首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disanza A  Scita G 《Current biology : CB》2008,18(18):R873-R875
The Arp2/3 complex is essential for actin nucleation and filament elongation in a variety of intracellular processes. This functional versatility is exerted through the regulation of its activity by nucleation-promoting factors (NPFs). The discovery of a new NPF, WHAMM, reveals unexpected connections between the actin and microtubule cytoskeletons and membrane dynamics during ER-to-Golgi transport.  相似文献   

2.
Arp2/3 complex is an important actin filament nucleator that creates branched actin filament networks required for formation of lamellipodia and endocytic actin structures. Cellular assembly of branched actin networks frequently requires multiple Arp2/3 complex activators, called nucleation promoting factors (NPFs). We recently presented a mechanism by which cortactin, a weak NPF, can displace a more potent NPF, N-WASP, from nascent branch junctions to synergistically accelerate nucleation. The distinct roles of these NPFs in branching nucleation are surprising given their similarities. We biochemically dissected these two classes of NPFs to determine how their Arp2/3 complex and actin interacting segments modulate their influences on branched actin networks. We find that the Arp2/3 complex-interacting N-terminal acidic sequence (NtA) of cortactin has structural features distinct from WASP acidic regions (A) that are required for synergy between the two NPFs. Our mutational analysis shows that differences between NtA and A do not explain the weak intrinsic NPF activity of cortactin, but instead that cortactin is a weak NPF because it cannot recruit actin monomers to Arp2/3 complex. We use TIRF microscopy to show that cortactin bundles branched actin filaments using actin filament binding repeats within a single cortactin molecule, but that N-WASP antagonizes cortactin-mediated bundling. Finally, we demonstrate that multiple WASP family proteins synergistically activate Arp2/3 complex and determine the biochemical requirements in WASP proteins for synergy. Our data indicate that synergy between WASP proteins and cortactin may play a general role in assembling diverse actin-based structures, including lamellipodia, podosomes, and endocytic actin networks.  相似文献   

3.
Arp2/3 complex initiates the growth of branched actin-filament networks by inducing actin polymerization from the sides of pre-existing filaments. Nucleation promoting factors (NPFs) are essential for the branching reaction through interactions with the Arp2/3 complex prior to branch formation. The modes by which NPFs bind Arp2/3 complex and associated conformational changes have remained elusive. Here, we used electron microscopy to determine three-dimensional structures at ~2 nm resolution of Arp2/3 complex with three different bound NPFs: N-WASp, Scar-VCA and cortactin. All of these structures adopt a conformation with the two actin-related proteins in an actin-filament-like dimer and the NPF bound to the pointed end. Distance constraints derived by fluorescence resonance energy transfer independently verified the NPF location. Furthermore, all bound NPFs partially occlude the actin-filament binding site, suggesting that additional local structural rearrangements are required in the pathway of Arp2/3 complex activation to allow branch formation.  相似文献   

4.
Arp2/3 complex mediates the nucleation of actin filaments in multiple subcellular processes, and is activated by nucleation-promoting factors (NPFs) from the Wiskott-Aldrich Syndrome family. In exciting new developments, this family has grown by three members: WASH, WHAMM and JMY, which extend the repertoire of dynamic membrane structures that are remodeled following Arp2/3 activation in vivo. These novel NPFs share an actin- and Arp2/3-interacting WCA module, and combine Arp2/3 activation with additional biochemical functions, including capping protein inhibition, microtubule engagement or Arp2/3-independent actin nucleation, none of which had been previously associated with canonical WCA-harboring proteins. Uncovering the physiological relevance of these unique activities will require concerted efforts from multiple disciplines, and is sure to impact our understanding of how the cytoskeleton controls so many dynamic subcellular events.  相似文献   

5.
The spontaneous and unregulated polymerization of actin filaments is inhibited in cells by actin monomer-binding proteins such as profilin and Tβ4. Eukaryotic cells and certain pathogens use filament nucleators to stabilize actin polymerization nuclei, whose formation is rate-limiting. Known filament nucleators include the Arp2/3 complex and its large family of nucleation promoting factors (NPFs), formins, Spire, Cobl, VopL/VopF, TARP and Lmod. These molecules control the time and location for polymerization, and additionally influence the structures of the actin networks that they generate. Filament nucleators are generally unrelated, but with the exception of formins they all use the WASP-Homology 2 domain (WH2 or W), a small and versatile actin-binding motif, for interaction with actin. A common architecture, found in Spire, Cobl and VopL/VopF, consists of tandem W domains that bind three to four actin subunits to form a nucleus. Structural considerations suggest that NPFs–Arp2/3 complex can also be viewed as a specialized form of tandem W-based nucleator. Formins are unique in that they use the formin-homology 2 (FH2) domain for interaction with actin and promote not only nucleation, but also processive barbed end elongation. In contrast, the elongation function among W-based nucleators has been “outsourced” to a dedicated family of proteins, Eva/VASP, which are related to WASP-family NPFs.  相似文献   

