首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chicken liver fructose 1,6-bisphosphatase binds to blue dextran-Sepharose affinity columns and is eluted by AMP, an allosteric inhibitor of the enzyme. On the other hand, bumblebee fructose 1,6-bisphosphatase, which is not inhibited by AMP, does not bind to blue dextran-Sepharose. Chicken liver 1,6-bisphosphatase binds 3.6 mol of AMP/mol of enzyme, while the bumblebee enzyme binds no AMP. However, bumblebee fructose 1,6-bisphosphatase can be activated by subtilisin, indicating that it possesses a protease-sensitive region similar to that present in mammalian fructose 1,6-bisphosphatase.  相似文献   

2.
The proposal of E. Stellwagen [(1976) J. Mol Biol., 106, 903–911] that the structure of a protein can be predicted by sequence analysis provided that the protein specifically binds Cibacron blue F3GA, is not sound at least for muscle fructose bisphosphate aldolase. Contrary to the predictions we have shown that Cibacron blue does not interact directly with lysine 227 at the catalytic sites but with different sites which bind also ATP and fructose bisphosphate. We have shown also that aldolase binds 3.5 molecules of dye per subunit (dissociation constant 1.9 μm), too great a number to support the hypothesis that the binding of Cibacron blue is a specific indication of the presence of an NAD domain.  相似文献   

3.
The Saccharomyces cerevisiae Rad52 protein has a crucial role in the repair of DNA double-strand breaks by homologous recombination. In vitro, Rad52 displays DNA binding and strand annealing activities and promotes Rad51-mediated strand exchange. Schizosaccharomyces pombe has two Rad52 homologues, Rad22A and Rad22B. Whereas rad22A deficient strains exhibit severe defects in repair and recombination, rad22B mutants have a much less severe phenotype. To better understand the role of Rad22A and Rad22B in double-strand break repair, both proteins were purified to near homogeneity. Using gel retardation and filter binding assays, binding of Rad22A and Rad22B to short single-stranded DNAs was demonstrated. Binding of Rad22A to double-stranded oligonucleotides or linearized plasmid molecules containing blunt ends or short single-stranded overhangs could not be detected. Rad22B also does not bind efficiently to short duplex oligonucleotides but binds readily to DNA fragments containing 3'-overhangs. Rad22A as well as Rad22B efficiently promote annealing of complementary single-stranded DNAs. In the presence of Rad22A annealing of complementary DNAs is almost 90%. Whereas in reactions containing Rad22B the maximum level of annealing is 60%, most likely due to inhibition of the reaction by duplex DNA. Gel-filtration experiments and electron microscopic analyses indicate self-association of Rad22A and Rad22B and the formation of multimeric structures as has been observed for Rad52 in yeast and man.  相似文献   

4.
The positive effector 5′-AMP of yeast phosphofructokinase does not influence the binding of fructose 6-phosphate to the enzyme. Cibacron blue F3G-A considered an ATP analogue decreases the affinity of the enzyme to fructose 6-phosphate without exerting an effect on the cooperativity of fructose 6-phosphate binding. The peculiarities of the interactions of AMP and Cibacron blue with fructose 6-phosphate binding demonstrate compatibility of the allosteric kinetics with the binding behavior of the enzyme.  相似文献   

5.
Abstract

The dye Cibacron Blue F3GA has a high affinity for many proteins and enzymes. It has therefore been attached to various solid supports such as Sephadex, Sepharose, polyacrylamide, and the like. In the immobilized form the dye has rapidly been exploited as an affinity chromatographic medium to separate and purify a variety of proteins including dehydrogenases, kinases, serum albumin, interferons, several plasma proteins, and a host of other proteins. Such a diversity shown by the blue dye in binding several unrelated classes of proteins has generated considerable work in terms of studies of the chromophore itself and also the immobilized ligand. As a prelude to realizing the full potential of the immobilized Cibacron Blue F3GA, an understanding of the basic interactions of the dye with its surroundings must be gained. It has been recognized that the dye is capable of hydrophobic and/or electrostatic interactions at the instance of the ambient conditions. The study of interactions of the dye with salts, solvents, and other small molecules indicates the nature of the interactions of the dye with different kinds of groups at the interacting sites of proteins. The review will cover such interactions of the dye with the proteins, the interactions of the proteins with the immobilized ligand, and the media used to elute the bound protein in several cases, and thus consolidate the available information on such studies into a cogent and comprehensive explanation.  相似文献   

