首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Tol-Pal system of gram-negative bacteria is composed of five proteins. TolA, TolQ, and TolR are inner membrane proteins, TolB is a periplasmic protein, and Pal, the peptidoglycan-associated lipoprotein, is anchored to the outer membrane. In this study, the roles of Pal and major lipoprotein Lpp were compared in Escherichia coli. lpp and tol-pal mutations have previously been found to perturb the outer membrane permeability barrier and to cause the release of periplasmic proteins and the formation of outer membrane vesicles. In this study, we showed that the overproduction of Pal is able to restore the outer membrane integrity of an lpp strain but that overproduced Lpp has no effect in a pal strain. Together with the previously reported observation that overproduced TolA complements an lpp but not a pal strain, these results indicate that the cell envelope integrity is efficiently stabilized by an epistatic Tol-Pal system linking inner and outer membranes. The density of Pal was measured and found to be lower than that of Lpp. However, Pal was present in larger amounts compared to TolA and TolR proteins. The oligomeric state of Pal was determined and a new interaction between Pal and Lpp was demonstrated.  相似文献   

2.
The major outer membrane lipoprotein (Lpp) of Escherichia coli possesses serine at position 2, which is thought to function as the outer membrane sorting signal, and lysine at the C terminus, through which Lpp covalently associates with peptidoglycan. Arginine (R) is present before the C-terminal lysine in the wild-type Lpp (LppSK). By replacing serine (S) at position 2 with aspartate (D), the putative inner membrane sorting signal, and by deleting lysine (K) at the C terminus, Lpp mutants with a different residue at either position 2 (LppDK) or the C terminus (LppSR) or both (LppDR) were constructed. Expression of LppSR and LppDR little affected the growth of E. coli. In contrast, the number of viable cells immediately decreased when LppDK was expressed. Prolonged expression of LppDK inhibited separation of the inner and outer membranes by sucrose density gradient centrifugation, whereas short-term expression did not. Pulse-labeled LppDK and LppDR were localized in the inner membrane, indicating that the amino acid residue at position 2 functions as a sorting signal for the membrane localization of Lpp. LppDK accumulated in the inner membrane covalently associated with the peptidoglycan and thus prevented the separation of the two membranes. Globomycin, an inhibitor of lipoprotein-specific signal peptidase II, was lethal for E. coli only when Lpp possessed the C-terminal lysine. Taken together, these results indicate that the inner membrane accumulation of Lpp per se is not lethal for E. coli. Instead, a covalent linkage between the inner membrane Lpp having the C-terminal lysine and the peptidoglycan is lethal for E. coli, presumably due to the disruption of the cell surface integrity.  相似文献   

3.
W Y Zhang  R M Dai  H C Wu 《FEBS letters》1992,311(3):311-314
Mutation pgsA affecting the phosphatidylglycerol phosphate synthesis is lethal for all but certain E. coli strains such as strains deleted for the lpp gene or strains containing unmodifiable prolipoprotein like lppD14. Strain SD312 pgsA3 is tolerant to pgsA mutation, which suggests the lpp alleles in strain SD312 pgsA3 and its parental strain SD12 may be defective. DNA sequence analysis of the lpp genes in Escherichia coli strains SD12 and SD312 pgsA using asymmetric polymerase chain reaction showed that the lpp alleles in these two strains contained a 63 base pair deletion corresponding to the 37th to 57th codons of the wild-type lpp gene. [3H]Palmitate labeling of strains SD12 and SDS312 showed that the mutant lipoprotein in SD12 strain was modified with lipid, while the prolipoprotein in SD312 was not modified. The shortened mature lipoprotein in SD12 and the lipid-modified prolipoprotein in globomycin-treated SD12 were found to be covalently attached to the peptidoglycan, while the unmodified prolipoprotein in SD312 did not form significant amounts of murein-bound lipoprotein.  相似文献   

