首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The gaze control system governs distinct gaze behaviors, including visual fixation and gaze reorientations. Transitions between these gaze behaviors are frequent and smooth in healthy individuals. This study models these gaze-behavior transitions for different numbers of gaze degrees of freedom. Eye/head gaze behaviors have twice the number of degrees of freedom as eye-only gaze behaviors. Each gaze behavior is observable in the system dynamics and is correlated with neuronal behaviors in several, coordinated neural centers, including the vestibular nuclei. The coordination among the neural centers establishes a sensorimotor state which maintains each gaze behavior. This study develops a mathematical framework for synthesizing the coordination among neural centers in gaze sensorimotor states and focuses on the role of vestibular nuclei neurons in gaze sensorimotor state transitions. Received: 17 December 1999 / Accepted in revised form: 3 May 2001  相似文献   

2.
Despite the voluminous literature on biological functions produced over the last 40 years, few philosophers have studied the concept of function as it is used in neuroscience. Recently, Craver (forthcoming; also see Craver 2001) defended the causal role theory against the selected effects theory as the most appropriate theory of function for neuroscience. The following argues that though neuroscientists do study causal role functions, the scope of that theory is not as universal as claimed. Despite the strong prima facie superiority of the causal role theory, the selected effects theory (when properly developed) can handle many cases from neuroscience with equal facility. It argues this by presenting a new theory of function that generalizes the notion of a ‘selection process’ to include processes such as neural selection, antibody selection, and some forms of learning—that is, to include structures that have been differentially retained as well as those that have been differentially reproduced. This view, called the generalized selected effects theory of function, will be defended from criticism and distinguished from similar views in the literature.  相似文献   

3.
 A neural network architecture based on the neural anatomy and function of retinal neurons in tiger salamander and mudpuppy retinae is proposed to study basic aspects of early visual information processing. The model predictions for the main response characteristics of retinal neurons are found to be in agreement with neurophysiological data, including the antagonistic role of horizontal cells in the outer plexiform layer. The examination of possible γ-aminobutyric acid (GABA) action from horizontal cells suggests that GABAA alone, GABAB alone, or their weighted combination can generate the response characteristics observed in bipolar cells. Received: 25 June 2002 / Accepted: 28 January 2003 / Published online: 20 May 2003 Acknowledgements. The authors would like to thank an anonymous reviewer for valuable comments. Correspondence to: S. X. Yang (e-mail: syang@uoguelph.ca)  相似文献   

4.
 The whole question of consciousness, awareness and depth of anaesthesia is both timely, little understood and deeply challenging. Models of the underlying neural pathway mechanisms/dynamics are necessary for understanding the interactions involved and their structure and function. A neuronal network of the somatosensory pathways is proposed in this paper based on experimental information and physiological investigation into anaesthesia. Existing mathematical neuronal models from the literature have been modified and then employed to describe the dynamics of the proposed pathway network. Effects of anaesthetic agents on the cortex were simulated in the model which describes the evoked cortical responses. By comparison with responses from anaesthetised rats, the model's responses are able to describe the dynamics of typical responses. Thus, the proposed model promises to be valuable for investigating the mechanisms of anaesthesia on the cortex and the effects of brain lesions. Received: 4 March 2002 / Accepted in revised form: 8 July 2002 Correspondence to: D. A. Linkens (e-mail: d.linkens@sheffield.ac.uk, Tel.: +44-114-2225133, Fax: +44-114-2731729) Acknowledgements. C.H. Ting was supported by a postgraduate scholarship from the University of Sheffield.  相似文献   

