首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unlike prototypical lentiviruses like visna and caprine arthritis-encephalitis viruses, which are mainly macrophage tropic (M-tropic), primate lentiviruses primarily target CD4+ T lymphocytes. We previously reported that during the late phase of highly pathogenic chimeric simian/human immunodeficiency virus (SHIV) infections of rhesus macaques, when CD4+ T cells have been systemically eliminated, high levels of viremia are maintained from productively infected macrophages. The availability of several different M-tropic SHIVs from such late-stage immunocompromised animals provided the opportunity to assess whether they might contribute to the immune deficiency induced by their T-cell-tropic parental viruses or possibly cause a distinct disease based on their capacity to infect macrophages. Pairs of rhesus monkeys were therefore inoculated intravenously with six different M-tropic SHIV preparations, and their plasma viral RNA loads, circulating lymphocyte subset numbers, and eventual disease outcomes were monitored. Only one of these six M-tropic SHIVs induced any disease; the disease phenotype observed was the typical rapid, complete, and irreversible depletion of CD4+ T cells induced by pathogenic SHIVs. An analysis of two asymptomatic monkeys, previously inoculated with an M-tropic SHIV recovered directly from alveolar macrophages, revealed that this inoculum targeted alveolar macrophages in vivo, compared to a T-cell-tropic virus, yet no clinical disease occurred. Although one isolate did, in fact, induce the prototypical rapid, irreversible, and complete loss of CD4+ T cells, indicating that M-tropism and pathogenicity may not be inversely related, the majority of M-tropic SHIVs induced no clinical disease in immunocompetent macaques.  相似文献   

2.
We used experimental infection of rhesus macaques with envelope gp120 V3 loop isogenic simian-human immunodeficiency virus (SHIV) molecular clones to more clearly define the impact of human immunodeficiency virus type 1 coreceptor usage in target cell selectivity and the rates of CD4+-T-cell depletion. Functional assays demonstrate that substitution of the V3 loop of the pathogenic CXCR4-tropic (X4) SHIV(SF33A2) molecular clone with the corresponding sequences from the CCR5-tropic (R5) SHIV(SF162P3) isolate resulted in a switch of coreceptor usage from CXCR4 to CCR5. The resultant R5 clone, designated SHIV(SF33A2(V3)), is replication competent in vivo, infecting two of two macaques by intravenous inoculation with peak viremia that is comparable to that seen in monkeys infected with X4-SHIV(SF33A2). But while primary infection with the X4 clone was accompanied by rapid and significant loss of peripheral and secondary lymphoid CD4+ T lymphocytes, infection with R5-SHIV(SF33A2(V3)) led to only a modest and transient loss. However, substantial depletion of intestinal CD4+ T cells was observed in R5-SHIV(SF33A2(V3))-infected macaques. Moreover, na?ve T cells that expressed high levels of CXCR4 were rapidly depleted in X4-SHIV(SF33A2)-infected macaques, whereas R5-SHIV(SF33A2(V3)) infection mainly affected memory T cells that expressed CCR5. These findings in a unique isogenic system illustrate that coreceptor usage is the principal determinant of tissue and target cell specificity of the virus in vivo and dictates the dynamics of CD4+-T-cell depletion during SHIV infection.  相似文献   

3.
In vivo adaptation of simian-human immunodeficiency virus (SHIV) clone SHIV(SF33) resulted in the emergence of pathogenic isolate SHIV(SF33A), which caused a rapid and severe CD4(+) T-cell depletion when inoculated into rhesus macaques. Two molecular clones generated by inserting the env V1-to-V5 region amplified from SHIV(SF33A)-infected animals into the parental SHIV(SF33) genome retained a pathogenic phenotype. The gp120 envelope glycoproteins of pathogenic clones SHIV(SF33A2) and SHIV(SF33A5) conferred a threefold increase in viral entry and fusogenicity compared to the parental glycoprotein. Changes in gp120 were also responsible for a higher replication capacity and cytopathicity in primary CD4(+) T-cell cultures. Last, gp120 carried the determinants of SHIV(SF33A) neutralization resistance. Thus, changes in SHIV(SF33A) gp120 produced a set of properties that could account for the pathogenic phenotype observed in vivo. Measurement of antibody binding to SHIV(SF33A) viral particles revealed an increased exposure of the CD4-induced epitope recognized by the 17b monoclonal antibody in a region that was shown to contribute to coreceptor binding. Exposure of this epitope occurred in the absence of CD4 binding, suggesting that the envelope glycoprotein of pathogenic SHIV(SF33A) clones folded in a conformation that was primed for interaction with CXCR4 or for the subsequent step of fusion.  相似文献   

