首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gene Rv1885c from the genome of Mycobacterium tuberculosis H37Rv encodes a monofunctional and secreted chorismate mutase (*MtCM) with a 33-amino-acid cleavable signal sequence; hence, it belongs to the *AroQ class of chorismate mutases. Consistent with the heterologously expressed *MtCM having periplasmic destination in Escherichia coli and the absence of a discrete periplasmic compartment in M. tuberculosis, we show here that *MtCM secretes into the culture filtrate of M. tuberculosis. *MtCM functions as a homodimer and exhibits a dimeric state of the protein at a concentration as low as 5 nM. *MtCM exhibits simple Michaelis-Menten kinetics with a Km of 0.5 +/- 0.05 mM and a k(cat) of 60 s(-1) per active site (at 37 degrees C and pH 7.5). The crystal structure of *MtCM has been determined at 1.7 A resolution (Protein Data Bank identifier 2F6L). The protein has an all alpha-helical structure, and the active site is formed within a single chain without any contribution from the second chain in the dimer. Analysis of the structure shows a novel fold topology for the protein with a topologically rearranged helix containing Arg134. We provide evidence by site-directed mutagenesis that the residues Arg49, Lys60, Arg72, Thr105, Glu109, and Arg134 constitute the catalytic site; the numbering of the residues includes the signal sequence. Our investigation on the effect of phenylalanine, tyrosine, and tryptophan on *MtCM shows that *MtCM is not regulated by the aromatic amino acids. Consistent with this observation, the X-ray structure of *MtCM does not have an allosteric regulatory site.  相似文献   

2.
Prephenate dehydratase (PDT) is a key regulatory enzyme in l-phenylalanine biosynthesis. In Mycobacterium tuberculosis, expression of pheA, the gene encoding PDT, has been earlier reported to be iron-dependent (1, 2). We report that M. tuberculosis pheA is also regulated at the protein level by aromatic amino acids. All of the three aromatic amino acids (phenylalanine, tyrosine, and tryptophan) are potent allosteric activators of M. tuberculosis PDT. We also provide in vitro evidence that M. tuberculosis PDT does not possess any chorismate mutase activity, which suggests that, unlike many other enteric bacteria (where PDT exists as a fusion protein with chorismate mutase), M. tuberculosis PDT is a monofunctional and a non-fusion protein. Finally, the biochemical and biophysical properties of the catalytic and regulatory domains (ACT domain) of M. tuberculosis PDT were studied to observe that, in the absence of the ACT domain, the enzyme not only loses its regulatory activity but also its catalytic activity. These novel results provide evidence for a monofunctional prephenate dehydratase enzyme from a pathogenic bacterium that exhibits extensive allosteric activation by aromatic amino acids and is absolutely dependent upon the presence of catalytic as well as the regulatory domains for optimum enzyme activity.  相似文献   

3.
The presence of exported chorismate mutases produced by certain organisms such as Mycobacterium tuberculosis has been shown to correlate with their pathogenicity. As such, these proteins comprise a new group of promising selective drug targets. Here, we report the high-resolution crystal structure of the secreted dimeric chorismate mutase from M. tuberculosis (*MtCM; encoded by Rv1885c), which represents the first 3D-structure of a member of this chorismate mutase family, termed the AroQ(gamma) subclass. Structures are presented both for the unliganded enzyme and for a complex with a transition state analog. The protomer fold resembles the structurally characterized (dimeric) Escherichia coli chorismate mutase domain, but exhibits a new topology, with helix H4 of *MtCM carrying the catalytic site residue missing in the shortened helix H1. Furthermore, the structure of each *MtCM protomer is significantly more compact and only harbors one active site pocket, which is formed entirely by one polypeptide chain. Apart from the structural model, we present evidence as to how the substrate may enter the active site.  相似文献   

