首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the thermal denaturation method the effect of bivalent copper of (4-10(-6)-10(-3)) M concentrations on the helix-coil transition of DNA was studied in the solution of Na+ concentrations 10(-3)-10(-1) M. Unlike the previous studies, this paper makes allowance for the effect of impurity ions present in DNA and deionized water. It has been shown that in the region of low Cu2+ and Na+ concentrations, thermal stability increases, the melting range extends and the denaturation curves become asymmetric. At concentrations more than approximately 3-10(-5) M Cu2+, melting temperature starts to fall, and the range reduces to 1-1.5 degrees at [Cu2+] greater than or equal to 2-10(-4) M. As [Cu2+] reaches these values, the denaturation curve asymmetry and melting range increase again, which is due to the inversion of the relative stability of AT- and GC-pairs. Employing experimental and phase-transition-theory data for homopolymers, the constants of Cu2+ binding with phosphates and DNA bases were calculated. The concentration dependence of the DNA denaturation parameters was shown to be governed by the superposition of binding Cu2+ with phosphates and nucleic acid bases.  相似文献   

2.
Physical properties of inner histone-DNA complexes.   总被引:6,自引:6,他引:0       下载免费PDF全文
Chicken-erythrocyte inner histone tetramer has been complexed with several natural and synthetic DNA duplexes by salt-gradient dialysis at various protein/DNA ratios. The resulting complexes, in low-ionic-strength buffer, have been examined by electron microscopy, circular dichroism, and thermal denaturation. Electron microscopy reveals nucleosomes (nu bodies) randomly arranged along DNA fibers, including poly(dA-dT)-poly(dA-dT), poly(dI-dC)-poly(dI-dC), but not poly(dA)-poly(dT). Circular dichroism studies showed prominent histone alpha-helix and "suppression" of nucleic acid ellipticity (lambda less than 240 nm). Thermal denaturation experiments revealed Tm behavior comparable to that of H1- (or H5-) depleted chromatin. Tm III and Tm IV increased linearly with G + C%(natural DNAs), but were virtually independent of the histone/DNA ratio; therefore, the melting of nucleosomes along a DNA chain is insensitive to adjacent "spacer" DNA lengths. This suggests that Tm III and Tm IV arise from the melting of different domains of DNA associated with the core nu body.  相似文献   

3.
《Biophysical journal》2020,118(9):2066-2076
Interactions of chromatin with bivalent immunoglobin nucleosome-binding antibodies and their monovalent (papain-derived) antigen-binding fragment analogs are useful probes for examining chromatin conformational states. To help interpret antibody-chromatin interactions and explore how antibodies might compete for interactions with chromatin components, we incorporate coarse-grained PL2-6 antibody modeling into our mesoscale chromatin model. We analyze interactions and fiber structures for the antibody-chromatin complexes in open and condensed chromatin, with and without H1 linker histone (LH). Despite minimal and transient interactions at physiological salt, we capture significant differences in antibody-chromatin complex configurations in open fibers, with more intense interactions between the bivalent antibody and chromatin compared to monovalent antigen-binding fragments. For these open chromatin fiber morphologies, antibody binding to histone tails is increased and compaction is greater for bivalent compared to monovalent and antibody-free systems. Differences between monovalent and bivalent binding result from antibody competition with internal chromatin fiber components (nucleosome core and linker DNA) for histone tail (H3, H4, H2A, H2B) interactions. This antibody competition for tail contacts reduces tail-core and tail-linker interactions and increases tail-antibody interactions. Such internal structural changes in open fibers resemble mechanisms of LH condensation, driven by charge screening and entropy changes. For condensed fibers at physiological salt, the three systems are much more similar overall, but some subtle tail interaction differences can be noted. Adding LH results in less-dramatic changes for all systems, except that the bivalent complex at physiological salt shows cooperative effects between LH and the antibodies in condensing chromatin fibers. Such dynamic interactions that depend on the internal structure and complex-stabilizing interactions within the chromatin fiber have implications for gene regulation and other chromatin complexes such as with LH, remodeling proteins, and small molecular chaperones that bind and modulate chromatin structure.  相似文献   