6.
Actin filament assembly by the actin-related protein (Arp) 2/3 complex is necessary to build many cellular structures, including lamellipodia at the leading edge of motile cells and phagocytic cups, and to move endosomes and intracellular pathogens. The crucial role of the Arp2/3 complex in cellular processes requires precise spatiotemporal regulation of its activity. While binding of nucleation-promoting factors (NPFs) has long been considered essential to Arp2/3 complex activity, we recently showed that phosphorylation of the Arp2 subunit is also necessary for Arp2/3 complex activation. Using molecular dynamics simulations and biochemical assays with recombinant Arp2/3 complex, we now show how phosphorylation of Arp2 induces conformational changes permitting activation. The simulations suggest that phosphorylation causes reorientation of Arp2 relative to Arp3 by destabilizing a network of salt-bridge interactions at the interface of the Arp2, Arp3, and ARPC4 subunits. Simulations also suggest a gain-of-function ARPC4 mutant that we show experimentally to have substantial activity in the absence of NPFs. We propose a model in which a network of auto-inhibitory salt-bridge interactions holds the Arp2 subunit in an inactive orientation. These auto-inhibitory interactions are destabilized upon phosphorylation of Arp2, allowing Arp2 to reorient to an activation-competent state.  相似文献   

7.
Nucleation promoting factors (NPFs) activate the Arp2/3 complex to produce branched actin filaments. Branched actin filaments are observed in most organelles, and specific NPFs, such as WASP, N-WASP, WAVEs, WASH, and WHAMM, exist for each organelle. Interestingly, Arp2/3 and NPFs are both inactive by themselves, and thus require activation. The exposure of the Arp2/3 activating region, the VCA fragment, is recognized to be a key event in the activation of the NPFs. Together, small GTPase binding, phosphorylation, SH3 binding, and membrane binding promote VCA exposure synergistically. The increase in the local concentration of NPF by multimerization is thought to occur with the combination of such activators, to maximally activate the NPF and confine the region of actin polymerization. The mechanism of uni-directional filament extension beneath the membrane also is discussed.  相似文献   

8.
Actin nucleation and branching by the Arp2/3 complex is tightly regulated by activating factors. However, the mechanism of Arp2/3 complex activation remains unclear. We used fluorescence resonance energy transfer (FRET) to probe the conformational dynamics of the Arp2/3 complex accompanying its activation. We demonstrate that nucleotide binding promotes a substantial conformational change in the complex, with distinct conformations depending on the bound nucleotide. Nucleotide binding to each Arp is critical for activity and is coupled to nucleation promoting factor (NPF) binding. The binding of Wiskott-Aldrich syndrome protein (WASP) family NPFs induces further conformational reorganization of the Arp2/3 complex, and the ability to promote this conformational reorganization correlates with activation efficiency. Using an Arp2/3 complex that is fused to the actin binding domain of WASP, we confirm that the NPF-induced conformational change is critical for activation, and that the actin and Arp2/3 binding activities of WASP are separable, but are independently essential for activity.  相似文献   

9.
A Feoktistova  D McCollum  R Ohi  K L Gould 《Genetics》1999,152(3):895-908
The Arp2/3 complex is an essential component of the actin cytoskeleton in yeast and is required for the movement of actin patches. In an attempt to identify proteins that interact with this complex in the fission yeast Schizosaccharomyces pombe, we sought high-copy suppressors of the S. pombe arp3-c1 mutant, and have identified one, which we have termed asp1(+). The asp1(+) open reading frame (ORF) predicts a highly conserved protein of 921 amino acids with a molecular mass of 106 kD that does not contain motifs of known function. Neither asp1(+) nor its apparent Saccharomyces cerevisiae ortholog, VIP1, are essential genes. However, disruption of asp1(+) leads to altered morphology and growth properties at elevated temperatures and defects in polarized growth. The asp1 disruption strain also is hypersensitive to Ca+ ions and to low pH conditions. Although Asp1p is not stably associated with the Arp2/3 complex nor localized in any discrete structure within the cytoplasm, the asp1 disruption mutant was synthetically lethal with mutations in components of the Arp2/3 complex, arp3-c1 and sop2-1, as well as with a mutation in actin, act1-48. Moreover, the vip1 disruption strain showed a negative genetic interaction with a las17Delta strain. We conclude that Asp1p/Vip1p is important for the function of the cortical actin cytoskeleton.  相似文献   