6.
Human plasma low- and high-density lipoproteins were found to bind to Sepharose gels containing coupled cholesterol or cholic acid. The lipoproteins were bound very strongly, and it was not possible to elute them under non-denaturing conditions. The detergents Triton X-100 and sodium dodecyl sulphate eluted the lipoproteins in partly denatured form. Adsorbents were used where the steroid was coupled through a spacer containing a thiol ester bond. It was thus possible to elute bound lipoproteins by selective cleavage of the bond with hydroxylamine. A small proportion of albumin was the only contaminant detected, the amounts depending on which ligand was used. Low- and high-density lipoproteins were separated by gel filtration. They behaved as did the native molecules when analysed by gel filtration, immunodiffusion, immunoelectrophoresis and electrophoresis in polyacrylamide gradient gels. The high capacity and the selectivity of the adsorbents make them suitable for the removal of lipoproteins from protein solutions.  相似文献   

7.
The problems of currently available ligand-binding assays for sex-steroid receptor proteins include the relatively large mass of tissue required, the interference by sex hormone-binding globulin (SHBG), and use in the androgen receptor (AR) assay of the unstable synthetic ligand methyltrienolone. To overcome these difficulties the stabilizing effect of the dye Cibacron blue 3GA on AR and estrogen receptor (ER) proteins, and its ability to bind to these proteins, was utilized in developing an assay system for each receptor that could be applied to small samples. Use of the affinity gel Cibacron blue 3GA-Sepharose 6B (Blue gel) for the immobilization of AR, ER, and the steroid ligands bound to these receptors in the standard two-tier column assay system enabled the use of a 1:100 (original tissue weight:volume) concentration, making possible full (5-7 point) Scatchard analysis on tissue specimens of a mass as low as 15-20 mg. Significant stabilization of AR and ER was observed and association constants for these receptors were of a similar order of magnitude to those obtained either by Sephadex LH-20 gel filtration or the dextran-coated charcoal adsorption technique. Inactivation by dilution was shown to be largely prevented based on results obtained with cytosol concentrations from 1:5 to 1:100 (original tissue weight:volume). Because Blue gel does not bind SHBG, the natural steroid 5 alpha-androstan-17 beta-ol-3-one (DHT) may be employed as a ligand in the AR assay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Blue dextran--Sepharose and Cibacron blue 3G-A interact with pyruvate kinase of Neurospora crassa. The enzyme is readily released from the substituted Sepharose column by elution with 0.17 M potassium phosphate buffer (pH 7.9), or 2 mM fructose 1,6-diphosphate (FDP), but not with either of the substrates, ADP and phosphoenolpyruvate (PEP), at 2 mM. Cibacron blue 3G A is a noncompetitive inhibitor of pyruvate kinase with respect to both substrates. It appears to compete with the allosteric effector, FDP, for binding to the enzyme surface. A lack of elution of the enzyme from the immobilized blue dextran matrix by adenine nucleotides and the absence of a difference spectrum in the 650- to 700-nm range suggest that a "dinucleotide-fold" substructure is not implicated in the dye binding sites on pyruvate kiase. The interaction of Cibacron blue 3G-A and this enzyme can be followed fluorometrically; incremental additon of the dye to the enzyme solution results in a progressive decrease in the fluorescence of surface tryptophanyl residues. The quenching of fluorescence of exposed aromatic groups is subject to reversal following addition of FDP to the pyruvte kinase--Cibacron blue complex.  相似文献   