4.
The regulatory properties of chorismate mutase, its cellular localization and isoenzyme pattern were investigated in 23 yeast species. All yeasts contained only a single form of the enzyme, which is localized exclusively in the cytosol. The enzyme activity from all sources was activated 3-(Rhodotorula aurantiaca) to 185-fold (Candida maltosa) by tryptophan. The tryphtophan concentration, which was necessary to obtain half maximum velocity was determined to be between 2 (Pichia guilliermondii) and 95 M (Yarrowia lipolytica). Ten yeast species possessed an enzyme that was inhibited by both phenylalanine and tyrosine. The chorismate mutase from four strains was inhibited only by tyrosine and the enzyme from two species was inhibited by phenylalanine alone. The enzyme inhibition by phenylalanine and tyrosine was completely reversed by tryptophan. Six enzyme sources were not inhibited and theY. lipolytica chorismate mutase was slightly activated by both amino acids.  相似文献   

5.
Chorismate mutase catalyzes a key step in the shikimate biosynthetic pathway towards phenylalanine and tyrosine. Curiously, the intracellular chorismate mutase of Mycobacterium tuberculosis (MtCM; Rv0948c) has poor activity and lacks prominent active‐site residues. However, its catalytic efficiency increases >100‐fold on addition of DAHP synthase (MtDS; Rv2178c), another shikimate‐pathway enzyme. The 2.35 Å crystal structure of the MtCM–MtDS complex bound to a transition‐state analogue shows a central core formed by four MtDS subunits sandwiched between two MtCM dimers. Structural comparisons imply catalytic activation to be a consequence of the repositioning of MtCM active‐site residues on binding to MtDS. The mutagenesis of the C‐terminal extrusion of MtCM establishes conserved residues as part of the activation machinery. The chorismate‐mutase activity of the complex, but not of MtCM alone, is inhibited synergistically by phenylalanine and tyrosine. The complex formation thus endows the shikimate pathway of M. tuberculosis with an important regulatory feature. Experimental evidence suggests that such non‐covalent enzyme complexes comprising an AroQδ subclass chorismate mutase like MtCM are abundant in the bacterial order Actinomycetales.  相似文献   

6.
Naturally occurring variants of the enzyme chorismate mutase are known to exist that exhibit diversity in enzyme structure, regulatory properties, and association with other proteins. Chorismate mutase was not annotated in the initial genome sequence of Mycobacterium tuberculosis (Mtb) because of low sequence similarity between known chorismate mutases. Recombinant protein coded by open reading frame Rv1885c of Mtb exhibited chorismate mutase activity in vitro. Biochemical and biophysical characterization of the recombinant protein suggests its resemblance to the AroQ class of chorismate mutases, prototype examples of which include the Escherichia coli and yeast chorismate mutases. We also demonstrate that unlike the corresponding proteins of E. coli, Mtb chorismate mutase does not have any associated prephenate dehydratase or dehydrogenase activity, indicating its monofunctional nature. The Rv1885c-encoded chorismate mutase showed allosteric regulation by pathway-specific as well as cross-pathway-specific ligands, as evident from proteolytic cleavage protection and enzyme assays. The predicted N-terminal signal sequence of Mtb chorismate mutase was capable of functioning as one in E. coli, suggesting that Mtb chorismate mutase belongs to the AroQ class of chorismate mutases. It was evident that Rv1885c may not be the only enzyme with chorismate mutase enzyme function within Mtb, based on our observation of the presence of chorismate mutase activity displayed by another hypothetical protein coded by open reading frame Rv0948c, a novel instance of the existence of two monofunctional chorismate mutases ever reported in any pathogenic bacterium.  相似文献   