10.
Campellone KG  Webb NJ  Znameroski EA  Welch MD 《Cell》2008,134(1):148-161
The Arp2/3 complex is an actin nucleator that plays a critical role in many cellular processes. Its activities are regulated by nucleation-promoting factors (NPFs) that function primarily during plasma membrane dynamics. Here we identify a mammalian NPF called WHAMM (WASP homolog associated with actin, membranes, and microtubules) that localizes to the cis-Golgi apparatus and tubulo-vesicular membrane transport intermediates. The modular organization of WHAMM includes an N-terminal domain that mediates Golgi membrane association, a coiled-coil region that binds microtubules, and a WCA segment that stimulates Arp2/3-mediated actin polymerization. Overexpression and depletion studies indicate that WHAMM is important for maintaining Golgi structure and facilitating anterograde membrane transport. The ability of WHAMM to interact with microtubules plays a role in membrane tubulation, while its capacity to induce actin assembly promotes tubule elongation. Thus, WHAMM is an important regulator of membrane dynamics functioning at the interface of the microtubule and actin cytoskeletons.  相似文献   

11.
《Fly》2013,7(2):145-148
In Drosophila embryos, muscle fiber formation via myoblast fusion relies on essential contributions made by the conserved Arp2/3 microfilament nucleation machinery. Two key nucleation promoting factors (NPFs), SCAR and WASp, have been shown to mediate this aspect of Arp2/3 function. We have used these unique circumstances, to study the requirements and coordination of distinct NPF activities, within a common developmental setting. Our results suggest that, although operating within close spatial and temporal proximity, the two regulators of actin polymerization are used in a step-wise manner and perform separate functional roles. Our approach also allows us to assess the involvement of the Arp2/3 machinery in formation of a distinct, fusion-associated actin structure.  相似文献   

12.
The actin nucleation factor Arp2/3 complex is a main regulator of actin assembly and is involved in multiple processes like cell migration and adhesion, endocytosis, and the establishment of cell polarity in mitosis. Our previous work showed that the Arp2/3 complex was involved in the actin-mediated mammalian oocyte asymmetric division. However, the regulatory mechanisms and signaling pathway of Arp2/3 complex in meiosis is still unclear. In the present work, we identified that the nucleation promoting factors (NPFs) JMY and WAVE2 were necessary for the expression and localization of Arp2/3 complex in mouse oocytes. RNAi of both caused the degradation of actin cap intensity, indicating the roles of NPFs in the formation of actin cap. Moreover, JMY and WAVE2 RNAi decreased the expression of ARP2, a key component of Arp2/3 complex. However, knock down of Arp2/3 complex by Arpc2 and Arpc3 siRNA microinjection did not affect the expression and localization of JMY and WAVE2. Our results indicate that the NPFs, JMY and WAVE2, are upstream regulators of Arp2/3 complex in mammalian oocyte asymmetric division.  相似文献   

13.
Arp2/3 complex nucleates branched actin filaments that drive processes like endocytosis and lamellipodial protrusion. WISH/DIP/SPIN90 (WDS) proteins form a class of Arp2/3 complex activators or nucleation promoting factors (NPFs) that, unlike WASP family NPFs, activate Arp2/3 complex without requiring preformed actin filaments. Therefore, activation of Arp2/3 complex by WDS proteins is thought to produce the initial actin filaments that seed branching nucleation by WASP-bound Arp2/3 complexes. However, whether activation of Arp2/3 complex by WDS proteins is important for the initiation of branched actin assembly in cells has not been directly tested. Here, we used structure-based point mutations of the Schizosaccharomyces pombe WDS protein Dip1 to test the importance of its Arp2/3-activating activity in cells. Six of thirteen Dip1 mutants caused severe defects in Arp2/3 complex activation in vitro, and we found a strong correlation between the ability of mutants to activate Arp2/3 complex and to rescue endocytic actin assembly defects caused by deleting Dip1. These data support a model in which Dip1 activates Arp2/3 complex to produce actin filaments that initiate branched actin assembly at endocytic sites. Dip1 mutants that synergized with WASP in activating Arp2/3 complex in vitro showed milder defects in cells compared to those that did not, suggesting that in cells the two NPFs may coactivate Arp2/3 complex to initiate actin assembly. Finally, the mutational data reveal important complementary electrostatic contacts at the Dip1–Arp2/3 complex interface and corroborate the previously proposed wedge model, which describes how Dip1 binding triggers structural changes that activate Arp2/3 complex.  相似文献   