4.
Our earlier studies with outer membrane permeability in E. coli showed that an insertion mutation in lpp gene (encoding Braun's lipoprotein) drastically changed the outer membrane permeability, resulting in significant acceleration of whole-cell catalyzed reactions. In order to gain a mechanistic understanding of the nature of permeability change, the lpp region was sequenced. The results revealed that Lpp was not expressed in the insertion mutant, suggesting that the absence, rather than the alteration, of Lpp is responsible for the observed permeability change. This surprising result prompts us to investigate the possibility of establishing lpp deletion as a general permeabilization method. Two lpp deletion mutants were generated from strains with different genetic background and the effect of lpp deletion on cell physiology was investigated. While lpp deletion had no significant effect on cell growth, carbon metabolism, and fatty acid compositions, it enhanced permeability of various small molecules, consistent with the results with the insertion mutant. This phenotype is useful in a wide range of biotechnological applications. We illustrate here the use of the mutant with organophosphate hydrolysis and L-carnitine synthesis, where permeability is known to be a limiting factor. Both processes were significantly improved with the mutant because of enhanced permeability through the outer membrane. Therefore, this study has established an easy yet generally applicable method for permeabilizing E. coli cells without significant adverse effects. Further, as lpp homolog is known to exist in gram-negative bacteria, we expect that this method will be applicable to other gram-negative bacteria.  相似文献   

5.
Bacterial lipoproteins represent a subset of membrane-associated proteins that are covalently modified with lipids at the N-terminal cysteine. The final step of lipoprotein modification, N-acylation of apolipoproteins, is mediated by apolipoprotein N-acyltransferase (Lnt). Examinations with reconstituted proteoliposomes and a conditional mutant previously indicated that N-acylation of lipoproteins is required for their efficient release from the inner membrane catalyzed by LolA and LolCDE, the lipoprotein-specific chaperone and ABC transporter, respectively. Because Lnt is essential for Escherichia coli, a mutant lacking Lnt activity has not been isolated. However, we report here that lnt-null strains can be constructed when LolCDE is overproduced in strains lacking either the major outer membrane lipoprotein Lpp or transpeptidases that cross-link Lpp with peptidoglycan. Lipoproteins purified from the lnt-null strain exhibited increased mobility on SDS-PAGE compared to those from wild-type cells and could be sequenced by Edman degradation, indicating that lipoproteins in this mutant exist as apolipoproteins that lack N-acylation. Overexpression of Lpp in the lnt-null strain resulted in the accumulation of apoLpp in the inner membrane and caused growth arrest. In contrast to the release of mature Lpp in the presence of LolA and LolCDE, that of apoLpp from the inner membrane was significantly retarded. Furthermore, the amount of lipoproteins copurified with LolCDE was significantly reduced in the lnt-null strain. These results indicate that the affinity of LolCDE for apolipoprotein is very low, and therefore, overexpression of LolCDE is required for its release and sorting to the outer membrane.  相似文献   

6.
The lethal effect of an Escherichia coli pgsA null mutation, which causes a complete lack of the major acidic phospholipids, phosphatidylglycerol and cardiolipin, is alleviated by a lack of the major outer membrane lipoprotein encoded by the lpp gene, but an lpp pgsA strain shows a thermosensitive growth defect. Using transposon mutagenesis, we found that this thermosensitivity was suppressed by disruption of the rcsC, rcsF, and yojN genes, which code for a sensor kinase, accessory positive factor, and phosphotransmitter, respectively, of the Rcs phosphorelay signal transduction system initially identified as regulating the capsular polysaccharide synthesis (cps) genes. Disruption of the rcsB gene coding for the response regulator of the system also suppressed the thermosensitivity, whereas disruption of cpsE did not. By monitoring the expression of a cpsB'-lac fusion, we showed that the Rcs system is activated in the pgsA mutant and is reverted to a wild-type level by the rcs mutations. These results indicate that envelope stress due to an acidic phospholipid deficiency activates the Rcs phosphorelay system and thereby causes the thermosensitive growth defect independent of the activation of capsule synthesis.  相似文献   