4.
Using an Cphi-4A spectrophotometer (USSR), denaturation of DNA containing approximately 2% residual protein has been studied in the presence of catecholamines and their precursors: epinephrine, beta-3,4-dioxyphenylalanine, norepinephrine, 3,4-dimethoxyphenylethylamine, tyrosine, and phenylalanine. All these substances, excluding phenylalanine, induce positive excessive hyperchromicity (as compared to initial DNA). The correlation between this effect and molecular structures of the substances studied has been shown to exist. An increase of DNA hyperchromicity in the presence of catecholamines has been found to result from the oxygen presence in the aromatic rings of the catecholamines molecules. It is assumed that the interaction between the negative O-atoms in catecholamines and bivalent metal cations in the nucleoprotein complex weakens the DNA-protein binding. This leads to an additional disorientation due to the heat of nucleic acid bases, which were previously bound by the residual protein.  相似文献   

5.
The nuclear pool of soluble histones in Xenopus laevis oocytes is organized into two major types of acidic histone complexes separable by sucrose density gradient centrifugation. One type of complex sediments at 5 S (Mr approximately 120,000), is isoelectric at pH 4.6, and contains histones H3 and/or H4 tightly bound to one polypeptide of a pair of very acidic polypeptides, designated N1 and N2 (Kleinschmidt, J. A., and Franke, W. W. (1982) Cell 29, 799-809). This complex can be selectively immunoprecipitated by guinea pig antibodies against purified protein N1/N2. In contrast, a larger complex of 7 S contains four histones and nucleoplasmin (the purified protein exists as a pentamer of a polypeptide of Mr approximately 30,000), is isoelectric over the pH range of 5-7, and can be immunoprecipitated by nucleoplasmin antibodies. Its relative molecular weight of 130,000-170,000, as determined by gel filtration, sucrose density gradient centrifugation, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the cross-linked complexes, excludes the association of a histone octamer with nucleoplasmin. In addition to histones H2A and H2B, two histones (designated H3 and H4) which are similar in their electrophoretic mobilities to histones H3 and H4 but have lower isoelectric pH values are enriched in immuno-precipitates obtained with nucleoplasmin antibodies. Cross-linking of complexes present in intact nuclei, using 1% formaldehyde at near-physiological ionic strength and pH, indicates the coexistence of these two soluble histone complexes in the living cell. In chromatin assembly experiments using SV 40 DNA, both histone fractions are able to transfer histones to DNA, resulting in an increase of DNA superhelicity and the formation of beaded nucleoprotein complexes of nucleosome-like morphology. The common principle governing both types of complexes, i.e. the association of one or two histone molecules with a karyophilic large acidic histone-binding protein is emphasized. We discuss the possible role of these complexes in storing histones utilized in chromatin assembly during early amphibian embryogenesis as well as the possible existence of similar complexes, albeit at lower concentrations, in somatic cells.  相似文献   

6.
At high binding densities acridine orange (AO) forms complexes with ds DNA which are insoluble in aqueous media. These complexes are characterized by high red- and minimal green-luminescence, 1:1 (dye/P) stoichiometry and resemble complexes of AO with ss nucleic acids. Formation of these complexes can be conveniently monitored by light scatter measurements. Light scattering properties of these complexes are believed to result from the condensation of nucleic acids induced by the cationic, intercalating ligands. The spectral and thermodynamic data provide evidence that AO (and other intercalating agents) induces denaturation of ds nucleic acids; the driving force of the denaturation is high affinity and cooperativity of binding of these ligands to ss nucleic acids. The denaturing effects of AO, adriamycin and ellipticine were confirmed by biochemical studies on accessibility of DNA bases (in complexes with these ligands) to the external probes. The denaturing properties of AO vary depending on the primary structure (sugar- and base-composition) of nucleic acids.  相似文献   

7.
The thermal denaturation method was employed to study the effect of Ca2+ and Mn2+ ions on the DNA helix–coil transition parameters at Na+ concentrations of 10?3–10?1M. At low ion concentrations, thermal stability increases, the melting range passes through a maximum, and the denaturation curves become asymmetric. These changes are quantitatively similar for Mn2+ and Ca2+ ions. With a further increase in the concentration of bivalent ions, the conformational transition temperatures pass through a maximum, and the melting range first tends to saturation and then rapidly decreases to 1–2°C. The Mn2+ concentrations, at which the above effects occur, are an order of magnitude lower than the Ca2+ concentrations. Comparison of experimental results and calculation in terms of the ligand theory permitted estimation of binding constants characterizing association between Mn2+ and Ca2+ ions and bases of native and denatured DNA. We show that, unlike the interaction with phosphates, bivalent ion–DNA base binding is weakly dependent on monovalent ion concentration in the solution.  相似文献   

