysis patients, without kidneys, had normal serum 24,25-(OH)2D levels, significant extrarenal 25-hydroxycalciferol 24-hydroxylase activity occurs in these subjects. Since the present assay represents a reasonably simple extension of 25-OHD assay methodology, it should prove to be a useful technique in the analysis of clinical disorders of vitamin D metabolism.  相似文献   

4.
To elucidate whether PTH(7-84), a degradation product of PTH(1-84), which inhibits PTH(1-84)-induced bone resorption, also exerts an antagonistic effect on the kidney, we studied the effect of PTH(7-84) on PTH(1-34)-induced production of 1,25-(OH)2D3 in primary cultured murine renal tubules.Neonatal mouse renal tubules cultured in serum-free MEM for 7 days were treated with PTH(1-34) and/or PTH(7-84). Three hours after addition of 25-OHD3 (10−6 M), 1,25-(OH)2D3 was determined. PTH(1-34) stimulated the conversion of 25-OHD3 to 1,25-(OH)2D3, and PTH(7-84) dose-dependently inhibited this process. Real-time PCR revealed that PTH(1-34) increased the expression level of 1α-hydroxylase mRNA, whereas PTH(7-84) did not affect the expression level 1α or 24-hydroxylase mRNA.These in vitro data suggest that PTH(7-84) elicits an antagonistic effect in renal tubules through receptors different from the type I PTH/PTHrP receptor. This may at least partly account for the decreased serum level of 1,25-(OH)2D in patients with severe primary hyperparathyroidism with renal failure.  相似文献   

5.
A new metabolite of Vitamin D3 (25-OHD3-26,23-lactone) has been found in the plasma of Vitamin D3-toxic pigs and cows. This metabolite is at least 5 times more potent than 25-OHD3 in the displacement of [3H]-25-OHD3 from rat plasma protein binding sites under short-term incubation. This metabolite co-migrates with 24,25-(OH)2D3 on Sephadex LH-20 columns developed in chloroform:hexane 65:35 and with 25,26-(OH)2D3 on Sephadex LH-20 columns developed in hexane:chloroform:methanol 9:1:1. The presence of 25-OHD3-26,23-lactone represents a possible contaiminant in the assay of 24,25-(OH)2D3 or 25,26-(OH)2D3 if only Sephadex LH-20 is used for pre-assay purification. 25-OHD3-26,23-lactone is, however, resolved from 24,25-(OH)2D3 by high pressure liquid chromatography (HPLC) using Zorbax Sil silicic acid columns developed in either isopropanol:hexane 8:92 or isopropanol:methylene chloride 2.5:96.5. We assayed for the presence of this new metabolite of Vitamin D3 and found it to be present in normal pig plasma and undetectable in normal cow plasma. Concentrations were elevated to 10–20 ng/ml following massive injection of Vitamin D3 to both species.  相似文献   

6.
Cells obtained from male quail kidneys by digestion with collagenase and hyaluronidase were plated and maintained in a chemically defined, serum-free medium. Culture dishes (35 mm) were inoculated with 1.5 · 106 cells which became confluent in 5 days. The cells maintained an epithelial-like morphology over the entire culture period. During a 2 h incubation the cells metabolized 25–30% of the 10 nM 25-hydroxyvitamin D-3 (25-OH-D-3) provided. Seven metabolites were chromotographically separated on Sephadex LH-20. Three have been identified as 1α,25-dihydroxyvitamin D-3 (1,25(OH)2D-3), 24,25-dihydroxyvitamin D-3 (24,25(OH)2D-3) and 1α,24,25-trihhydroxyvitamin D-3 (1,24,25(OH)3D-3). The activities of the 25-OH-D-3:1α- and 24-hydroxylases increased eight times faster than the cell number in 5 days. Preincubation of the cells with 10 nM 25-OH-D-3 or 1,25(OH)2D-3 decreased 1,25(OH)2D-3 synthesis, and increased both 24,25(OH)2D-3 and metabolite IV synthesis. The decrease in 25-OH-D-3:1α-hydroxylase activity required a 2 h preincubation with 25-OH-D-3, while stimulation of 25-OH-D-3:24-hydroxylase activity and metabolite IV production required a 6 h preincubation. Incubations of cells for 1 h with parathyroid hormone resulted in a 30-fold increase in cyclic AMP in the medium. A 6 h preincubation with parathyroid hormone decreased 24,25-(OH)2D-3 synthesis 50% relative to control cells. These results demonstrate the amenability of this system for studying the regulation of 25-OH-D-3 metabolism, as well as its use for other in vitro studies on renal cell function in a chemically defined culture system.  相似文献   