7.
Outer membrane lipoproteins of Escherichia coli are released from the inner membrane upon the formation of a complex with a periplasmic chaperone, LolA, followed by localization to the outer membrane. In vitro biochemical analyses revealed that the localization of lipoproteins to the outer membrane generally requires an outer membrane lipoprotein, LolB, and occurs via transient formation of a LolB-lipoprotein complex. On the other hand, a mutant carrying the chromosomal lolB gene under the control of the lac promoter-operator grew normally in the absence of LolB induction if the mutant did not possess the major outer membrane lipoprotein Lpp, suggesting that LolB is only important for the localization of Lpp in vivo. To examine the in vivo function of LolB, we constructed a chromosomal lolB null mutant harboring a temperature-sensitive helper plasmid carrying the lolB gene. At a nonpermissive temperature, depletion of the LolB protein due to loss of the lolB gene caused cessation of growth and a decrease in the number of viable cells irrespective of the presence or absence of Lpp. LolB-depleted cells accumulated the LolA-lipoprotein complex in the periplasm and the mature form of lipoproteins in the inner membrane. Taken together, these results indicate that LolB is the first example of an essential lipoprotein for E. coli and that its depletion inhibits the upstream reactions of lipoprotein trafficking.  相似文献   

8.
LamB protein is involved in the transport of maltose across the outer membrane and constitutes the receptor for phage lambda. In this study we characterized six previously described anti-LamB monoclonal antibodies (mAbs). Four of these, the E-mAbs, recognized determinants that were exposed at the cell surface, whereas the other two, the I-mAbs, recognized determinants which were not exposed. Competition experiments demonstrated that the domains recognized by these two classes of mAbs were completely distinct. In addition, the E-mAbs prevented LamB from neutralizing phage lambda in vitro and protected LamB against proteolytic degradation, whereas the I-mAbs had no such effects. The E-mAbs have been shown previously to constitute two classes: some E-mAbs inhibit maltose transport in vivo, and others do not. Immunoelectron microscopy demonstrated that the I-mAbs also define at least two types of determinants. One of these, which is accessible in membrane fragments from a mutant (lpp) devoid of lipoprotein but not in membrane fragments from an lpp+ strain, probably corresponds to a region of LamB that is involved in the interactions with peptidoglycan. The other determinant, which is fully accessible in LamB-peptidoglycan complexes and in LamB-containing phospholipid vesicles but only slightly accessible in membrane fragments from an lpp mutant, is probably located very close to the inner surface of the outer membrane. LamB also contains at least one additional determinant, which (i) is exposed at the inner surface of the membrane, (ii) is accessible to antibodies in membrane fragments from an lpp+ strain, and (iii) may be involved in the interaction of LamB with the periplasmic maltose-binding protein.  相似文献   

9.
An Escherichia coli pgsA null mutant deficient in acidic phospholipids shows a thermosensitive cell lysis phenotype because of activation of the Rcs phosphorelay signal transduction system. We conducted a DNA microarray analysis with special attention to the genes affected by growth temperature in the mutant deficient in acidic phospholipids. Among the genes identified as highly expressed at high temperature in the pgsA null mutant, the osmB gene was shown to be dependent on the Rcs system for the high expression by dot blot hybridization. Induction of the cloned osmB in the pgsA null mutant caused the thermosensitive defect even in the absence of the Rcs system. Although the deletion of osmB did not suppress the thermosensitivity in the presence of the Rcs system, indicating a multifactorial nature of the deleterious effect of the Rcs activation, we suggest that the osmB hyperexpression is one of the causes of the Rcs-dependent lysis phenotype of the pgsA null mutant.  相似文献   

10.
A deletion mutation (lpp delta 9 delta 13 delta 14) in the signal peptide of the major outer membrane lipoprotein of Escherichia coli (Lpp) was found to cause severe effects on cell physiology, resulting in cessation of growth within 10 min of induction of lpp delta 9 delta 13 delta 14 expression and rapid cell death. Further investigation revealed that lpp delta 9 delta 13 delta 14 expression caused slow processing of several other exported proteins. The origin of this effect was traced to depolarization of the electrochemical potential across the cytoplasmic membrane, which is known to be required for efficient protein export. Analysis of the processing rate of the mutant, either prior to complete depolarization or in a suppressor strain in which depolarization does not occur, indicates that the mutant protein was capable of secretion at a rate which, while less than that of the wild type, was reasonably rapid compared with the rates of other E. coli secreted proteins. The existence of this type of signal peptide mutation suggests that the cell may have a mechanism to avoid membrane damage from secretory proteins carrying membrane-active signal peptides which is bypassed by the lpp delta 9 delta 13 delta 14 mutant.  相似文献   