4.
To examine the pathway of the coreceptor switching of CCR5-using (R5) virus to CXCR4-using (X4) virus in simian-human immunodeficiency virus SHIV(SF162P3N)-infected rhesus macaque BR24, analysis was performed on variants present at 20 weeks postinfection, the time when the signature gp120 V3 loop sequence of the X4 switch variant was first detected by PCR. Unexpectedly, circulating and tissue variants with His/Ile instead of the signature X4 V3 His/Arg insertions predominated at this time point. Phylogenetic analysis of the sequences of the C2 conserved region to the V5 variable loop of the envelope (Env) protein showed that viruses bearing HI insertions represented evolutionary intermediates between the parental SHIV(SF162P3N) and the final X4 HR switch variant. Functional analyses demonstrated that the HI variants were phenotypic intermediates as well, capable of using both CCR5 and CXCR4 for entry. However, the R5X4 intermediate virus entered CCR5-expressing target cells less efficiently than the parental R5 strain and was more sensitive to both CCR5 and CXCR4 inhibitors than either the parental R5 or the final X4 virus. It was also more sensitive than the parental R5 virus to antibody neutralization, especially to agents directed against the CD4 binding site, but not as sensitive as the late X4 virus. Significantly, the V3 loop sequence that determined CXCR4 use also conferred soluble CD4 neutralization sensitivity. Collectively, the data illustrate that, similar to human immunodeficiency virus type 1 (HIV-1) infection in individuals, the evolution from CCR5 to CXCR4 usage in BR24 transitions through an intermediate phase with reduced virus entry and coreceptor usage efficiencies. The data further support a model linking an open envelope gp120 conformation, better CD4 binding, and expansion to CXCR4 usage.  相似文献   

5.
The entry of primate immunodeficiency viruses into cells is dependent on the interaction of the viral envelope glycoproteins with receptors, CD4, and specific members of the chemokine receptor family. Although in many cases the tropism of these viruses is explained by the qualitative pattern of coreceptor expression, several instances have been observed where the expression of a coreceptor on the cell surface is not sufficient to allow infection by a virus that successfully utilizes the coreceptor in a different context. For example, both the T-tropic simian immunodeficiency virus (SIV) SIVmac239 and the macrophagetropic (M-tropic) SIVmac316 can utilize CD4 and CCR5 as coreceptors, and both viruses can infect primary T lymphocytes, yet only SIVmac316 can efficiently infect CCR5-expressing primary macrophages from rhesus monkeys. Likewise, M-tropic strains of human immunodeficiency virus type 1 (HIV-1) do not infect primary rhesus monkey macrophages efficiently. Here we show that the basis of this restriction is the low level of CD4 on the surface of these cells. Overexpression of human or rhesus monkey CD4 in primary rhesus monkey macrophages allowed infection by both T-tropic and M-tropic SIV and by primary M-tropic HIV-1. By contrast, CCR5 overexpression did not specifically compensate for the inefficient infection of primary monkey macrophages by T-tropic SIV or M-tropic HIV-1. Apparently, the limited ability of these viruses to utilize a low density of CD4 for target cell entry accounts for the restriction of these viruses in primary rhesus monkey macrophages.  相似文献   