9.
Chromatography of aspartate transcarbamoylase from Escherichia coli on agarose-immobilized dyes and alkyl-agaroses of differing carbon length were investigated. The bacterial aspartate transcarbamoylase was bound by Procoin red HE3B-agarose and Cibacron blue F3GA-agarose nearly completely under the conditions chosen relative to other agarose-coupled dyes. The aspartate transcarbamoylase holoenzyme was eluted from the Procion red HE3B-agarose slightly later than from the Cibacron blue F3GA-agarose during salt gradient elution. The catalytic trimer of the enzyme as well as its regulatory dimer were eluted by a lower salt concentration from both dye-agarose gels than the concentration required to elute the holoenzyme. The interaction of the catalytic trimer with the Procion red HE3B-agarose and Cibacron blue F3GA-agarose gels may be a determinant in the holoenzyme being retained on these resins. Of those alkyl-agaroses tested, the ethyl-, propyl- and hexyl-agarose gels bound the majority of aspartate transcarbamoylase activity. Chromatography of aspartate transcarbamoylase on ethyl-agarose found it to be eluted by a low salt concentration. A purification scheme for relatively small amounts of aspartate transcarbamoylase utilizing Procion red HE3B-agarose and ethyl-agarose is presented. This purification scheme is particularly useful for mutant versions of aspartate transcarbamoylase which cannot be purified by literature procedures.  相似文献   

10.
In crude cell-free extracts of aerobically grown E. coli K-12, the non-allosteric form of 6-phosphofructokinase has a tetrameric molecular weight 140 000 with a low affinity (less than 5%) for the blue dextran chromophore--Cibacron Blue. The allosteric form has the same tetrameric molecular weight, but possesses a strong affinity for the blue dextran chromophore. Under conditions of prolonged storage, purification procedures of mild heat treatment (50 degrees C), the non-allosteric form converts to an active dimer (mol. wt 67 000), which binds to Cibacron Blue (less than 90%). Acid precipitation plus heat treatment prevents the conversion to the dimeric form and retains low Cibacron Blue affinity. These results are consistent with the isolation of a low molecular weight form and suggest that the inherent lability of this enzyme might be due to both non-specific proteolytic modification and a weak quaternary structure.  相似文献   

11.
Chromatography of aspartate transcarbamoylase from Escherichia coli on agarose-immobilized dyes and alkyl-agaroses of differing carbon length were investigated. The bacterial aspartate transcarbamoylase was bound by Procoin red HE3B-agarose and Cibacron blue F3GA-agarose nearly completely under the conditions chosen relative to other agarose-coupled dyes. The aspartate transcarbamoylase holoenzyme was eluted from the Procion red HE3B-agarose slightly later than from the Cibacron blue F3GA-agarose during salt gradient elution. The catalytic trimer of the enzyme as well as its regulatory dimer were eluted by a lower salt concentration from both dye-agarose gels than the concentration required to elute the haloenzyme. The interaction of the catalytic trimer with the Procion red HE3B-agarose and Cibacron blue F3GA-agarose gels may be a determinant in the holoenzyme being retained on these resins. Of those alkyl-agaroses tested, the ethyl-, propyl- and hexyl-agarose gels bound the majority of aspartate transcarbamoylase activity. Chromatography of aspartate transcarbamoylase on ethyl-agarose found it to be eluted by a low salt concentration. A purification scheme for relatively small amounts of aspartate transcarbamoylase utilizing Procion red HE3B-agarose and ethyl-agarose is presented. This purification scheme is particularly useful for mutant versions of aspartate transcarbamoylase which cannot be purified by literature procedures.  相似文献   