7.
The T47D human breast cancer cell line contains a specific binding protein for 1.25-(OH)2D3, with 15000 sites per cell. The Kd (1.1 × 10?10 M) and sedimentation coefficient on sucrose gradients (3.7S) are the same as those reported for the 1,25-(OH)2D3 receptor in other tissues. Other vitamin D3 metabolites bound to the receptor with an order of affinities 1,25-(OH)2D3 > 1,24,25-(OH)3D3 > 25-OHD3 > 24,25-(OH)2D3 > D3. A new analogue 1β,25-(OH)2D3 was only as effective as 24,25-(OH)2D3 at displacing the hormone from the receptor. Cell growth was stimulated in a dose dependent manner by the addition of 1,25-(OH)2D3 (up to 0.8 nM) to the medium. A higher concentration of hormone was without effect.  相似文献   

8.
Serum and post-microsomal supernatants of human lymphocyte, erythrocyte, skeletal muscle and parathyroid adenoma homogenates were examined for specific binding of 25-hydroxycholecalciferol (25-OHD3) and 1,25-dihydroxycholecalciferol (1,25-(OH)2D3). Muscle, lymphocytes and parathyroid adenomata extracts contained a 6-S 25-OHD3-binding protein which was not found in erythrocyte extracts, and which was distinct from the smaller serum transport α-globulin. A cathodal, 1,25-(OH)2D3-binding protein, which sedimented at 3–4 S was also detected in parathyroid tissue. These observations suggest the possibility of direct physiologic interaction between vitamin D metabolites and nucleated human tissues other than intestine and bone.  相似文献   

9.
Serum concentrations of the hormonal form of vitamin D3—1,25-dihydroxy-vitamin D3 [1,25-(OH)2-D3]—are elevated in many genera of platyrrhines when compared to catarrhines; this elevation is presumed to result from a decrease in the ability of the target cell receptor effectively to recognize 1,25-(OH)2-D3. The activity of the renal 25-hydroxyvitumin D3-1α-hydroxylase, the mammalian enzyme which synthesizes the majority of the circulating 1,25-(OH)2-D3, is accelerated by parathyroid hormone (PTH). In order to determine whether the elevated serum concentrations of 1,25-(OH)2-D3 in platyrrhines were the result of relative hyperparathyroidism, we measured serum levels of immunoreactive parathyroid hormone (iPTH) in normocalcemic platyrrhines, catarrhines, and human subjects with assays that recognize different domains of the human PTH molecule. Antisera directed against the biologically active, aminoterminus of PTH yielded comparable mean values for iPTH among three test groups. The mean concentration of iPTH as assessed by a “proximal” midregion assay was significantly reduced in platyrrhine serum when compared to either human or catarrhine serum. A “distal” midregion assay yielded a reduced mean value for iPTH in both platyrrhine and catarrhine serum when compared to human serum. These data suggest that 1) high circulating levels of 1,25-(OH)2-D3 in New World primates are not the result of hyperparathyroidism; and 2) structural homology between human and primate PTH diminishes progressively as one moves toward the carboxyterminus of the molecule and is lost more rapidly in the platyrrhine than in the catarrhine hormone.  相似文献   