6.
We have compared the abilities of human immunodeficiency virus type 1 (HIV-1) envelope V3 peptides and recombinant gp120 to induce antibodies that neutralize simian/human immunodeficiency viruses (SHIVs). SHIV-89.6 is a nonpathogenic SHIV that expresses the envelope protein of primary HIV-1 isolate 89.6. SHIV-89.6P, clone KB9, is a pathogenic SHIV variant derived from SHIV-89.6. Infection of rhesus monkeys with these SHIVs rarely induces anti-V3 region antibodies. To determine the availability of the gp120 V3 loop for neutralizing antibody binding on SHIV-89.6 and KB9 virions, we have constructed immunogenic C4-V3 peptides from these SHIVs and induced anti-V3 antibodies in guinea pigs and rhesus monkeys. We found that both SHIV-89.6 and KB9 C4-V3 peptides induced antibodies that neutralized SHIV-89.6 but that only SHIV-KB9 C4-V3 peptide induced antibodies that neutralized SHIV-KB9. Immunoprecipitation assays demonstrated that SHIV-KB9 C4-V3 peptide-induced antibodies had a greater ability to bind SHIV-KB9 envelope proteins than did antibodies raised against SHIV-89.6 C4-V3 peptide. We have used a series of mutant HIV-1 envelope constructs to map the gp120 determinants that affect neutralization by anti-V3 antibodies. The residue change at position 305 of arginine (in SHIV-89.6) to glutamic acid (in SHIV-KB9) played a central role in determining the ability of peptide-induced anti-V3 antiserum to neutralize primary isolate SHIVs. Moreover, residue changes in the SHIV-89.6 V1/V2 loops also played roles in regulating the availability of the V3 neutralizing epitope on SHIV-89.6 and -KB9. Thus, SHIV-89.6 and -KB9 V3 region peptides are capable of inducing neutralizing antibodies against these primary isolate SHIVs, although the pathogenic SHIV-KB9 is less easily neutralized than its nonpathogenic variant SHIV-89.6. In contrast to natural infection with SHIV-89.6, in which few animals make anti-V3 antibodies, C4-V3 peptides frequently induced anti-V3 antibodies that neutralized primary isolate SHIV strains.  相似文献   

7.
HIV-1 enters cells through interacting with cell surface molecules such as CD4 and chemokine receptors. We generated recombinant soluble gp120s derived from T-cell line-tropic (T-tropic) and macrophage-tropic (M-tropic) HIV-1 strains using a baculovirus expression system and investigated the association of CD4-gp120 complex with the chemokine receptor and/or other surface molecule(s). For monitoring the co-down-modulations of the CD4-gp120 complex, a cytoplasmic domain deletion mutant (tailless CD4), which is not capable of undergoing down-modulation by itself in response to phorbol ester PMA, was used. Our studies revealed both cell-type and HIV-1 strain-specific differences. We found that T-tropic gp120s were capable of priming co-down-modulation with tailless CD4 by interacting with CXCR4, whereas M-tropic SF162 gp120 could not after PMA treatment even in the presence of CCR5. Among the T-tropic HIV-1 envelopes, IIIB gp120 was the most potent. Furthermore, the ability of gp120 to prime the PMA induced co-down-modulation of tailless CD4 appeared to be dependent on the concentration of the principal coreceptor CXCR4. Nevertheless, the observation that IIIB gp120 strongly primed tailless CD4 co-down-modulation on human osteosarcoma HOS cells that express undetectable levels of surface CXCR4 raised the possibility that membrane component(s) other than those recently identified can be involved in down-modulation of the CD4/gp120 complexes.  相似文献   

8.
Lue J  Hsu M  Yang D  Marx P  Chen Z  Cheng-Mayer C 《Journal of virology》2002,76(20):10299-10306
The potential role of dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) binding in human immunodeficiency virus transmission across the mucosal barrier was investigated by assessing the ability of simian-human immunodeficiency chimeric viruses (SHIVs) showing varying degrees of mucosal transmissibility to bind the DC-SIGN expressed on the surface of transfected cells. We found that gp120 of the highly transmissible, pathogenic CCR5-tropic SHIV(SF162P3) bound human and rhesus DC-SIGN with an efficiency threefold or greater than that of gp120 of the nonpathogenic, poorly transmissible parental SHIV(SF162), and this increase in binding to the DC-SIGN of the SHIV(SF162P3) envelope gp120 translated into an enhancement of T-cell infection in trans. The presence of an additional glycan at the N-terminal base of the V2 loop of SHIV(SF162P3) gp120 compared to that of the parental virus was shown to be responsible for the increase in binding to DC-SIGN. Interestingly, this glycan also conferred escape from autologous neutralization, raising the possibility that the modification occurred as a result of immune selection. Our data suggest that more-efficient binding of envelope gp120 to DC-SIGN could be relevant to the enhanced mucosal transmissibility of SHIV(SF162P3) compared to that of parental SHIV(SF162).  相似文献   