5.
6.
A theory of hippocampal memory based on theta phase precession   总被引:10,自引:0,他引:10  
 The neural dynamics of the hippocampal network for memory encoding of novel temporal sequences is proposed based on the theta rhythm modulated firing of place cells called theta phase precession. It is hypothesized that theta phase precession is generated at the entorhinal cortex by phase locking between local field theta oscillation and neural oscillators and that the hippocampal closed network with feedforward and backward projections employ theta phase precession to create selectivity in the associative connections needed for temporal sequence storage. Our analyses and computer experiments reveal that the phase precession generated by phase locking instantaneously endows stable phase relations among neural activities in the successively changing neural population. It is concluded that theta phase precession provides biologically plausible dynamics for the memory encoding of novel temporal sequences as episodic events. Received: 18 December 2002 / Accepted: 18 March 2003 / Published online: 20 May 2003 Correspondence to: Y. Yamaguchi (e-mail: yokoy@brain.riken.go.jp, Fax: +81-48-4676938) Acknowledgements. The author would like to express acknowledgement to Drs. McNaughton and Skaggs for their discussion and comment and to Dr. Amari for his continuous encouragement. Further thanks are given to Mr. Haga and Dr. Wu for their discussion and cooperation.  相似文献   

7.
 Magarshak et al. represented an RNA molecule as a complex vector and an RNA secondary structure Γ as a complex matrix S Γ in such a way that the molecule represented by was compatible with the secondary structure Γ if and only if . They only considered Watson-Crick base pairs and their representation cannot be extended to allow for GU pairs. In this paper we study a generalization of Magarshak's representation that allows for these pairs, and in particular we provide a family of algebraic structures where that generalization can be carried out. We also show that this representation can be used to compare secondary structures, through transfer matrices which transform the representation of one secondary structure into the representation of the other. Received: 10 December 2001 / Revised version: 7 May 2002 / Published online: 28 February 2003 Key words or phrases: RNA secondary structure – Algebra – Finite field  相似文献   

8.
A temperature-sensitive mutant of Salmonella typhimurium was isolated earlier after transposon mutagenesis with Tn10d Tet. The mutant D220 grows well at 28 °C but has a lower growth rate and forms filaments at 37 °C. Transposon-flanking fragments of mutant D220 DNA were cloned and sequenced. The transposon was inserted in the dam gene between positions 803 and 804 (assigned allele number: dam-231 : : Tn10d Tet) and resulted in a predicted ten-amino-acid-shorter Dam protein. The insertion created a stop codon that led to a truncated Dam protein with a temperature-sensitive phenotype. The insertion dam-231 : : Tn10d Tet resulted in a dam“leaky” phenotype since methylated and unmethylated adenines in GATC sequences were present. In addition, the dam-231 : : Tn10d Tet insertion rendered dam mutants temperature-sensitive for growth depending upon the genetic background of the S. typhimurium strain. The wild-type dam gene of S. typhimurium exhibited 82% identity with the Escherichia coli dam gene.  相似文献   

9.
 Sensory experience alters the functional organization of cortical networks. Previous studies using behavioral training motivated by aversive or rewarding stimuli have demonstrated that cortical plasticity is specific to salient inputs in the sensory environment. Sensory experience associated with electrical activation of the basal forebrain (BasF) generates similar input specific plasticity. By directly engaging plasticity mechanisms and avoiding extensive behavioral training, BasF stimulation makes it possible to efficiently explore how specific sensory features contribute to cortical plasticity. This review summarizes our observations that cortical networks employ a variety of strategies to improve the representation of the sensory environment. Different combinations of receptive-field, temporal, and spectrotemporal plasticity were generated in primary auditory cortex neurons depending on the pitch, modulation rate, and order of sounds paired with BasF stimulation. Simple tones led to map expansion, while modulated tones altered the maximum cortical following rate. Exposure to complex acoustic sequences led to the development of combination-sensitive responses. This remodeling of cortical response characteristics may reflect changes in intrinsic cellular mechanisms, synaptic efficacy, and local neuronal connectivity. The intricate relationship between the pattern of sensory activation and cortical plasticity suggests that network-level rules alter the functional organization of the cortex to generate the most behaviorally useful representation of the sensory environment. Received: 14 January 2002 / Accepted: 15 March 2002 Correspondence to: M.P. Kilgard (e-mail: kilgard@utdallas.edu, Tel.: +1-972-8832345, Fax: +1-972-8832491)  相似文献   