10.
Female rats were given 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), 0.25 g per 100 g body weight (bw), 25-hydroxyvitamin D3 (25(OH)D3), 1.7 g/100 g bw or 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) 1.7 g/100 g bw, subcutaneously three times a week for 12 weeks. Traditional variables pertaining to calcium homeostasis and growth, i.e. blood and urine calcium (Ca) and phosphate (P), serum levels of vitamin D3 metabolites parathyroid hormone, (PTH), calcitonin (CT), prolactin (PRL) and growth hormone (GH) were measured every four weeks. This data pool was correlated with bone matrix turnover parameters, i.e. serum levels of alkaline phosphatase (ALP) and urinary hydroxyproline (u-HYP) excretion. After 12 weeks of treatment, 1,25(OH)2D3 significantly enhanced serum total and ionized Ca, urine Ca and urine P, and also diminished urine cAMP due to reduced renal function (creatinine clearance). However, 25(OH)D3 administration had no such impact. 24,25(OH)2D3 opposed the effect of 1,25(OH)2D3 after 12 weeks by significantly augmenting serum P and diminishing serum levels of total Ca and ionized Ca. Cross sectional group analyses showed that criculating levels of ALP were directly related with serum 1,25(OH)2D3 and inversely related to serum 24,25(OH)2D3 and CT. Total u-HYP and per cent non-dialysable HYP (ndHYP) were reciprocally and positively correlated with serum PRL, respectively. However, no such relations were observed with serum GH.It appears that rats with elevated circulating levels of 1,25(OH)2D3 exhibit increased bone resorption, while augmented 24,25(OH)2D3 is associated with the opposite. Apparently, high bone turnover (i.e. reduced total urinary HYP and enhanced ndHYP) is associated with high serum PRL.  相似文献   

11.
In normal rats treated with 1,25(OH)2D3 or 24,25(OH)2D3, serum Ca2+, ALP, PRL and GH are significantly altered. In order to study the primary effect of vitamin D3 analogues on target organ function, rat UMR 106 osteosarcoma and GH3 pituitary adenoma cells in monolayer culture were exposed accordingly.Surprisingly, prolonged exposure of these cell lines to physiological levels of either 1,25(OH)2D3 or 24,25(OH)2D3 did not significantly affect the secretory parameters (ALP, PRL or GH) tested. However, 1,25(OH)2D3 exposure significantly reduced PTH- and Gpp(NH)p-elicited AC as well as Gpp(NH)p-stimulated PLC activities in the UMR 106 cells. These changes were accompanied by an increase and decrease in the membrane contents of the G-protein subunits G36 and Gq/11, respectively. In contrast, 24,25(OH)2D3 remained without significant biological effect on these signalling systems despite concomitantly augmented levels of G36. TRH- and Gpp(NH)p-elicited PLC activities in the GH3 cells were significantly reduced by 1,25(OH)2D3 with a concurrent reduction in cellular amounts of Gq/11, however, 24,25(OH)2D3 did not significantly alter any signalling systems nor G-proteins analyzed.It is concluded that the osteoblastic and pituitary cell secretion of ALP, PRL and GH remain unaffected by the presence of 1,25(OH)2D3 and 24,25(OH)2D3, despite distinct alterations in components of G-protein mediated signalling pathways. Hence, other factors like ambient Ca2+ may be responsible for the perturbed secretory patterns of ALP and PRL seen in vitamin D3 treated rats.Abbreviations AC adenylate cyclase - ALP alkaline phosphatase - BGP osteocalcin - BSA bovine serum albumin - DA dopamine - DAG diacylglycerol - GH growth hormone - GHRH growth hormone releasing hormone - Gpp(NH)p guanosine 5-[-imido]triphosphate - G-protein guanine nucleotide-binding regulatory protein - Gs etc. Gs protein -subunit - IP3 inositol 1,4,5 trisphosphate - OAF osteoclast activating factor - PGE2 prostaglandin E2 - PKA & PKC protein kinase A & C - PLC phospholipase C - PRL prolactin - PTH parathyroid hormone - SRIF somatostatin - TRH thyrotropin releasing hormone - VIP vasoactive intestinal peptide - 25(OH)D3 25 hydroxy vitamin D3 - 1,25(OH)2D3 1·25 dihydroxy vitamin D3 - 24,25(OH)2D3 24,25 dihydroxy vitamin D3  相似文献   

