首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The site of rapidly labelled ribonucleic acid in nucleoli   总被引:1,自引:0,他引:1  
  相似文献   

2.
1. The loss of nucleic acids and protein from isolated HeLa-cell nuclei was studied. During 4hr. incubation at 37 degrees DNA was conserved, but appreciable amounts of RNA and protein were lost. 2. Two classes of nuclear RNA were distinguished: at least 75% of the RNA was lost from the nuclei relatively slowly through degradation to acid-soluble fragments; the rest of the RNA was lost much more rapidly, not only through degradation to acid-soluble fragments but also through diffusion of RNA out of the nuclei into the incubation medium. 3. The RNA that was preferentially lost was the fraction of nuclear RNA that was rapidly labelled when intact HeLa cells were grown in a medium containing radioactive precursors of RNA. 4. The RNA appearing in the incubation medium was apparently partially degraded and had a sedimentation coefficient of about that of transfer RNA. 5. Both the degradation of RNA and the loss of RNA from the nuclei were sensitive to bivalent cations. Low concentrations of Mg(2+) and Mn(2+) greatly increased the rate of degradation of the rapidly labelled RNA to acid-soluble fragments, and produced a corresponding decrease in the amount of RNA diffusing into the medium. At higher concentrations they suppressed both degradation and diffusion of RNA. The cations Ca(2+), Cu(2+), Zn(2+) and Ni(2+) all progressively inhibited both forms of loss of RNA. 6. Salts of univalent cations produced appreciable effects only at ionic strengths of about 0.2, when degradation to acid-soluble fragments was preferentially inhibited. 7. Both ADP and ATP inhibited loss of RNA at about 30mm. 8. It was concluded that the diffusion of rapidly labelled RNA out of the isolated nuclei was not related to the movement of RNA from nucleus to cytoplasm in vivo, but reflected the ease with which the rapidly labelled RNA detached from the chromatin and the permeability of the membranes of isolated nuclei.  相似文献   

3.
4.
5.
1. Incorporation of [(32)P]orthophosphate and of [2-(14)C]orotic acid into rat-liver RNA was studied by agar-gel electrophoresis by using u.v.-densitometry and radioautography of dried agar electrophoretograms. 2. During the electrophoresis some low-molecular-weight contaminants, including inorganic phosphate present in the RNA preparations, were separated from the RNA fractions. Since nucleoside mono-, di- and tri-phosphates still interfered, the RNA preparations had to be subjected to a purification procedure [Sephadex G-25 or Dowex 1 (X8)]. 3. In RNA extracted from cytoplasm, isolated microsomes or ribosomes, whatever variations were made in the phenol procedure no special rapidly labelled RNA fraction was detected other than ;soluble' RNA and the ribosomal RNA components. 4. When the whole homogenate or cytoplasmic fraction was treated only with phenol (pH6) a considerable part of the cytoplasmic RNA was not extracted. The treatment of the cytoplasmic fraction with sodium dodecyl sulphate before the addition of phenol increased the yield of the high-molecular-weight RNA and at the same time a higher specific activity was found for the faster ribosomal RNA component. 5. The presence of four distinct rapidly labelled RNA fractions was established in the RNA not extracted by phenol, and they moved slower than the ribosomal RNA. They were extracted only with the use of phenol-sodium dodecyl sulphate at an elevated temperature.  相似文献   

6.
1. A study was made of the sedimentation properties of purified preparations of the rapidly labelled RNA in the nucleus and the cytoplasm of the HeLa cell. The sedimentation of the rapidly labelled nuclear RNA was very sensitive to changes in ionic strength and bivalent cation concentration. Under the conditions usually used in sucrose-density-gradient centrifugation the rapidly labelled nuclear RNA showed extreme polydispersity, and much of it sedimented more rapidly than the 28s RNA. At low ionic strength and after removal of Mg(2+), however, the rapidly labelled nuclear RNA sedimented as a single peak at about 16s. The conversion of the polydisperse material into the 16s form did not involve degradation of the RNA, since the effect could be reversed by increasing the ionic strength of the solution. 2. The cytoplasm did not contain any RNA that showed polydisperse sedimentation under the usual conditions of sucrose-density-gradient centrifugation, or that had the same sensitivity as the rapidly labelled nuclear RNA to changes in ionic strength. All the radioactivity in the cytoplasmic RNA sedimented with the 28s, 16s and 4s components over a wide range of physical conditions, but these components did contain a labelled fraction with some of the features of the rapidly labelled nuclear RNA on columns of methylated albumin on kieselguhr. 3. In both nucleus and cytoplasm the RNA detected by ultraviolet absorption could also be converted into a 16s form by removal of bivalent cations at low ionic strength; this effect was again, within certain limits, reversible. The nuclear RNA as a whole was more susceptible to changes in ionic strength than the cytoplasmic RNA. 4. It thus appears that all the RNA in the cell, except the 4s RNA, can be prepared, without degradation, as a single peak sedimenting at about 16s. The relationship of these various 16s components to each other is discussed.  相似文献   