8.
The method of circular dichroism (CD) was used to compare DNA behavior during its interaction with linker histone H1 and with non-histone chromosomal protein HMG1 at different ionic strength and at different protein content in the system. The role of negatively charged C-terminal fragment of HMG1 was analyzed using recombinant protein HMG1-(A + B), which lacks the C terminal amino acid sequence. The psi-type CD spectra were common for DNA interaction with histone H1, but no spectra of this type were observed in HMG1-DNA systems even at high ionic strength. The CD spectrum of the truncated recombinant protein at high salt concentration somewhat resembled the psi-type spectrum. Two very intense positive bands were located near 215 nm and near 273 nm, and the whole CD spectrum was positive. The role of C-terminal tail of HMG1 in formation of the ordered DNA-protein complexes is discussed.  相似文献   

9.
Electron microscopy shows that EDTA treatment or partial removal of histone HI converts 200-250 A chromatin fibres characteristic for native chromatin, isolated in low ionic strength conditions into fibres consisting of nucleosomes connected by segments of DNA. This structural transition is accompanied by an increase in the amplitude of positive band of CD spectra at 280 nm. Comparison of electron microscopic, thermal denaturation and electrophoretic data suggests that multiphasic character of melting curves, observed for chromatin, lacking histone HI is due to the removal of histone HI and destabilisation of the DNA segments, connecting nucleosomes. It is also shown that bivalent cations play an important part both in the stabilisation of 200 A globules and of nucleosomes.  相似文献   

10.
The glycine-arginine-rich histone, f2al (IV) (102 amino acids), from calf thymus was cleaved at residue 84 with cyanogen bromide. Complexes containing homologous DNA and each f2al fragment were reconstituted by means of Gdn-HC1 gradient dialysis. The circular dichroic (CD) spectra of these complexes were all examined in 0.14 M NaC1. The CD spectra of the DNA-f2al fragment complexes did not differ appreciably from that of DNA alone in the wavelength region above 240 nm. However, intact f2al-DNA complexes yield CD spectra which differ significantly (enhanced, blue-shifted, 273-nm band) from that of native DNA (Shih and Fasman, 1971). The small C-terminal fragment (85-102) was bound weakly to DNA under the conditions used. However, the large basic N-terminal fragment (1-83) was bound as well to DNA as was whole f2al, but produced no CD distortion. The conformation of the N-terminal fragment, unlike intact f2al, was not changed upon increasing the ionic strength to 0.14 M NaF. These results complement previous studies on f2al and its N-terminal CNBr fragment (Ziccardi and Schumaker, 1973).Thermal denaturation of the complexes in 2.5 X 10(-4) M EDTA was monitored simultaneously by changes in the absorption and CD spectra. All complexes showed a thermal transition at 45 degrees (Tml), attributable to the melting of free, double-stranded DNA. In addition, f2al-DNA and N fragment-DNA complexes displayed melting phenomena at 88 and 78 degrees (Tm2), respectively, caused by the denaturation of the histone-bound DNA. This difference in Tm2 constitutes further evidence that loss of the 18-amino-acid carboxyl end segment of f2al prohibits the unique type of interaction which occurs between DNA and the intact histone.  相似文献   

11.
Thermal denaturation of deoxyribonucleic acid (DNA) in situ in individual unbroken cells is studied by a cytofluorometric method. This method allows us to investigate DNA denaturation in the presence of divalent cations at concentrations reported to be necessary to maintain native structure of nuclear chromatin. Under these conditions the pattern of DNA denaturation is very different than when studied in the presence of ethylenediaminetetraacetate or citrate. The results suggest that with divalent cations present, the histone basic charges are more uniformly distributed along whole nuclear DNA. Various cell types exhibit great differences in sensitivity to DNA denaturation when assayed in the presence of 1 mM MgCl2. Human lymphocytes, monocytes and certain kinds of human leukemic cells show differences large enough to be used as a parameter for their recognition in mixed samples. Possible applications of the method in basic research on chromatin conformation and as a tool for cell recognition in diagnostic cytology or in the classification of human leukemia are proposed.  相似文献   