11.
The bacterial cytoplasmic membrane is a principal site of protein translocation, lipid and peptidoglycan biogenesis, signal transduction, transporters and energy generating components of the respiratory chain. Although 25–30% of bacterial proteomes consist of membrane proteins, a comprehensive understanding of their influence on fundamental cellular processes is incomplete. Here, we show that YciB and DcrB, two small cytoplasmic membrane proteins of previously unknown functions, play an essential synergistic role in maintaining cell envelope integrity of Escherichia coli. Lack of both YciB and DcrB results in pleiotropic cell defects including increased levels of lipopolysaccharide, membrane vesiculation, dynamic shrinking and extension of the cytoplasmic membrane accompanied by lysis and cell death. The stalling of an abundant outer membrane lipoprotein, Lpp, at the periplasmic face of the inner membrane leads to lethal inner membrane–peptidoglycan linkages. Additionally, the periplasmic chaperone Skp contributes to yciB dcrB mutant cell death by possibly mistargeting stalled porins into the inner membrane. Consistent with the idea of a compromised envelope in the yciB dcrB mutant, multiple envelope stress response systems are induced, with Cpx signal transduction being required for growth. Taken together, our results suggest a fundamental role for YciB and DcrB in cell envelope biogenesis.  相似文献   

12.
TolQ, TolR, and TolA inner membrane proteins of Escherichia coli are involved in maintaining the stability of the outer membrane. They share homology with the ExbB, ExbD, and TonB proteins, respectively. The last is involved in energy transduction between the inner and the outer membrane, and its conformation has been shown to depend on the presence of the proton motive force (PMF), ExbB, and ExbD. Using limited proteolysis experiments, we investigated whether the conformation of TolA was also affected by the PMF. We found that dissipation of the PMF by uncouplers led to the formation of a proteinase K digestion fragment of TolA not seen when uncouplers are omitted. This fragment was also detected in Delta tolQ, Delta tolR, and tolA(H22P) mutants but, in contrast to the parental strain, was also seen in the absence of uncouplers. We repeated those experiments in outer membrane mutants such as lpp, pal, and Delta rfa mutants: the behavior of TolA in lpp mutants was similar to that observed with the parental strain. However, the proteinase K-resistant fragment was never detected in the Delta rfa mutant. Altogether, these results suggest that TolA is able to undergo a PMF-dependent change of conformation. This change requires TolQ, TolR, and a functional TolA N-terminal domain. The potential role of this energy-dependent process in the stability of the outer membrane is discussed.  相似文献   

13.
The major anionic phospholipids of Escherichia coli, phosphatidylglycerol (PG) and cardiolipin (CL), have been considered to be indispensable for essential cellular functions, such as the initiation of DNA replication and translocation of proteins across the cytoplasmic membrane. However, we successfully constructed a null pgsA mutant of E. coli that had undetectable levels of PG and CL if the major outer membrane lipoprotein was deficient, clearly indicating that these anionic phospholipids are not indispensable. In the null mutant, we observed the accumulation of phosphatidic acid, an acidic biosynthetic precursor. This suggests a functionally substitutable nature of these anionic phospholipids and allows us to formulate a dual role model for the physiological roles of the anionic phospholipids in E. coli. The anionic phospholipids may play dual roles in E. coli as (i) substrates for head group-specific enzyme reactions, albeit the viability of null PG mutants indicates that the products of head group-specific reactions are not essential; and (ii) those that are replaceable, partly or entirely, by other phospholipids bearing net negative charges, because of their rather loose head group specificity. These two aspects of the physiological roles of anionic phospholipids are discussed with special reference to the phospholipids of other bacteria and eukaryotic organelles.  相似文献   