7.
8.
9.
10.
11.
Most of the rapidly labelled RNA from rat liver submitted to column chromatography on methylated albumin on kieselguhr remains tightly bound to the column and can only be recovered by elution with m-ammonia. The tightly bound RNA is composed mainly of DNA-like RNA. The binding capacity is dependent not only on base composition but also on molecular size: the heavier RNA molecules show a greater affinity to the column than do the lower-molecular-weight components. Rapidly labelled mouse liver and Saccharomyces cerevisiae RNA show similar behaviour to rat liver RNA on columns of methylated albumin on kieselguhr.  相似文献   

12.
The ruminal degradation of RNA in rye grass (Lolium perenne) was studied using the bag method. A non-lactating cow (BW 550?kg) fitted with a rumen cannula was used and fed twice daily at maintenance level with a chopped grass hay-based ration containing 30% ground barley. Rye grass, labelled during growth by fertilization with 15N2-urea (9.5 atom% 15N, 20?g N/m2), was cut at seven stages of growth and maturity and freeze-dried. RNA-N represented 6 to 17% of total N. Labelled grass samples (milled to 5.0?mm screen, 5.0?±?0.1?g DM) were incubated in polyester bags (100?×?200?mm, pore size 50?μm) in the rumen for periods of 1, 3, 6, 9, 12, 24, and 48?h. Data of N and RNA disappearances from the bags were fitted to an exponential equation to estimate parameters of degradation. The effective degradability of RNA in the rumen averaged 90?±?4%, for N it was 11% units lower (P?R 2?=?0.92). Degradability of RNA (R 2?=?0.96) and N (R 2?=?0.93) decreased with increasing fibre content of grass. Increasing the fibre content by 1% diminished the degradability of RNA and N by 1.1% units and 2.4% units, respectively (P????1, a model calculation indicates that about 9 to 19% of duodenal RNA are of dietary origin in animals fed grass. This should be taken into account for the calculation of microbial N on the basis of RNA as marker.  相似文献   

13.
14.
The stability of rapidly labelled hybridizable messenger RNA in both exponential and post-exponential phase cells of Bacillus amyloliquefaciens was measured in terms of the rate of loss of its radioactivity. In the exponential phase, where 96% of the mRNA was specific for cell proteins and only 4% was exoprotein mRNA, the label was lost exponentially from the rapidly labelled hybridizable mRNA fraction with a half-life of six minutes at 30 °C. The antibiotic rifampicin, at a concentration of 10 μg/ml, had no effect on the characteristics of decay of this exponential-phase mRNA. In the post-exponential phase, where there were equal amounts of cell protein and exoprotein-specific mRNA, rapidly labelled hybridizable mRNA decayed exponentially in the presence of rifampicin (10 μg/ml), with a half-life of six minutes at 30 °C. In the absence of rifampicin the characteristics of decay were more complex. The evidence available suggested that this was due to the superimposition of a component attributable to reincorporation of degradation products of radioactive RNA on the characteristic exponential decay pattern of the post-exponential mRNA.Measurement of the stability of active mRNA, by studying the loss of ability to incorporate l-[14C]leucine into protein in the presence of rifampicin (10 μg/ml), gave half-lives of 4.5 minutes and six minutes, respectively, for exponential and post-exponential material.  相似文献   

15.
The ruminal degradation of RNA in rye grass (Lolium perenne) was studied using the bag method. A non-lactating cow (BW 550 kg) fitted with a rumen cannula was used and fed twice daily at maintenance level with a chopped grass hay-based ration containing 30% ground barley. Rye grass, labelled during growth by fertilization with 15N2-urea (9.5 atom% 15N, 20 g N/m2), was cut at seven stages of growth and maturity and freeze-dried. RNA-N represented 6 to 17% of total N. Labelled grass samples (milled to 5.0 mm screen, 5.0+/-0.1 g DM) were incubated in polyester bags (100 x 200 mm, pore size 50 microm) in the rumen for periods of 1, 3, 6, 9, 12, 24, and 48 h. Data of N and RNA disappearances from the bags were fitted to an exponential equation to estimate parameters of degradation. The effective degradability of RNA in the rumen averaged 90+/-4%, for N it was 11% units lower (P < 0.001). Degradability of RNA was correlated to that of N (R2 = 0.92). Degradability of RNA (R2 = 0.96) and N (R2 = 0.93) decreased with increasing fibre content of grass. Increasing the fibre content by 1% diminished the degradability of RNA and N by 1.1% units and 2.4% units, respectively (P < 0.001). Assuming a microbial protein synthesis in the rumen of 150 g/kg DOM, a N: RNA ratio of 1:1.35 in rumen microbes and a rumen outflow rate of 0.06 h(-1), a model calculation indicates that about 9 to 19% of duodenal RNA are of dietary origin in animals fed grass. This should be taken into account for the calculation of microbial N on the basis of RNA as marker.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号