12.
Specific interaction of histone H1 with eukaryotic DNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
The interaction of calf thymus histone H1 with homologous and heterologous DNA has been studied at different ionic strengths. It has been found that about 0.5 M NaCl histone H1, and its fragments N-H1 (residues 1-72) and C-H1 (residues 73-C terminal), precipitate selectively a small fraction of calf thymus DNA. This selective precipitation is preserved up to very high values (less than 2.0) of the input histone H1/DNA ratio. The percentage of DNA insolubilized by histone H1 under these ionic conditions is dependent upon the molecular weight of the nucleic acid, diminishing from 18% fro a Mw equals 1.0 x 10(7) daltons to 5% for a Mw equals 8.0 x 10(4) daltons. The base composition of the precipitated DNA is similar to that of the bulk DNA. Calf thymus histone H1 also selectively precipitates a fraction of DNA from other eukaryotes (herring, trout), but not from some prokaryotes (E. coli, phage gamma. On the other hand, at 0.5 M NaCl, the whole calf thymus DNA (but not E. coli DNA) presents a limited number of binding sites for histone H1, the saturation ratio histone H1 bound/total DNA being similar to that found in chromatin. A similar behavior is observed from the histone H1 fragments, N-H1 and C-H1, which bind to DNA in complementary saturation ratios. It is suggested that in eukaryotic organisms histone H1 molecules maintain specific interactions with certain DNA sequences. A fraction of such specific complexes could act as nucleation points for the high-order levels of chromatin organization.  相似文献   

13.
Differential scanning calorimetry, laser Raman spectroscopy, optical densitometry, and pH potentiometry have been used to investigate DNA melting profiles in the presence of the chloride salts of Ba2+, Sr2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+. Metal-DNA interactions have been observed for the molar ratio [M2+]/[PO2-] = 0.6 in aqueous solutions containing 5% by weight of 160 bp mononucleosomal calf thymus DNA. All of the alkaline earth metals, plus Mn2+, elevate the melting temperature of DNA (Tm > 75.5 degrees C), whereas the transition metals Co2+, Ni2+, and Cd2+ lower Tm. Calorimetric (delta Hcal) and van't Hoff (delta HVH) enthalpies of melting range from 6.2-8.7 kcal/mol bp and 75.6-188.6 kcal/mol cooperative unit, respectively, and entropies from 17.5 to 24.7 cal/K mol bp. The average number of base pairs in a cooperative melting unit (<nmelt>) varied from 11.3 to 28.1. No dichotomy was observed between alkaline earth and transition DNA-metal complexes for any of the thermodynamic parameters other than their effects on Tm. These results complement Raman difference spectra, which reveal decreases in backbone order, base unstacking, distortion of glycosyl torsion angles, and rupture of hydrogen bonds, which occur after thermal denaturation. Raman difference spectroscopy shows that transition metals interact with the N7 atom of guanine in duplex DNA. A broader range of interaction sites with single-stranded DNA includes ionic phosphates, the N1 and N7 atoms of purines, and the N3 atom of pyrimidines. For alkaline earth metals, very little interaction was observed with duplex DNA, whereas spectra of single-stranded complexes are very similar to those of melted DNA without metal. However, difference spectra reveal some metal-specific perturbations at 1092 cm-1 (nPO2-), 1258 cm-1 (dC, dA), and 1668 cm-1 (nC==O, dNH2 dT, dG, dC). Increased spectral intensity could also be observed near 1335 cm-1 (dA, dG) for CaDNA. Optical densitometry, employed to detect DNA aggregation, reveals increased turbidity during the melting transition for all divalent DNA-metal complexes, except SrDNA and BaDNA. Turbidity was not observed for DNA in the absence of metal. A correlation was made between DNA melting, aggregation, and the ratio of Raman intensities I1335/I1374. At room temperature, DNA-metal interactions result in a pH drop of 1.2-2.2 units for alkaline earths and more than 2.5 units for transition metals. Sr2+, Ba2+, and Mg2+ cause protonated sites on the DNA to become thermally labile. These results lead to a model that describes DNA aggregation and denaturation during heating in the presence of divalent metal cations; 1) The cations initially interact with the DNA at phosphate and/or base sites, resulting in proton displacement. 2) A combination of metal-base interactions and heating disrupts the base pairing within the DNA duplex. This allows divalent metals and protons to bind to additional sites on the DNA bases during the aggregation/melting process. 3) Strands whose bases have swung open upon disruption are linked to neighboring strands by metal ion bridges. 4) Near the midpoint of the melting transition, thermal energy breaks up the aggregate. We have no evidence to indicate whether metal ion cross-bridges or direct base-base interactions rupture first. 5) Finally, all cross-links break, resulting in single-stranded DNA complexed with metal ions.  相似文献   