14.
X-ray scattering study of activated Arp2/3 complex with bound actin-WCA   总被引:1,自引:0,他引:1  
Previous structures of Arp2/3 complex, determined in the absence of a nucleation-promoting factor and actin, reveal its inactive conformation. The study of the activated structure has been hampered by uncontrollable polymerization. We have engineered a stable activated complex consisting of Arp2/3 complex, the WCA activator region of N-WASP, and one actin monomer, and studied its structure in solution by small angle X-ray scattering (SAXS). The scattering data support a model in which the first actin subunit binds at the barbed end of Arp2, and disqualify an alternative model that places the first actin subunit at the barbed end of Arp3. This location of the first actin and bound W motif constrains the binding site of the C motif to subunits Arp2 and ARPC1, from where the A motif can reach subunits Arp3 and ARPC3. The results support a model of activation that is consistent with most of the biochemical observations.  相似文献   

15.
The Arp2/3 complex is an essential component of the yeast actin cytoskeleton that localizes to cortical actin patches. We have isolated and characterized a temperature-sensitive mutant of Schizosaccharomyces pombe arp2 that displays a defect in cortical actin patch distribution. The arp2(+) gene encodes an essential actin-related protein that colocalizes with actin at the cortical actin patch. Sucrose gradient analysis of the Arp2/3 complex in the arp2-1 mutant indicated that the Arp2p and Arc18p subunits are specifically lost from the complex at restrictive temperature. These results are consistent with immunolocalization studies of the mutant that show that Arp2-1p is diffusely localized in the cytoplasm at restrictive temperature. Interestingly, Arp3p remains localized to the cortical actin patch under the same restrictive conditions, leading to the hypothesis that loss of Arp2p from the actin patch affects patch motility but does not severely compromise its architecture. Analysis of the mutant Arp2 protein demonstrated defects in ATP and Arp3p binding, suggesting a possible model for disruption of the complex.  相似文献   

16.
Arp2p is an essential yeast actin-related protein. Disruption of the corresponding ARP2 gene leads to a terminal phenotype characterized by the presence of a single large bud. Thus, Arp2p may be important for a late stage of the cell cycle (Schwob, E., and R.P. Martin, 1992. Nature (Lond.). 355:179-182). We have localized Arp2p by indirect immunofluorescence. Specific peptide antibodies revealed punctate staining under the plasma membrane, which partially colocalizes with actin. Temperature-sensitive arp2 mutations were created by PCR mutagenesis and selected by an ade2/SUP11 sectoring screen. One temperature-sensitive mutant that was characterized, arp2-H330L, was osmosensitive and had an altered actin cytoskeleton at a nonpermissive temperature, suggesting a role of Arp2p in the actin cytoskeleton. Random budding patterns were observed in both haploid and diploid arp2- H330L mutant cells. Endocytosis, as judged by Lucifer yellow uptake, was severely reduced in the mutant, at all temperatures. In addition, genetic interaction was observed between temperature-sensitive alleles arp2-H330L and cdc10-1. CDC10 is a gene encoding a neck filament- associated protein that is necessary for polarized growth and cytokinesis. Overall, the immunolocalization, mutant phenotypes, and genetic interaction suggest that the Arp2 protein is an essential component of the actin cytoskeleton that is involved in membrane growth and polarity, as well as in endocytosis.  相似文献   