9.
It has been suggested that naive immunoglobulins encoded by the V(H)3 gene family interact aberrantly with human immunodeficiency virus type 1 (HIV-1) gp120 via a superantigenic epitope, causing initial expansion and eventual depletion of V(H)3-expressing B cells. However, this possibility has not been prospectively assessed during an AIDS virus infection. We determined V(H) family usage in rhesus monkeys during primary infection with chimeric viruses expressing HIV-1 envelopes on a simian immunodeficiency virus (SIVmac) backbone (SHIVs). Four SHIVs with different envelopes and pathogenicities were studied. V(H) family usage was prospectively assessed in peripheral blood mononuclear cells and lymph node cells of these monkeys by a semiquantitative PCR technique. In the first months following SHIV infection, a period of intense viral antigenemia, representation of various V(H) families increased or decreased for individual monkeys, but no single V(H) family was consistently altered. In particular, the average representation of V(H)3-bearing B lymphocytes did not change. This observation suggests that the envelope glycoprotein of HIV-1 does not selectively expand or deplete the V(H)3 repertoire of primate B cells during acute AIDS virus infection, contrary to predictions of the gp120 superantigen hypothesis.  相似文献   

10.
The molecular mechanism of human immunodeficiency virus type 1 (HIV-1) entry into cells involves specific interactions between the viral envelope glycoprotein gp120 and two target cell proteins, CD4 and either CCR5 or CXCR4 chemokine receptors. In order to delineate the functional role of HIV-1 gp120 subdomains of dualtropic strains in CCR5 coreceptor usage, we used a panel of chimeric viruses in which the V1/V2 and V3 domains of gp120 from the dualtropic HIV-1(KMT) isolate were introduced either alone or in combination into the T-tropic HIV-1(NL4-3) background. These chimeric constructs were employed in cell-cell fusion and cell-free virus infectivity assays using cell lines expressing CD4 and the CCR5 chemokine receptor. In both assays, the V3 domain of HIV-1(KMT) but not the V1/V2 domain proved to be the principal determinant of CCR5 coreceptor usage. However, in the cell-free viral infectivity assay although a chimeric virus with a combined V1/V2 and V3 domains of HIV-1(KMT) efficiently fused with coreceptor expressing cells, yet its infectivity was markedly diminished in CCR5 as well as CXCR4 expressing cells. Restoring a comparable level of infection of such chimeric virus required the C3-V5 domain from HIV-1(KMT) to be introduced. Our present findings confirmed that the V3 domain is the major determinant of fusion activity and cellular tropism, and demonstrated a dispensable role for the V1/V2 domain. In addition the C3-V5 domain appeared to play an important role in viral infectivity when the corresponding V1/V2 and V3 domains are present.  相似文献   

11.
Through rapid serial transfer in vivo, the chimeric CCR5-tropic simian/human immunodeficiency virus SHIV(SF162) evolved from a virus that is nonpathogenic and poorly transmissible across the vaginal mucosa to a variant that still maintains CCR5 usage but which is now pathogenic and establishes intravaginal infection efficiently. To determine whether envelope glycoprotein gp120 is responsible for increased pathogenesis and transmissibility of the variant SHIV(SF162P3), we cloned and sequenced the dominant envelope gene (encoding P3 gp120) and characterized its functions in vitro. Chimeric SHIV(SF162) virus expressing P3 gp120 of the pathogenic variant, designated SHIV(SF162PC), was also constructed and assessed for its pathogenicity and mucosal transmissibility in vivo. We found that, compared to wild-type SHIV(SF162) gp120, P3 gp120 conferred in vitro neutralization resistance and increased entry efficiency of the virus but was compromised in its fusion-inducing capacity. In vivo, SHIV(SF162PC) infected two of two and two of three rhesus macaques by the intravenous and intravaginal routes, respectively. Nevertheless, although peak viremia reached 10(6) to 10(7) RNA copies per ml of plasma in some infected animals and was associated with depletion of gut-associated CD4(+) lymphocytes, none of the animals maintained a viral set point that would be predictive of progression to disease. Together, the data from this study suggest a lack of correlation between entry efficiency and cytopathic properties of envelope glycoproteins with viral pathogenicity. Furthermore, whereas env gp120 contains the determinant for enhanced mucosal transmissibility of SHIV(SF162P3), the determinant(s) of its increased virulence may require additional sequence changes in env gp41 and/or maps to other viral genes.  相似文献   