12.
We investigated the occurrence of rickets in adolescent tamarins (Saguinus imperator) residing at the Los Angeles Zoo. Compared to tamarins in the same colony without clinical evidence of bone disease (N = 6), rachitic platyrrhines (N = 3) had a decrease in their serum calcium concentration (P < .05). The affected tamarins also had lower serum 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) levels than did nonaffected colony mates, but 2–10-fold higher concentrations than in Old World primates of a comparable developmental stage. New World primates in many different genera are known to exhibit target organ resistance to the active vitamin D3 metabolite, 1,25-(OH)2D3, compensated by maintenance of high circulating concentrations of 1,25-(OH)2D3. The relatively low serum 1,25-(OH)2D3 concentration in rachitic tamarins and ultraviolet B radiation deficient environment of these primates suggested that bone disease may be linked to a deficiency in substrate for 1,25-(OH)2D3, 25 hydroxyvtamin D3 (25-OHD3). Chronic exposure of platyrrhines in three different vitamin D resistant genera to an artificial UVB source resulted in 1) a significant increase in the mean serum 25-OHD3 (P < .001) and 1,25-(OH)2D3 (P < .02) level over that encountered in platyrrhines not exposed to UVB; and 2) prevention of rachitic bone disease in irradiated individuals. These data further show that the serum 25-OHD3 and 1,25-OH2D3 levels are positively correlated in vitamin D-resistant platyrrhines (r = 0.64; P= .0014) and suggest that a compromise in cutaneous vitamin D3 production by means of UVB deprivation may limit necessary 1,25-(OH)2D3 production. © 1992 Wiley-Liss, Inc.  相似文献   

13.
The activity of renal 25-hydroxyvitamin D3(25-OH-D3)-1α- and 24-hydroxylase and the plasma concentrations of vitamin D metabolites were investigated in relation to the ovulatory cycle in egg-laying hens. The time after ovulation was estimated from the position of the egg in the oviduct and the dry weight of the egg-shell. The invitro renal 25-OH-D3-1α-hydroxylase activity was significantly enhanced 14–16 hr after ovulation, whereas 25-OH-D3-24-hydroxylase activity remained unchanged. The plasma level of 1α,25-dihydroxyvitamin D [1α,25-(OH)2-D] was also increased 14–16 hr after ovulation in accord with the enhancement of the renal 1α-hydroxylase activity. The plasma level of 24,25-dihydroxyvitamin D did not change during the ovulatory cycle. These results strongly suggest that 1α,25-(OH)2-D3 production in the kidney varies in a circadian rhythm during the ovulatory cycle in egg-laying hens.  相似文献   

14.
Metabolism of 25-hydroxyvitamin D3 (25-OH-D3) in pregnancy was investigated invitro in New Zealand White rabbits fed a rabbit chow. Kidney homogenates from pregnant mothers and fetuses were separately incubated with [3H]-25-OH-D3. The homogenates from fetuses produced significant amounts of [3H]-1α,25-dihydroxyvitamin D3 [1α,25-(OH)2-D3] from its precursor, while those from mothers predominantly produced [3H]-24,25-dihydroxyvitamin D3 [24,25-(OH)2-D3]. The identity of the radioactive metabolites produced from [3H]-25-OH-D3 was established by periodate cleavage and comigration with synthetic 1α,25-(OH)2-D3 or 24,25-(OH)2-D3 on high pressure liquid chromatography. These results clearly indicate that the fetal kidney is at least one of the sites of 1α,25-(OH)2-D3 synthesis in pregnancy.  相似文献   

15.
When 1,25(OH)2-vitamin D3 was administered to vitamin D-deficient chicks, within two hours the parathyroid glands were observed to accumulate this steroid to a concentration four times that present in the blood and equivalent to levels observed in the target intestine. Similarly, when 25-(OH)-vitamin D3 was administered, the parathyroid glands had 2.4 times the concentration of the metabolite, 1,25-(OH)2-vitamin D3 as that seen in the blood and 60% of that found in the intestine. These results are consistent with the concept that the hormonally active form of vitamin D, 1,25-(OH)2-vitamin D3, may interact with the parathyroid glands to effect changes in parathyroid hormone secretion.  相似文献   