14.
E. coli is one of the most commonly used host strains for recombinant protein production. However, recombinant proteins are usually found intracellularly, in either cytoplasm or periplasmic space. Inadequate secretion to the extracellular environment is one of its limitations. This study addresses the outer membrane barrier for the translocation of recombinant protein directed to the periplasmic space. Specifically, using recombinant maltose binding protein (MalE), xylanase, and cellulase as model proteins, we investigated whether the lpp deletion could render the outer membrane permeable enough to allow extracellular protein production. In each case, significantly higher excretion of recombinant protein was observed with the lpp deletion mutant. Up to 90% of the recombinant xylanase activity and 70% of recombinant cellulase activity were found in the culture medium with the deletion mutant, whereas only 40-50% of the xylanase and cellulase activities were extracellular for the control strain. Despite the weakened outer membrane in the mutant strain, cell lysis did not occur, and increased excretion of periplasmic protein was not due to cell lysis. The lpp deletion is a simple method to generate an E. coli strain to effect significant extracellular protein production. The phenotype of extracellular protein production without cell lysis is useful in many biotechnological applications, such as bioremediation and plant biomass conversion.  相似文献   

15.
Phosphatidylglycerol, the most abundant acidic phospholipid in Escherichia coli, has been considered to play specific roles in various cellular processes and is believed to be essential for cell viability. It is functionally replaced in some cases by cardiolipin, another abundant acidic phospholipid derived from phosphatidylglycerol. However, we now show that a null pgsA mutant is viable, if the major outer membrane lipoprotein is deficient. The pgsA gene normally encodes phosphatidylglycerophosphate synthase that catalyzes the committed step in the biosynthesis of these acidic phospholipids. In the mutant, the activity of this enzyme and both phosphatidylglycerol and cardiolipin were not detected (less than 0.01% of total phospholipid, both below the detection limit), although phosphatidic acid, an acidic biosynthetic precursor, accumulated (4.0%). Nonetheless, the null mutant grew almost normally in rich media. In low-osmolarity media and minimal media, however, it could not grow. It did not grow at temperatures over 40 degrees C, explaining the previous inability to construct a null pgsA mutant (W. Xia and W. Dowhan, Proc. Natl. Acad. Sci. USA 92:783-787, 1995). Phosphatidylglycerol and cardiolipin are therefore nonessential for cell viability or basic life functions. This notion allows us to formulate a working model that defines the physiological functions of acidic phospholipids in E. coli and explains the suppressing effect of lipoprotein deficiency.  相似文献   

16.
The relationship between the modification and processing of prolipoprotein and the formation of murein-bound lipoprotein has been investigated using Escherichia coli mutants altered in the signal sequence of prolipoprotein and an E. coli strain producing OmpF-Lpp hybrid protein. The glyceride-modified prolipoprotein in mutant lppT20 and in globomycin-treated wild-type strain were covalently attached to the peptidoglycan. Likewise, the unmodified prolipoproteins in mutants lppL20, lppV20, and lppG21 were attached to the peptidoglycan. The OmpF-Lpp hybrid protein that is processed but not modified with lipid due to the absence of the cysteine-containing modification site in the hybrid protein was also covalently linked to the peptidoglycan. These results indicate that neither lipid modification nor the processing of prolipoprotein is essential for the formation of murein-bound lipoprotein in E. coli. In contrast, introduction of a charged amino acid residue such as Asp or Arg at the 14th position of prolipoprotein affected not only the lipid modification and processing of the mutant prolipoprotein but also the formation of murein-bound lipoprotein. Replacement of the Gly14 with Glu or Lys partially affected the lipid modification and processing of prolipoprotein; the peptidoglycan of the lppE14 and lppK14 mutants contained a reduced amount of mature lipoprotein but no mutant prolipoprotein. In addition, lpp mutants A20I23I24 and A20I23K24 were found to be defective in both lipid modification/processing of prolipoprotein and the formation of murein-bound lipoprotein. The defective formation of murein-bound lipoprotein in the latter mutants may be related to an alteration in the secondary structure at the modification/processing site of the mutant prolipoproteins.  相似文献   