12.
Evolution of the env gene in transmitted R5-tropic human immunodeficiency virus type 1 (HIV-1) strains is the most widely accepted mechanism driving coreceptor switching. In some infected individuals, however, a shift in coreceptor utilization can occur as a result of the reemergence of a cotransmitted, but rapidly controlled, X4 virus. The latter possibility was studied by dually infecting rhesus macaques with X4 and R5 chimeric simian simian/human immunodeficiency viruses (SHIVs) and monitoring the replication status of each virus using specific primer pairs. In one of the infected monkeys, both SHIVs were potently suppressed by week 12 postinoculation, but a burst of viremia at week 51 was accompanied by an unrelenting loss of total CD4+ T cells and the development of clinical disease. PCR analyses of plasma viral RNA indicated an env gene segment containing the V3 region from the inoculated X4 SHIV had been transferred into the genetic background of the input R5 SHIV by intergenomic recombination, creating an X4 virus with novel replicative, serological, and pathogenic properties. These results indicate that the effects of retrovirus recombination in vivo can be functionally profound and may even occur when one of the recombination participants is undetectable in the circulation as cell-free virus.  相似文献   

13.
The relevance of simian/human immunodeficiency virus (SHIV) infection of macaques to HIV-1 infection in humans depends on how closely SHIVs mimic HIV-1 transmission, pathogenesis, and diversity. Circulating HIV-1 strains are predominantly subtypes C and A and overwhelmingly require CCR5 for entry, yet most SHIVs incorporate CXCR4-using subtype B envelopes (Envs). While pathogenic subtype C-based SHIVs have been constructed, the subtype A-based SHIVs (SHIV-As) constructed to date have been unable to replicate in macaque cells. To understand the barriers to SHIV-A replication in macaque cells, HIVA(Q23)/SIV(vif) was constructed by engineering a CCR5-tropic subtype A provirus to express SIV vif, which counters the macaque APOBEC3G restriction. HIVA(Q23)/SIV(vif) replicated poorly in pig-tailed macaque (Ptm) lymphocytes, but viruses were adapted to Ptm lymphocytes. Two independent mutations in gp120, G312V (V3 loop) and A204E (C2 region), were identified that increased peak virus levels by >100-fold. Introduction of G312V and A204E to multiple subtype A Envs and substitution of G312 and A204 with other residues increased entry into Ptm cells by 10- to 100-fold. G312V and A204E Env variants continued to require CCR5 for entry but were up to 50- and 200-fold more sensitive to neutralization by IgG1b12 and soluble CD4 and had a 5- to 50-fold increase in their ability to utilize Ptm CD4 compared to their wild-type counterparts. These findings identify the inefficient use of Ptm CD4 as an unappreciated restriction to subtype A HIV-1 replication in Ptm cells and reveal amino acid changes to gp120 that can overcome this barrier.  相似文献   

14.
We report here a second case of coreceptor switch in R5 simian-human immunodeficiency virus SF162P3N (SHIV(SF162P3N))-infected macaque CA28, supporting the use of this experimental system to examine factors that drive the change in coreceptor preference in vivo. Virus recovered from CA28 plasma (SHIV(CA28NP)) used both CCR5 and CXCR4 for entry, but the virus recovered from lymph node (SHIV(CA28NL)) used CXCR4 almost exclusively. Sequence and functional analyses showed that mutations in the V3 loop that conferred CXCR4 usage in macaque CA28 differed from those described in the previously reported case, demonstrating divergent mutational pathways for change in the coreceptor preference of the R5 SHIV(SF162P3N) isolate in vivo.  相似文献   

15.
A change in coreceptor preference from CCR5 to CXCR4 towards the end stage disease in some HIV-1 infected individuals has been well documented, but the reasons and mechanisms for this tropism switch remain elusive. It has been suggested that envelope structural constraints in accommodating amino acid changes required for CXCR4 usage is an obstacle to tropism switch, limiting the rate and pathways available for HIV-1 coreceptor switching. The present study was initiated in two R5 SHIV(SF162P3N)-infected rapid progressor macaques with coreceptor switch to test the hypothesis that an early step in the evolution of tropism switch is the adoption of a less constrained and more "open" envelope conformation for better CD4 usage, allowing greater structural flexibility to accommodate further mutational changes that confer CXCR4 utilization. We show that, prior to the time of coreceptor switch, R5 viruses in both macaques evolved to become increasingly sCD4-sensitive, suggestive of enhanced exposure of the CD4 binding site and an "open" envelope conformation, and this correlated with better gp120 binding to CD4 and with more efficient infection of CD4(low) cells such as primary macrophages. Moreover, significant changes in neutralization sensitivity to agents and antibodies directed against functional domains of gp120 and gp41 were seen for R5 viruses close to the time of X4 emergence, consistent with global changes in envelope configuration and structural plasticity. These observations in a simian model of R5-to-X4 evolution provide a mechanistic basis for the HIV-1 coreceptor switch.  相似文献   