16.
The four stereoisomers of 25-hydroxyvitamin D3-26,23 lactone (25-OHD3-26,23 lactone) were tested against in vivo 25-OHD3-26,23 lactone to determine their relative competition in the radioligand binding assays for 25-OHD3 and 1,25-(OH)2D3. The 25R-OHD3-26,23S lactone and in vivo 25-OHD3-26,23 lactone behaved identically in the radioligand binding assay for 25-OHD3 and were ~5-fold more potent than 25-OHD3 at displacing 25-OH[3H]D3. The 25S-OHD3-26,23S lactone was the poorest competitor in this assay, requiring a 10-fold excess relative to 25-OHD3 to displace 50% of the 25-OH[3H]D3. The order of competition in the 25-OHD3 radioligand binding assay was 25R-OHD3-26,23S lactone = in vivo 25-OHD3-26,23 lactone ? 25S-OHD3-26,23R lactone > 25-OHD3 ? 25R-OHD3-26,23R lactone > 25S-OHD3-26,23S lactone. The order of competition in the 1,25-(OH)2D3 cytosol receptor assay was essentially reversed from the competition in the 25-OHD3 assay and was 25S-OHD3-26,23S lactone > 25-OHD3 ? 25S-OHD3-26,23R lactone > 25R-OHD3-26,23S lactone = in vivo 25-OHD3-26,23 lactone. When tested in a high-performance liquid chromatographic system which separates all four stereoisomers, the in vivo 25-OHD3-26,23 lactone comigrated with synthetic 25R-OHD3-26,23S lactone. These data firmly establish that the naturally-occurring 25-OHD3-26,23 lactone has the 25R, 23S stereochemistry. In addition, these data are the first to demonstrate that the four stereoisomers of 25-OHD3-26,23 lactone have different affinities for the plasma vitamin D binding protein and the 1,25-(OH)2D cytosol receptor.  相似文献   

17.
The metabolism of 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] in the rat has been studied under both in vivo and in vitro conditions. A time course study of the appearance of 1α,25-dihydroxyvitamin D3-26,23-lactone in the plasma following intravenous or oral administration of 1α,25(OH)2D3 suggests that the small intestine may take part in production of the 1α,25(OH)2D3-26,23-lactone. In an in vitro study using a homogenate of rat small intestinal mucosa, 1α,25(OH)2D3 undergoes further metabolism to give more polar metabolite(s) which comigrate with authentic 1α,24,25-trihydroxyvitamin D3 [1α,24,25(OH)3D3] on Sephadex LH-20 column chromatography. The metabolic profile obtained after high-pressure liquid chromatography reveals two major classes of metabolites, designated Peaks X and Y. Peak X is an unidentified metabolite of 1α,25(OH)2D3. Peak Y is chromatographically identical with 1α,25-dihydroxyvitamin D3-26,23-lactone which has been recently isolated from the plasma of rats and dogs as a major metabolite produced in vivo from either 1α,25(OH)2D3 or 1α-hydroxyvitamin D3 (N. Ohnuma, K. Bannai, H. Yamaguchi, Y. Hashimoto, and A. W. Norman, 1980, Arch. Biochem. Biophys.204, 387). The enzyme activity which produces metabolites X and Y in the rat intestinal homogenates is induced in vitamin D-replete rats by pretreatment of the animals with intravenous 1.25 μg/kg doses of 1α,25-dihydroxyvitamin D3, 6 to 8 h previously.  相似文献   