17.
How is actin polymerization nucleated in vivo?   总被引:13,自引:0,他引:13  
Actin polymerization in vivo is dependent on free barbed ends that act as nuclei. Free barbed ends can arise in vivo by nucleation from the Arp2/3 complex, uncapping of barbed ends on pre-existing filaments or severing of filaments by cofilin. There is evidence that each mechanism operates in cells. However, different cell types use different combinations of these processes to generate barbed ends during stimulated cell motility. Here, I describe recent attempts to define the relative contributions of these three mechanisms to actin nucleation in vivo. The rapid increase in the number of barbed ends during stimulation is not due to any single mechanism. Cooperation between capping proteins, cofilin and the Arp2/3 complex is necessary for the development of protrusive force at the leading edge of the cell: uncapping and cofilin severing contributing barbed ends, whereas activity of the Arp2/3 complex is necessary, but not sufficient, for lamellipod extension. These results highlight the need for new methods that enable the direct observation of actin nucleation and so define precisely the relative contributions of the three processes to stimulated cell motility.  相似文献   

18.
Arp2/3 (actin-related protein 2/3) complex is a seven-subunit complex that nucleates branched actin filaments in response to cellular signals. Nucleation-promoting factors such as WASp/Scar family proteins activate the complex by facilitating the activating conformational change and recruiting the first actin monomer for the daughter branch. Here we address the role of the Arp2 subunit in the function of Arp2/3 complex by isolating a version of the complex lacking Arp2 (Arp2Delta Arp2/3 complex) from fission yeast. An x-ray crystal structure of the DeltaArp2 Arp2/3 complex showed that the rest of the complex is unperturbed by the loss of Arp2. However, the Arp2Delta Arp2/3 complex was inactive in actin nucleation assays, indicating that Arp2 is essential to form a branch. A fluorescence anisotropy assay showed that Arp2 does not contribute to the affinity of the complex for Wsp1-VCA, a Schizosaccharomyces pombe nucleation-promoting factor protein. Fluorescence resonance energy transfer experiments showed that the loss of Arp2 does not prevent VCA from recruiting an actin monomer to the complex. Truncation of the N terminus of ARPC5, the smallest subunit in the complex, increased the yield of Arp2Delta Arp2/3 complex during purification but did not compromise nucleation activity of the full Arp2/3 complex.  相似文献   

19.
One of the earliest events in the process of cell motility is the massive generation of free actin barbed ends, which elongate to form filaments adjacent to the plasma membrane at the tip of the leading edge. Both cofilin and Arp2/3 complex have been proposed to contribute to barbed end formation during cell motility. Attempts to assess the functions of cofilin and Arp 2/3 complex in vivo indicate that both cofilin and Arp2/3 complex contribute to actin polymerization: cofilin by severing and Arp2/3 by nucleating and branching. In order to determine if the activities of cofilin and Arp2/3 complex interact, we employed a light microscope-based assay to visualize actin polymerization directly in the presence of both proteins. The results indicate that cofilin generates barbed ends to increase the mass of freshly polymerized F-actin but does not directly affect the activity of Arp2/3 complex. However, while ADP, ADP-Pi, and newly polymerized ATP-filaments are all capable of supporting Arp2/3-mediated branching, newly polymerized F-actin supports most of the Arp2/3-induced branch formation. The results suggest that, in vivo, cofilin contributes to barbed end formation by inducing the initial increase in the number of barbed ends leading to increased ATP-F-actin, which in turn supports higher levels of dendritic nucleation by active Arp2/3 complex.  相似文献   

20.
Formins are a conserved family of actin assembly-promoting factors with diverse biological roles, but how their activities are regulated in vivo is not well understood. In Saccharomyces cerevisiae, the formins Bni1 and Bnr1 are required for the assembly of actin cables and polarized cell growth. Proper cable assembly further requires Bud6. Previously it was shown that Bud6 enhances Bni1-mediated actin assembly in vitro, but the biochemical mechanism and in vivo role of this activity were left unclear. Here we demonstrate that Bud6 specifically stimulates the nucleation rather than the elongation phase of Bni1-mediated actin assembly, defining Bud6 as a nucleation-promoting factor (NPF) and distinguishing its effects from those of profilin. We generated alleles of Bud6 that uncouple its interactions with Bni1 and G-actin and found that both interactions are critical for NPF activity. Our data indicate that Bud6 promotes filament nucleation by recruiting actin monomers to Bni1. Genetic analysis of the same alleles showed that Bud6 regulation of formin activity is critical for normal levels of actin cable assembly in vivo. Our results raise important mechanistic parallels between Bud6 and WASP, as well as between Bud6 and other NPFs that interact with formins such as Spire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号