16.
Interaction between the human immunodeficiency virus type 1 (HIV-1) envelope and the relevant chemokine receptors is crucial for subsequent membrane fusion and viral entry. Although the V3 region of gp120 is known to determine the cell tropism as well as the coreceptor usage, the significance of the binding of the V3 region to the chemokine receptor has not been fully understood. To address this issue, we adopted the pseudotyped virus infection assay in which the V3 region of the T-cell line-tropic (T-tropic) NL4-3 envelope was replaced with a portion of stromal cell-derived factor 1 (SDF-1), the ligand of CXCR4. The V3 region of the NL4-3 envelope expression vector was replaced with three different stretches of SDF-1 cDNA. Expression of each chimeric envelope protein was confirmed by immunoprecipitation and Western blotting. Luciferase reporter viruses were prepared by cotransfection of the pNL4-3.Luc.E(-)R(-) vector and each chimeric envelope expression vector, and the infection assay was then carried out. We showed that pseudotyped viruses with one of the chimeric envelopes, NL4-3/SDF1-51, could infect U87.CD4.CXCR4 but not U87.CD4 or U87.CXCR4 cells and that this infection was inhibited by the ligand of CXCR4, SDF-1beta, by anti-human SDF-1 antibody, or by an anti-CD4 antibody, Leu3a, in a dose-dependent manner. Furthermore, chimeric NL4-3/SDF1-51 gp120 significantly inhibited binding of labeled SDF-1 to CXCR4. It was suggested that replacement of the V3 region of the NL4-3 envelope with SDF-1 preserved the CD4-dependent infectivity of T-tropic HIV-1. These results indicate that binding between the V3 region and the relevant coreceptor is important for viral entry, whether its amino acid sequence is indigenous to the virus or not.  相似文献   

17.
The envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1) is extensively glycosylated, containing approximately 23 asparagine (N)-linked glycosylation sites on its gp120 subunit. In this study, specific glycosylation sites on gp120 of a dualtropic primary HIV-1 isolate, DH12, were eliminated by site-directed mutagenesis and the properties of the resulting mutant envelopes were evaluated using a recombinant vaccinia virus-based cell-to-cell fusion assay alone or in the context of viral infections. Of the glycosylation sites that were evaluated, those proximal to the V1/V2 loops (N135, N141, N156, N160) and the V3 loops (N301) of gp120 were functionally critical. The glycosylation site mutations near the V1/V2 loop compromised the use of CCR5 and CXCR4 equally. In contrast, a mutation within the V3 loop preferentially inhibited the usage of CCR5; although this mutant protein completely lost its CCR5-dependent fusion activity, it retained 50% of the wild-type fusion activity with CXCR4. The replication of a virus containing this mutation was severely compromised in peripheral blood mononuclear cells, MT-4 cells, and primary monocyte-derived macrophages. A revertant virus, which acquired second site changes in the V3 loop that resulted in an increase in net positive charge, was isolated. The revertant virus fully recovered the usage of CXCR4 but not of CCR5, thereby altering the tropism of the parental virus from dualtropic to T-tropic. These results suggest that carbohydrate moieties near the V1/V2 and the V3 loops play critical roles in maintaining proper conformation of the variable loops for optimal interaction with receptors. Our results, combined with those of previously reported studies, further demonstrate that the function of individual glycans may be virus isolate dependent.  相似文献   