14.
We describe here a unique transfer system based on a truncated form of the human linker histone H1F4 for the delivery of nucleic acids to a variety of cells. The efficiency of truncated histone H1.4F was assessed using both primary mammalian and immortalised insect and mammalian cell lines. Our results indicated that recombinant histone H1.4F was able to deliver DNA, dsRNA and siRNA in all cells tested. Quantitative analysis based on reporter gene expression or silencing of target genes revealed that the transfection efficiency of histone H1.4F was comparable to, or better than, liposome-based systems. Notably, the efficiency of histone H1.4F was associated with very low toxicity for transfected cells. The human H1.4F recombinant protein is easily purified in large-scale from bacterial lysates using inexpensive simplified processing. This versatile transfection system represents an important advance in the field of gene delivery and an improvement over earlier nucleic acid delivery methods.  相似文献   

15.
Abstract

At high binding denstities acridine orange (AO) forms complexes with ds DNA which are insoluble in aqueous media. These complexes are characterized by high red- and minimal green-luminescence, 1:1 (dye/P) stoichiometry and resemble complexes of AO with ss nucleic acids. Formation of these complexes can be conveniently monitored by light scatter measurements. Light scattering properties of these complexes are believed to result from the condensation of nucleic acids induced by the cationic, intercalating ligands. The spectral and thermodynamic data provide evidence that AO (and other intercalating agents) induces denaturation of ds nucleic acids; the driving force of the denaturation is high affinity and cooperativity of binding of these ligands to ss nucleic acids. The denaturing effects of AO, adriamycin and ellipticine were confirmed by biochemical studies on accessibility of DNA bases (in complexes with these ligands) to the external probes. The denaturing properties of AO vary depending on the primary structure (sugar-and base-composition) of nucleic acids.  相似文献   

16.
17.
Significant increases in concentrations of bivalent metals (Ca2+, Mg2+, and Cd2+) in the protein phase were observed after acidification (pH 4.7) of skimmed milk preheated at 95 degrees C for 90 min. The increase was caused by denaturation of milk whey proteins and formation of protein-protein and protein-carbohydrate aggregates. Preheating did not influence the distribution of nitrate ions in the two-phase system.  相似文献   

18.
Characteristic viscosity, sedimentation constant and optical anisotropy were studied of the complexes formed between DNA and histone fractions F3 and F3+F2a2. The parameters mentioned continuously change with the increase of protein content within the complex. Analysis of experimental data shows that binding of a histone bads to a decrease of size and thermodynamic rigidity of the DNA molecule. On the basis of results obtained a model of F3 histone binding with DNA is suggested, amino acid sequence of this protein being taken into account. Comparison of behaviour of nucleohistones DNA+F3 and DNA+F1 studied previously testifies different way of binding of these histones to DNA.  相似文献   

19.
Ruiz-Vela A  Korsmeyer SJ 《FEBS letters》2007,581(18):3422-3428
Cytochrome c (CYT c) is a protein that employs the caspase recruitment domain (CARD)-containing proteins APAF-1 and CASP-9 to activate effectors CASP-3 and -7. By using affinity labeling techniques and mass spectrometry analysis, we show that histone H1.2 is a regulator of caspases upon UV irradiation. We demonstrated that histone H1.2 forms a protein complex with APAF-1, CASP-9 and CYT c upon UV irradiation. In cell-free systems, we show that histone H1.2 triggers activation of CASP-3 and -7 via APAF-1 and CASP-9. We therefore conclude that upon DNA damage histone H1.2 acts as a positive regulator of apoptosome formation.  相似文献   

20.
The full-length mouse recombinant prion protein (23-231 amino acid residues) contains all of its structural elements viz. three alpha-helices and a short two-stranded antiparallel beta-sheet in its C-terminal fragment comprising 121-231 amino acid residues. The incubated mixture of this prion protein fragment and nucleic acid results in the formation of amyloid fibres evidenced from electron microscopy, birefringence and fluorescence of the fibre bound Congo Red and Thioflavin T dyes, respectively. The secondary structure of the amyloid formed in nucleic acid solution is similar to the in vivo isolated prion protein 27-30 amyloid but unlike in it, a hydrophobic milieu is absent in the 121-231 amyloid. Thermal denaturation study demonstrates a partial unfolding of the protein fragment in nucleic acid solution. We propose that nucleic acid catalyses unfolding of prion protein helix 1 followed by a nucleation-dependent polymerisation of the protein to amyloid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号