7.
Zhang X  Bruice TC 《Biochemistry》2006,45(28):8562-8567
Molecular dynamics (MD) simulations of Thermus thermophilus chorismate mutase substrate complex (TtCM x S) have been carried out at 298 K, 333 K, and the temperature of optimum activity: 343 K. The enzyme exists as trimeric subunits with active sites shared between two neighboring subunits. Two features distinguish intersubunit linkages of the thermophilic and mesophilic enzyme Bacillus subtilis chorismate mutase substrate complex (BsCM x S): (i) electrostatic interactions by intersubunit ion pairs (Arg3-Glu40*/41, Arg76-Glu51* and Arg69*-Asp101, residues labeled with an asterisk are from the neighboring subunit) in the TtCM x S are not present in the structure of the BsCM x S; and (ii) replacement of polar residues with short and nonpolar residues in the interstices of the TtCM x S tighten the intersubunit hydrophobic interactions compared to BsCM x S. Concerning the active site, electrostatic interactions of the critically placed Arg6 and Arg63* with the two carboxylates of chorismate place the latter in a reactive conformation to spontaneously undergo a Claisen rearrangement. The optimum geometry at the active site has the CZ atoms of the two arginines 11 A apart. With a decrease in temperature, Arg63* moves toward Arg6 and the average conformation structure of chorismate moves further away from the reactive ground state conformation. This movement is due to the decrease in distance separating the electrostatic (in the main) and hydrophobic interacting pairs holding the two subunits together.  相似文献   

8.
MbtI (rv2386c) from Mycobacterium tuberculosis catalyzes the initial transformation in mycobactin biosynthesis by converting chorismate to salicylate. We report here the structure of MbtI at 2.5 A resolution and demonstrate that isochorismate is a kinetically competent intermediate in the synthesis of salicylate from chorismate. At pH values below 7.5 isochorismate is the dominant product while above this pH value the enzyme converts chorismate to salicylate without the accumulation of isochorismate in solution. The salicylate and isochorismate synthase activities of MbtI are Mg2+-dependent, and in the absence of Mg2+ MbtI has a promiscuous chorismate mutase activity similar to that of the isochorismate pyruvate lyase, PchB, from Pseudomonas aeruginosa. MbtI is part of a larger family of chorismate-binding enzymes descended from a common ancestor (the MST family), that includes the isochorismate synthases and anthranilate synthases. The lack of active site residues unique to pyruvate eliminating members of this family, combined with the observed chorismate mutase activity, suggests that MbtI may exploit a sigmatropic pyruvate elimination mechanism similar to that proposed for PchB. Using a combination of structural, kinetic, and sequence based studies we propose a mechanism for MbtI applicable to all members of the MST enzyme family.  相似文献   

9.
The enzyme prephenate dehydrogenase catalyzes the oxidative decarboxylation of prephenate to 4-hydroxyphenylpyruvate for the biosynthesis of tyrosine. Prephenate dehydrogenases exist as either monofunctional or bifunctional enzymes. The bifunctional enzymes are diverse, since the prephenate dehydrogenase domain is associated with other enzymes, such as chorismate mutase and 3-phosphoskimate 1-carboxyvinyltransferase. We report the first crystal structure of a monofunctional prephenate dehydrogenase enzyme from the hyper-thermophile Aquifex aeolicus in complex with NAD+. This protein consists of two structural domains, a modified nucleotide-binding domain and a novel helical prephenate binding domain. The active site of prephenate dehydrogenase is formed at the domain interface and is shared between the subunits of the dimer. We infer from the structure that access to the active site is regulated via a gated mechanism, which is modulated by an ionic network involving a conserved arginine, Arg250. In addition, the crystal structure reveals for the first time the positions of a number of key catalytic residues and the identity of other active site residues that may participate in the reaction mechanism; these residues include Ser126 and Lys246 and the catalytic histidine, His147. Analysis of the structure further reveals that two secondary structure elements, beta3 and beta7, are missing in the prephenate dehydrogenase domain of the bifunctional chorismate mutase-prephenate dehydrogenase enzymes. This observation suggests that the two functional domains of chorismate mutase-prephenate dehydrogenase are interdependent and explains why these domains cannot be separated.  相似文献   