18.
1α,25-Dihydroxy-2β-(3-hydroxypropoxy)vitamin D3 (ED-71), an analog of active vitamin D3, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], possesses a hydroxypropoxy substituent at the 2β-position of 1,25(OH)2D3. ED-71 has potent biological effects on bone and is currently under phase III clinical studies for bone fracture prevention. It is well-known that the synthesis and secretion of parathyroid hormone (PTH) is regulated by 1,25(OH)2D3. Interestingly, during clinical development of ED-71, serum intact PTH in osteoporotic patients did not change significantly upon treatment with ED-71. The reason remains unclear, however. Brown et al. reported that 3-epi-1,25(OH)2D3, an epimer of 1,25(OH)2D3 at the 3-position, shows equipotent and prolonged activity compared to 1,25(OH)2D3 at suppressing PTH secretion. Since ED-71 has a bulky hydroxypropoxy substituent at the 2-position, epimerization at the adjacent and sterically hindered 3-position might be prevented, which may account for its weak potency in PTH suppression observed in clinical studies. We have significant interest in ED-71 epimerization at the 3-position and the biological potency of 3-epi-ED-71 in suppressing PTH secretion. In the present studies, synthesis of 3-epi-ED-71 and investigations of in vitro suppression of PTH using bovine parathyroid cells are described. The inhibitory potency of vitamin D3 analogs were found to be 1,25(OH)2D3 > ED-71 ≥ 3-epi-1,25(OH)2D3  3-epi-ED-71. ED-71 and 3-epi-ED-71 showed weak activity towards PTH suppression in our assays.  相似文献   

19.

Background

Elevated serum 1,25-dihydroxyvitamin D (1,25(OH)2D) concentrations have been reported among cohorts of recurrent calcium (Ca) kidney stone-formers and implicated in the pathogenesis of hypercalciuria. Variations in Ca and vitamin D metabolism, and excretion of urinary solutes among first-time male and female Ca stone-formers in the community, however, have not been defined.

Methods

In a 4-year community-based study we measured serum Ca, phosphorus (P), 25-hydroxyvitamin D (25(OH)D), 1,25(OH)2D, 24,25-dihydroxyvitamin D (24,25(OH)2D), parathyroid hormone (PTH), and fibroblast growth factor-23 (FGF-23) concentrations in first-time Ca stone-formers and age- and gender frequency-matched controls.

Results

Serum Ca and 1,25(OH)2D were increased in Ca stone-formers compared to controls (P = 0.01 and P = 0.001). Stone-formers had a lower serum 24,25(OH)2D/25(OH)D ratio compared to controls (P = 0.008). Serum PTH and FGF-23 concentrations were similar in the groups. Urine Ca excretion was similar in the two groups (P = 0.82). In controls, positive associations between serum 25(OH)D and 24,25(OH)2D, FGF-23 and fractional phosphate excretion, and negative associations between serum Ca and PTH, and FGF-23 and 1,25(OH)2D were observed. In SF associations between FGF-23 and fractional phosphate excretion, and FGF-23 and 1,25(OH)2D, were not observed. 1,25(OH)2D concentrations associated more weakly with FGF-23 in SF compared with C (P <0.05).

Conclusions

Quantitative differences in serum Ca and 1,25(OH)2D and reductions in 24-hydroxylation of vitamin D metabolites are present in first-time SF and might contribute to first-time stone risk.  相似文献   

20.
The metabolism of 1α,25-dihydroxyvitamin D2 (1α,25(OH)2D2) by human CYP24A1 was examined using the recombinant enzyme expressed in Escherichia coli cells. HPLC analysis revealed that human CYP24A1 produces at least 10 metabolites, while rat CYP24A1 produces only three metabolites, indicating a remarkable species-based difference in the CYP24A1-dependent metabolism of 1α,25(OH)2D2 between humans and rats. LC-MS analysis and periodate treatment of the metabolites strongly suggest that human CYP24A1 converts 1α,25(OH)2D2 to 1α,24,25,26(OH)4D2, 1α,24,25,28(OH)4D2, and 24-oxo-25,26,27-trinor-1α(OH)D2 via 1α,24,25(OH)3D2. These results indicate that human CYP24A1 catalyzes the C24-C25 bond cleavage of 1α,24,25(OH)2D2, which is quite effective in the inactivation of the active form of vitamin D2. The combination of hydroxylation at multiple sites and C-C bond cleavage could form a large number of metabolites. Our findings appear to be useful to predict the metabolism of vitamin D2 and its analogs in the human body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号