10.
 A model is presented that allows prediction of the probability for the formation of appositions between the axons and dendrites of any two neurons based only on their morphological statistics and relative separation. Statistics of axonal and dendritic morphologies of single neurons are obtained from 3D reconstructions of biocytin-filled cells, and a statistical representation of the same cell type is obtained by averaging across neurons according to the model. A simple mathematical formulation is applied to the axonal and dendritic statistical representations to yield the probability for close appositions. The model is validated by a mathematical proof and by comparison of predicted appositions made by layer 5 pyramidal neurons in the rat somatosensory cortex with real anatomical data. The model could be useful for studying microcircuit connectivity and for designing artificial neural networks. Received: 11 February 2002 / Accepted: 5 November 2002 / Published online: 20 February 2003 Correspondence to: H. Markram (e-mail: Henry.Markram@epfl.ch Tel.: +41-21-6939537, Fax: +41-21-6935350) Acknowledgements. This study was supported by the National Alliance for Autism Research, the Minerva Foundation, the US Navy, the Ebner Center for Biomedical Research, and the Edith Blum Foundation.  相似文献   

11.
 Neural oscillation is one of the most extensively investigated topics of artificial neural networks. Scientific approaches to the functionalities of both natural and artificial intelligences are strongly related to mechanisms underlying oscillatory activities. This paper concerns itself with the assumption of the existence of central pattern generators (CPGs), which are the plausible neural architectures with oscillatory capabilities, and presents a discrete and generalized approach to the functionality of locomotor CPGs of legged animals. Based on scheduling by multiple edge reversal (SMER), a primitive and deterministic distributed algorithm, it is shown how oscillatory building block (OBB) modules can be created and, hence, how OBB-based networks can be formulated as asymmetric Hopfield-like neural networks for the generation of complex coordinated rhythmic patterns observed among pairs of biological motor neurons working during different gait patterns. It is also shown that the resulting Hopfield-like network possesses the property of reproducing the whole spectrum of different gaits intrinsic to the target locomotor CPGs. Although the new approach is not restricted to the understanding of the neurolocomotor system of any particular animal, hexapodal and quadrupedal gait patterns are chosen as illustrations given the wide interest expressed by the ongoing research in the area. Received: 14 June 2002 / Accepted: 18 February 2003 / Published online: 20 May 2003 Correspondence to: Z. Yang (e-mail: zhijun.yang@ed.ac.uk) Acknowledgements. This work was partially supported by CNPq, the Brazilian Research Agency, under support number 143032/96-8. We are grateful for the helpful discussions with Prof. V.C. Barbosa, Dr. A.E. Xavier, Dr. M.S. Dutra, and Dr. A.F.R. Araújo. The donations of FPGA hardware and software from XILINX Incorporation under the order No. XUP2930 and XUP3576 are also highly appreciated.  相似文献   

12.
 The five known nickel-dependent enzymes include urease, hydrogenase, carbon monoxide dehydrogenase (and CO dehydrogenase/acetyl-coenzyme A synthase), methyl-S–coenzyme M reductase, and one class of superoxide dismutase. Consistent with their disparate functions, these Ni enzymes have distinct metallocenter structures that vary in Ni coordination geometry, number and types of metals, and the presence of additional components. Sophisticated cellular Ni processing systems have been devised to allow for specific and functional incorporation of Ni into these proteins. This review highlights several themes that are common to the enzyme activation processes and summarizes current concepts related to the enzyme-specific Ni assembly pathways. Received, accepted: 3 April 1997  相似文献   

13.
 In this paper we derive and analyze a discrete version of Rosenzweig's (Am. Nat. 1973) food-chain model. We provide substantial analytical and numerical evidence for the general dynamical patterns of food chains predicted by De Feo and Rinaldi (Am. Nat. 1997) remaining largely unaffected by this discretization. Our theoretical analysis gives rise to a classification of the parameter space into various regions describing distinct governing dynamical behaviors. Predator abundance has a local optimum at the edge of chaos. Received: 13 August 1999 / Revised version: 12 March 2002 / Published online: 17 October 2002 Mathematics Subject Classification (1991): 92D40 Keywords or phrases: Discrete food-chain – Discrete Hopf (Neimark-Sacker) bifurcation – Pulsewise birth processes – Mean yield maximization – Nicholson-Bailey model  相似文献   