10.
Lassila JK  Keeffe JR  Kast P  Mayo SL 《Biochemistry》2007,46(23):6883-6891
Secondary active-site residues in enzymes, including hydrophobic amino acids, may contribute to catalysis through critical interactions that position the reacting molecule, organize hydrogen-bonding residues, and define the electrostatic environment of the active site. To ascertain the tolerance of an important model enzyme to mutation of active-site residues that do not directly hydrogen bond with the reacting molecule, all 19 possible amino acid substitutions were investigated in six positions of the engineered chorismate mutase domain of the Escherichia coli chorismate mutase-prephenate dehydratase. The six secondary active-site residues were selected to clarify results of a previous test of computational enzyme design procedures. Five of the positions encode hydrophobic side chains in the wild-type enzyme, and one forms a helix N-capping interaction as well as a salt bridge with a catalytically essential residue. Each mutant was evaluated for its ability to complement an auxotrophic chorismate mutase deletion strain. Kinetic parameters and thermal stabilities were measured for variants with in vivo activity. Altogether, we find that the enzyme tolerated 34% of the 114 possible substitutions, with a few mutations leading to increases in the catalytic efficiency of the enzyme. The results show the importance of secondary amino acid residues in determining enzymatic activity, and they point to strengths and weaknesses in current computational enzyme design procedures.  相似文献   

11.
We have identified new lead candidates that possess inhibitory activity against Mycobacterium tuberculosis H37Rv chorismate mutase by a ligand-based virtual screening optimized for lead evaluation in combination with in vitro enzymatic assay. The initial virtual screening using a ligand-based pharmacophore model identified 95 compounds from an in-house small molecule database of 15,452 compounds. The obtained hits were further evaluated by molecular docking and 15 compounds were short listed based on docking scores and the other scoring functions and subjected to biological assay. Chorismate mutase activity assays identified four compounds as inhibitors of M. tuberculosis chorismate mutase (MtCM) with low K(i) values. The structural models for these ligands in the chorismate mutase binding site will facilitate medicinal chemistry efforts for lead optimization against this protein.  相似文献   

12.
We have isolated a chorismate mutase bradytroph (leaky auxotroph) ofAnabaena sp. PCC 7119 (ATCC 29151) as a spontaneous 6-fluorotryptophan-resistant mutant. The decreased chorismate mutase activity resulted in the production of quantities of the phenylalanine and tyrosine that limited rate of growth. 3-Deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase activity in the mutant was elevated more than twofold over the wild-type activity, suggesting derepression of this enzyme. The physiological deregulation of DAHP synthase and the genetic-based deficiency of chorismate mutase promoted an elevated level of intracellular chorismate, which then overwhelmed the competitive inhibition of anthranilate synthase by tryptophan, resulting in the overproduction of tryptophan and indoleglycerolphosphate. The presence of exogenous serine increased the production of tryptophan at the expense of indoleglycerolphosphate. This indicated that the endogenous potential for increasing the amount of serine available for increased tryptophan production is limited.  相似文献   

13.
Chorismate mutase CM-1, an isozyme that is inhibited by phenylalanine and tyrosine and activated by tryptophan was purified 1200-fold from etiolated mung bean seedlings with a final yield of 18–20%. Loss of activity was rapid in highly purified preparations but was reduced by the addition of bovine serum albumin. Enzyme activity was unaffected by thiol-alkylating agents, reducing agents, EDTA, or divalent cations.The enzyme displayed pH-sensitive, positive homotrophic cooperativity toward chorismate with greatest cooperativity at the pH optimum of the tryptophan-free enzyme (pH 7.2–7.4) and least cooperativity at the pH optimum of the enzyme fully activated with tryptophan (pH 7.0). Activation by tryptophan reduced the Km for the enzyme, and modified the sigmoid substrate saturation kinetics to a rectangular hyperbola. Feedback inhibition by the end product amino acids phenylalanine and tyrosine was not additive but revealed heterotrophic cooperativity with chorismate. Tyrosine (Ki = 31 μM) was a slightly more effective inhibitor than phenylalanine (Ki = 37 μM) at 1 mm chorismate. Tryptophan at equimolar concentration antagonized the feedback inhibition by phenylalanine and tyrosine. The latter two, however, at higher concentrations reversed the tryptophan activation in a noncompetitive fashion with respect to either tryptophan or chorismate. The enzyme was responsive only to the l-isomers of the amino acids. The results indicate a primary role for chorismate mutase CM-1 from mung bean in the regulation of the synthesis of phenylalanine and tyrosine for protein synthesis.  相似文献   