17.
The Tol-Pal system of the Escherichia coli envelope is formed from the inner membrane TolQ, TolR and TolA proteins, the periplasmic TolB protein and the outer membrane Pal lipoprotein. Any defect in the Tol-Pal proteins or in the major lipoprotein (Lpp) results in the loss of outer membrane integrity giving hypersensitivity to drugs and detergents, periplasmic leakage and outer membrane vesicle formation. We found that multicopy plasmid overproduction of TolA was able to complement the membrane defects of an lpp strain but not those of a pal strain. This result indicated that overproduced TolA has an envelope-stabilizing effect when Pal is present. We demonstrate that Pal and TolA formed a complex using in vivo cross-linking and immunoprecipitation experiments. These results, together with in vitro experiments with purified Pal and TolA derivatives, allowed us to show that Pal interacts with the TolA C-terminal domain. We also demonstrate using protonophore, K+ carrier valinomycin, nigericin, arsenate and fermentative conditions that the proton motive force was coupled to this interaction.  相似文献   

18.
Expression of the cloned lysis protein of phage MS2, which is sufficient to lyse wild type Escherichia coli, does not cause lysis of mutants lacking the osmoregulatory membrane-derived oligosaccharides (MDO). The lysis gene product normally found in the membrane fraction was not stably inserted into the membranes of a mdoA mutant; rather degradation and release from the membrane occurred. Gentle plasmolysis of the MDO-lacking mutant clearly showed an increased periplasmic space as compared to wild type cells. It is concluded that the MDOs play an important role in maintaining a proper arrangement of inner and outer membrane, a prerequisite for a functional insertion of the MS2 lysis protein.  相似文献   

19.
S Matsuyama  T Tajima    H Tokuda 《The EMBO journal》1995,14(14):3365-3372
Lipoproteins are localized in the outer or inner membrane of Escherichia coli, depending on the species of amino acid located next to the N-terminal fatty acylated Cys. The major outer membrane lipoprotein (Lpp) expressed in spheroplasts was, however, retained in the inner membrane as a mature form. A novel protein that is essential for the release of Lpp from the inner membrane was discovered in the periplasm and purified. The partial amino acid sequence of this 20 kDa protein (p20) was determined and used to clone a gene for p20. Sequencing of the gene revealed that p20 is synthesized as a precursor with a signal sequence. p20 formed a soluble complex only with outer membrane-directed lipoproteins such as Lpp, indicating that p20 plays a critical role in the sorting of lipoproteins. Lpp released from the inner membrane in the presence of p20 was specifically assembled into the outer membrane in vitro. These results indicate that p20 is a periplasmic carrier protein involved in the translocation of lipoproteins from the inner to the outer membrane.  相似文献   

20.
The lysis of bacterial hosts by double-strand DNA bacteriophages, once thought to reflect merely the accumulation of sufficient lysozyme activity during the infection cycle, has been revealed to recently been revealed to be a carefully regulated and temporally scheduled process. For phages of Gramnegative hosts, there are three steps, corresponding to subversion of each of the three layers of the cell envelope: inner membrane, peptidoglycan, and outer membrane. The pathway is controlled at the level of the cytoplasmic membrane. In canonical lysis, a phage encoded protein, the holin, accumulates harmlessly in the cytoplasmic membrane until triggering at an allele-specific time to form micron-scale holes. This allows the soluble endolysin to escape from the cytoplasm to degrade the peptidoglycan. Recently a parallel pathway has been elucidated in which a different type of holin, the pinholin, which, instead of triggering to form large holes, triggers to form small, heptameric channels that serve to depolarize the membrane. Pinholins are associated with SAR endolysins, which accumulate in the periplasm as inactive, membrane-tethered enzymes. Pinholin triggering collapses the proton motive force, allowing the SAR endolysins to refold to an active form and attack the peptidoglycan. Surprisingly, a third step, the disruption of the outer membrane is also required. This is usually achieved by a spanin complex, consisting of a small outer membrane lipoprotein and an integral cytoplasmic membrane protein, designated as o-spanin and i-spanin, respectively. Without spanin function, lysis is blocked and progeny virions are trapped in dead spherical cells, suggesting that the outer membrane has considerable tensile strength. In addition to two-component spanins, there are some single-component spanins, or u-spanins, that have an N-terminal outer-membrane lipoprotein signal and a C-terminal transmembrane domain. A possible mechanism for spanin function to disrupt the outer membrane is to catalyze fusion of the inner and outer membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号