18.
We have previously described two isogenic molecularly cloned simian immunodeficiency virus/human immunodeficiency virus chimeric viruses (SHIVs) that differ from one another by 9 amino acids and direct distinct clinical outcomes in inoculated rhesus monkeys. SHIV(DH12R-Clone 7), like other highly pathogenic CXCR4-tropic SHIVs, induces rapid and complete depletions of CD4+ T lymphocytes and immunodeficiency in infected animals. In contrast, macaques inoculated with SHIV(DH12R-Clone 8) experience only partial and transient losses of CD4+ T cells, show prompt control of their viremia, and remain healthy for periods of time extending for up to 4 years. The contributions of CD8+ and CD20+ lymphocytes in suppressing the replication of the attenuated SHIV(DH12R-Clone 8) and maintaining a prolonged asymptomatic clinical course was assessed by treating animals with monoclonal antibodies that deplete each lymphocyte subset at the time of virus inoculation. The absence of either CD8+ or CD20+ cells during the SHIV(DH12R-Clone 8) acute infection resulted in the rapid, complete, and irreversible loss of CD4+ T cells; sustained high levels of postpeak plasma viremia; and symptomatic disease in Mamu-A*01-negative Indian rhesus monkeys. In Mamu-A*01-positive animals, however, the aggressive, highly pathogenic phenotype was observed only in macaques depleted of CD8+ cells; SHIV(DH12R-Clone 8) was effectively controlled in Mamu-A*01-positive monkeys in the absence of B lymphocytes. Taken together, these results indicate that both CD8+ and CD20+ B cells contribute to the control of primate lentiviral infection in Mamu-A*01-negative macaques. Furthermore, the major histocompatibility complex genotype of an infected animal, as exemplified by the Mamu-A*01 allele in this study, has the additional capacity to shift the balance of the composite immune response.  相似文献   

19.
We previously reported efficient transmission of the pathogenic R5 simian-human immunodeficiency virus SHIV(SF162P3N) isolate in Indian rhesus macaques by intravenous and intrarectal inoculations, with a switch to CXCR4 coreceptor usage in ~50% of infected animals that progressed rapidly to disease. Since women continue to be disproportionately affected by HIV, we developed an animal model based on the intravaginal challenge of female rhesus monkeys with SHIV(SF162P3N) and sought to validate the utility of this model to study relevant aspects of HIV transmission and pathogenesis. The effect of viral dose on infection outcome was evaluated to determine the optimal conditions for the evaluation of HIV-1 preventive and therapeutic strategies. We found that the virus can successfully cross the vaginal mucosal surface to establish infection and induce disease with coreceptor switch, but with lower efficiencies compared to intravenous and rectal transmissions. In contrast to intrarectal infection, peak and cumulative viral load over a 1 year-infection period were significantly greater in macaques exposed intravaginally to lower rather than higher inoculum doses. Moreover, low and transient viremia was observed only in macaques that were challenged intravaginally twice within the same day with a high dose of virus, which can be seen as doubling the dose. Taken together, these results show that SHIV(SF162P3N) can successfully transmit across the genital mucosa, undergo coreceptor switch, and induce disease. However, the administered dose appears to impact SHIV(SF162P3N) vaginal infection outcome in an unexpected manner.  相似文献   

20.
Host cell range, or tropism, combined with coreceptor usage defines viral phenotypes as macrophage tropic using CCR5 (M-R5), T-cell-line tropic using CXCR4 (T-X4), or dually lymphocyte and macrophage tropic using CXCR4 alone or in combination with CCR5 (D-X4 or D-R5X4). Although envelope gp120 V3 is necessary and sufficient for M-R5 and T-X4 phenotypes, the clarity of V3 as a dominant phenotypic determinant diminishes in the case of dualtropic viruses. We evaluated D-X4 phenotype, pathogenesis, and emergence of D-X4 viruses in vivo and mapped genetic determinants in gp120 that mediate use of CXCR4 on macrophages ex vivo. Viral quasispecies with D-X4 phenotypes were associated significantly with advanced CD4+-T-cell attrition and commingled with M-R5 or T-X4 viruses in postmortem thymic tissue and peripheral blood. A D-X4 phenotype required complex discontinuous genetic determinants in gp120, including charged and uncharged amino acids in V3, the V5 hypervariable domain, and novel V1/V2 regions distinct from prototypic M-R5 or T-X4 viruses. The D-X4 phenotype was associated with efficient use of CXCR4 and CD4 for fusion and entry but unrelated to levels of virion-associated gp120, indicating that gp120 conformation contributes to cell-specific tropism. The D-X4 phenotype describes a complex and heterogeneous class of envelopes that accumulate multiple amino acid changes along an evolutionary continuum. Unique gp120 determinants required for the use of CXCR4 on macrophages, in contrast to cells of lymphocytic lineage, can provide targets for development of novel strategies to block emergence of X4 quasispecies of human immunodeficiency virus type 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号