14.
The Saccharomyces cerevisiae ARO7 gene product chorismate mutase, a single-branch-point enzyme in the aromatic amino acid biosynthetic pathway, is activated by tryptophan and subject to feedback inhibition by tyrosine. The ARO7 gene was cloned on a 2.05-kilobase EcoRI fragment. Northern (RNA) analysis revealed a 0.95-kilobase poly(A)+ RNA, and DNA sequencing determined a 771-base-pair open reading frame capable of encoding a protein 256 amino acids. In addition, three mutant alleles of ARO7 were cloned and sequenced. These encoded chorismate mutases which were unresponsive to tyrosine and tryptophan and were locked in the on state, exhibiting a 10-fold-increased basal enzyme activity. A single base pair exchange resulting in a threonine-to-isoleucine amino acid substitution in the C-terminal part of the chorismate mutase was found in all mutant strains. In contrast to other enzymes in this pathway, no significant homology between the monofunctional yeast chorismate mutase and the corresponding domains of the two bifunctional Escherichia coli enzymes was found.  相似文献   

15.
We have isolated the tryptophan auxotrophic mutant strain, PK101, of Pichia guilliermondii. This strain is not defective in any of the tryptophan biosynthetic enzymes, but its chrismate mutase, an enzyme of the phenylalanine-tyrosine biosynthesis, is changed. In comparison with the wild type chorismate mutase, the enzyme of PK101 is characterized by a complete loss of sensitivity to l-phenylalanine inhibition and to a considerable loss of sensitivity to l-tryptophan activation. Furthermore, the chorismate mutase activity of the mutant is more than 7-fold higher in the absence of l-tryptophan than in the wild type. The PK101 enzyme is also changed in the pH optimum and in some kinetic constants. We found an increased intracellular pool of both phenylalanine and tyrosine and a reduced contents of tryptophan in the mutant cells. Our genetic data indicate that the mutant phenotype is dominant over the wild type.  相似文献   

16.
RmpM is a putative peptidoglycan binding protein from Neisseria meningitidis that has been shown to interact with integral outer membrane proteins such as porins and TonB-dependent transporters. Here we report the 1.9 A crystal structure of the C-terminal domain of RmpM. The 150-residue domain adopts a betaalphabetaalphabetabeta fold, as first identified in Bacillus subtilis chorismate mutase. The C-terminal RmpM domain is homologous to the periplasmic, C-terminal domain of Escherichia coli OmpA; these domains are thought to be responsible for non-covalent interactions with peptidoglycan. From the structure of the OmpA-like domain of RmpM, we suggest a putative peptidoglycan binding site and identify residues that may be essential for binding. Both the crystal structure and solution experiments indicate that RmpM may exist as a dimer. This would promote more efficient peptidoglycan binding, by allowing RmpM to interact simultaneously with two glycan chains through its C-terminal, OmpA-like binding domain, while its (structurally uncharacterized) N-terminal domain could stabilize oligomers of porins and TonB-dependent transporters in the outer membrane.  相似文献   

17.
Kuroki G  Conn EE 《Plant physiology》1988,86(3):895-898
Discs excised from Solanum tuberosum L. cv White Rose tubers demonstrated a 4.5-fold increase in chorismate mutase activity 48 hours after excision. Incubation in the presence of cycloheximide (25 micromolar) or actinomycin D (100 micromolar) completely inhibited the wound response suggesting de novo synthesis of chorismate mutase. Ratios of activity in the presence of the activator tryptophan to that in the absence of tryptophan remained relatively constant during the induction period. This indicated either a constant ratio of tryptophan sensitive to tryptophan insensitive isozymes, or that only one form of chorismate mutase was present. Chromatography of crude extracts on three different columns yielded only one peak of chorismate mutase activity, activated by tryptophan in each case. Incubation under white light had no effect on chorismate mutase activity when compared to dark controls.  相似文献   