12.
R Gonsky  D Itamar  R Harary  R Kaempfer 《Biochimie》1992,74(5):427-434
In addition to forming a ternary complex with Met-tRNA(f) and GTP, eukaryotic initiation factor 2 (eIF-2) recognizes a specific site in mRNA molecules. Both binding activities are regulated by ATP, which itself binds tightly and specifically to eIF-2. Denaturation of eIF-2 with urea leads to complete loss of Met-tRNA(f) binding activity, while mRNA binding activity is stable. Hence, distinct conformational features in eIF-2 are required for ternary complex formation and for binding of mRNA. Chromatography of eIF-2 over ATP-agarose, in denaturing conditions that induce polypeptide subunit dissociation, results in selective retention of the beta-subunit of eIF-2. Isolated beta-subunit is capable of binding mRNA as well as ATP. Cibacron blue 3G-A binds tightly to eIF-2 and inhibits the binding of mRNA. This inhibition is relieved upon addition of ATP, showing that Cibacron blue 3G-A competes with ATP for eIF-2. eIF-2 beta subunit, active in binding of mRNA, is recovered upon chromatography of eIF-2 in denaturing conditions over matrix-bound Cibacron blue 3G-A. These results show that the ability of eIF-2 to bind mRNA and its ability to bind ATP are both lodged within remarkably stable domains of its beta-subunit. During initiation of protein synthesis, the eIF-2 beta subunit may thus interact with three ligands important for translational control: Met-tRNA(f), mRNA and ATP.  相似文献   

13.
The product of gene C of the temperate bacteriophage P2, the immunity repressor, can be detected as a unique band eluting from phosphocellulose columns at 0.12 m-potassium phosphate when differentially labelled with a radioactive amino acid: the band is absent when phages that either have lost gene C through deletion or carry a suppressor-sensitive mutation in the gene are used. The repressor in its monomeric form is about 11,000 in molecular weight. At near physiological salt concentrations, the form predominantly recovered is the dimer.In filter-binding assays, the partially purified repressor binds wild-type P2 DNA strongly. It does not bind DNA of P2 vir94, a deletion that removes all the genetic elements involved in the regulation of lysogeny; it also does not bind, or binds inefficiently, DNA of P2 vir3, a mutation in the operator that controls the early replicative functions of P2. At the concentrations employed, the dimer is the active form in binding.The P2 repressor clearly differs in several features from the well-studied immunity repressor of bacteriophage lambda.  相似文献   

14.
The family of the liver bile acid-binding proteins (L-BABPs), formerly called liver basic fatty acid-binding proteins (Lb-FABPs) shares fold and sequence similarity with the paralogous liver fatty acid-binding proteins (L-FABPs) but has a different stoichiometry and specificity of ligand binding. This article describes the first X-ray structure of a member of the L-BABP family, axolotl (Ambystoma mexicanum) L-BABP, bound to two different ligands: cholic and oleic acid. The protein binds one molecule of oleic acid in a position that is significantly different from that of either of the two molecules that bind to rat liver FABP. The stoichiometry of binding of cholate is of two ligands per protein molecule, as observed in chicken L-BABP. The cholate molecule that binds buried most deeply into the internal cavity overlaps well with the analogous bound to chicken L-BABP, whereas the second molecule, which interacts with the first only through hydrophobic contacts, is more external and exposed to the solvent.  相似文献   

15.
The experimental binding isotherms of the distamycin A analog to 8 natural and synthetic DNAs were analyzed. The shapes of binding isotherms suggest that the bound ligand molecule induces transitions of DNA (B-form) into two perturbated conformation states. These transitions are responsible for the existence of positive and negative cooperative effects on binding of distamycin analogs to DNA. At low levels of binding positive cooperative effects play a dominating role whereas at high levels of binding negative cooperative effects are observed. These cooperative effects can be described by the aid of a potential of pairwise interactions between nearest neighbour bound antibiotic molecules. A detailed analysis of experimental binding isotherms shows that characteristic distances over which these interactions are extended depend on the AT content of DNA. The energetical and structural parameters characterising the allosteric transitions of DNA to the perturbated states are obtained.  相似文献   

16.
Recent chromatographic and absorbance spectral measurements using the dye Cibacron blue F3GA (Stellwagen et al., 1975) have indicated that the substrate-binding site of fructose diphosphate aldolase is constructed by a supersecondary structural array closely resembling the NAD-domain commonly found in a variety of glycolytic enzymes. Analysis of the amino acid sequence of rabbit muscle aldolase according to the procedure of Chou &; Fasman (1974) predicts the occurrence of alternating β-strand and α-helical forming segments in the sequence region involving residues 147 to 299. Comparison of the sequence of residues 146 to 300 in aldolase with the sequence of residues 22 to 164 in dogfish lactate dehydrogenase which form its NAD-domain, suggests that the two sequence regions are related genetically. It is proposed that the locus of an NAD-domain in the structure of a protein can be predicted by sequence analysis provided that the protein specifically binds Cibacron blue F3GA.  相似文献   