18.
Uridine diphosphogalactofuranose (UDP-Galf ) is the precursor of the d-galactofuranose (Galf ) residues found in bacterial and parasitic cell walls, including those of many pathogens, such as Mycobacterium tuberculosis and Trypanosoma cruzi. UDP-Galf is made from UDP-galactopyranose (UDP-Galp) by the enzyme UDP-galactopyranose mutase (mutase). The mutase enzyme is essential for the viability of mycobacteria and is not found in humans, making it a viable therapeutic target. The mechanism by which mutase achieves the unprecedented ring contraction of a nonreducing sugar is unclear. We have solved the crystal structure of Escherichia coli mutase to 2.4 A resolution. The novel structure shows that the flavin nucleotide is located in a cleft lined with conserved residues. Site-directed mutagenesis studies indicate that this cleft contains the active site, with the sugar ring of the substrate UDP-galactose adjacent to the exposed isoalloxazine ring of FAD. Assay results establish that the enzyme is active only when flavin is reduced. We conclude that mutase most likely functions by transient reduction of substrate.  相似文献   

19.
Chorismate mutase, a branch-point enzyme in the aromatic amino acid pathway of Saccharomyces cerevisiae, and also a mutant chorismate mutase with a single amino acid substitution in the C-terminal part of the protein have been purified approximately 20-fold and 64-fold from overproducing strains, respectively. The wild-type enzyme is activated by tryptophan and subject to feedback inhibition by tyrosine, whereas the mutant enzyme does not respond to activation by tryptophan nor inhibition by tyrosine. Both enzymes are dimers consisting of two identical subunits of Mr 30,000, each one capable of binding one substrate and one activator molecule. Each subunit of the wild-type enzyme also binds one inhibitor molecule, whereas the mutant enzyme lost this ability. The enzyme reaction was observed by 1H NMR and shows a direct and irreversible conversion of chorismate to prephenate without the accumulation of any enzyme-free intermediates. The kinetic data of the wild-type chorismate mutase show positive cooperativity toward the substrate with a Hill coefficient of 1.71 and a [S]0.5 value of 4.0 mM. In the presence of the activator tryptophan, the cooperativity is lost. The enzyme has an [S]0.5 value of 1.2 mM in the presence of 10 microM tryptophan and an increased [S]0.5 value of 8.6 mM in the presence of 300 microM tyrosine. In the mutant enzyme, a loss of cooperativity was observed, and [S]0.5 was reduced to 1.0 mM. This enzyme is therefore locked in the activated state by a single amino acid substitution.  相似文献   

20.
The Mycobacterium tuberculosis catalase-peroxidase is a multifunctional heme-dependent enzyme that activates the core anti-tuberculosis drug isoniazid. Numerous studies have been undertaken to elucidate the enzyme-dependent mechanism of isoniazid activation, and it is well documented that mutations that reduce activity or inactivate the catalase-peroxidase lead to increased levels of isoniazid resistance in M. tuberculosis. Interpretation of the catalytic activities and the effects of mutations upon the action of the enzyme to date have been limited due to the lack of a three-dimensional structure for this enzyme. In order to provide a more accurate model of the three-dimensional structure of the M. tuberculosis catalase-peroxidase, we have crystallized the enzyme and now report its crystal structure refined to 2.4-A resolution. The structure reveals new information about dimer assembly and provides information about the location of residues that may play a role in catalysis including candidates for protein-based radical formation. Modeling and computational studies suggest that the binding site for isoniazid is located near the delta-meso heme edge rather than in a surface loop structure as currently proposed. The availability of a crystal structure for the M. tuberculosis catalase-peroxidase also permits structural and functional effects of mutations implicated in causing elevated levels of isoniazid resistance in clinical isolates to be interpreted with improved confidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号