17.
Many nucleic acid enzymes and aptamers have modular architectures that allow them to retain their functions when combined with other nucleotide sequences. This modular function facilitates the engineering of RNAs and DNAs that have more complex functions. We sought to create new DNA aptamers that bind cellulose to provide a module for immobilizing DNAs. Cellulose has been used in a variety of applications ranging from coatings and films to pharmaceutical preparations, and therefore DNA aptamers that bind cellulose might enable new applications. We used in vitro selection to isolate aptamers from a pool of random-sequence DNAs and subjected two distinct clones to additional rounds of mutagenesis and selection. One aptamer (CELAPT 14) was chosen for sequence minimization and more detailed biochemical analysis. CELAPT 14 aptamer variants exhibit robust binding both to cellulose powder and paper. Also, an allosteric aptamer construct was engineered that exhibits ATP-mediated cellulose binding during paper chromatography.  相似文献   

18.
A comparative study of the ligand-binding properties of human serum albumin was performed by the technique of affinity chromatography with the protein attached to immobilized Cibacron Blue F3GA (Blue Sepharose), or covalently immobilized on Sepharose. The binding strength of octanoate, decanoate and dodecanoate is much weaker when human serum albumin is attached to immobilized Cibacron Blue, indicating that the binding sites for fatty acids are involved in the attachment of human serum albumin to immobilized Cibacron Blue. The results revealed additional alterations of the ligand binding when human serum albumin was attached to immobilized Cibacron Blue, involving sites outside of the binding domains of fatty acids. Thus the stereoselective binding of L-tryptophan was abolished, and the resolution of the warfarin enantiomers was impaired. However, the binding strength of warfarin and salicylic acid was rather close to the values observed with human serum albumin covalently immobilized on Sepharose. It is suggested that the availability of the binding sites for L-tryptophan, warfarin and salicylic acid is partially blocked by the complex between albumin and the dye without direct participation in the complex-formation. An alternative interpretation involves an allosteric mechanism brought about by complex-formation between serum albumin and the immobilized Cibacron Blue.  相似文献   

19.
The simultaneous binding of netropsin and actinomycin to four natural DNAs was studied to determine the influence of one ligand on the binding of the other. Actinomycin binds specifically to GC sites, whereas netropsin binds specifically to AT sites. Spectral titrations, thermal denaturation, and analytical buoyant density centrifugation were employed to measure the binding interference of these drugs. The binding of actinomycin to DNA was decreased by the presence of netropsin. Increasing the GC content of the DNA resulted in a decreased effect of netropsin on actinomycin binding. Quantitative analysis of the binding parameters indicated that netropsin and actinomycin can bind in close proximity along the DNA chain. Supercoiled DNA gave the same result as linear DNA. These results imply that DNA can absorb alterations in conformation within a short distance.  相似文献   

20.
A human cDNA was cloned that encodes a DNA-binding protein (SATB1) that is expressed predominantly in thymus and binds selectively to the nuclear matrix/scaffold-associating DNAs (MARs/SARs). Missing nucleoside experiments showed that SATB1 selectively binds in a special AT-rich sequence context where one strand consists of mixed A's, T's, and C's, excluding G's (ATC sequences). When this feature is destroyed by mutation, SATB1 binding is greatly reduced even if the direct contact sequence remains intact. Conjunctional SATB1-binding sequences become stably unpaired in supercoiled DNA. Specific mutations that diminish the unwinding potential greatly reduce SATB1 binding. However, SATB1 does not bind single-stranded DNA. Chemical interference assays show that SATB1 binds along the minor groove with very little contact with the bases. This suggests that SATB1 recognizes the ATC sequence indirectly through the altered sugar-phosphate backbone structure present in the double-stranded DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号