14.
Statistical inferences are essentially important in analyzing neural spike trains in computational neuroscience. Current approaches have followed a general inference paradigm where a parametric probability model is often used to characterize the temporal evolution of the underlying stochastic processes. To directly capture the overall variability and distribution in the space of the spike trains, we focus on a data-driven approach where statistics are defined and computed in the function space in which spike trains are viewed as individual points. To this end, we at first develop a parametrized family of metrics that takes into account different warpings in the time domain and generalizes several currently used spike train distances. These new metrics are essentially penalized L p norms, involving appropriate functions of spike trains, with penalties associated with time-warping. The notions of means and variances of spike trains are then defined based on the new metrics when p = 2 (corresponding to the “Euclidean distance”). Using some restrictive conditions, we present an efficient recursive algorithm, termed Matching-Minimization algorithm, to compute the sample mean of a set of spike trains with arbitrary numbers of spikes. The proposed metrics as well as the mean spike trains are demonstrated using simulations as well as an experimental recording from the motor cortex. It is found that all these methods achieve desirable performance and the results support the success of this novel framework.  相似文献   

15.
Pisolithus tinctorius (Pers.) Coker and Couch [Syn. = P. arhizus (Scop.: Pers.) Rauschert] (Pt) is a widespread ectomycorrhizal basidiomycete forming mycorrhizas with a variety of hosts. Developmental and functional aspects of the symbiosis are well documented and thus Pt has been adopted as a model organism for investigations of the molecular basis of ectomycorrhizal interactions. In this review of the current state of knowledge of interactions between Pt and its hosts we demonstrate that Pt displays much intraspecific heterogeneity of host specificity, physiology and the benefits the fungus can impart upon the host plant. It is not clear at present how far such heterogeneity reflects systematic segregation within Pt. Accepted: 20 May 1997  相似文献   

16.
 The urine concentrating mechanism of mammals and birds depends on a counterflow configuration of thousands of nearly parallel tubules in the medulla of the kidney. Along the course of a renal tubule, cell type may change abruptly, resulting in abrupt changes in the physical characteristics and transmural transport properties of the tubule. A mathematical model that faithfully represents these abrupt changes will have jump discontinuities in model parameters. Without proper treatment, such discontinuities may cause unrealistic transmural fluxes and introduce suboptimal spatial convergence in the numerical solution to the model equations. In this study, we show how to treat discontinuous parameters in the context of a previously developed numerical method that is based on the semi-Lagrangian semi-implicit method and Newton's method. The numerical solutions have physically plausible fluxes at the discontinuities and the solutions converge at second order, as is appropriate for the method. Received: 13 November 2001 / Revised version: 28 June 2002 / Published online: 26 September 2002 This work was supported in part by the National Institutes of Health (National Institute of Diabetes and Digestive and Kidney Diseases, grant DK-42091.) Mathematics Subject Classification (2000): 65-04, 65M12, 65M25, 92-04, 92C35, 35-04, 35L45 Keywords or phrases: Mathematical models – Differential equations – Mathematical biology – Kidney – Renal medulla – Semi-Lagrangian semi-implicit  相似文献   

17.
Inhibitory control of neural differentiation in mammalian cells   总被引:2,自引:0,他引:2  
 In Xenopus embryos, a truncated type II activin receptor (Δ1XAR1), capable of blocking signals by several transforming growth factor (TGF)-β family members, can induce neural tissue suggesting neural fate is under inhibitory control. Activin and bone morphogenetic protein 4 (BMP4) can act as neural inhibitors but only BMP4 can induce epidermis in Xenopus ectodermal cells. We have used the pluripotent mouse embryonal carcinoma cell line P19 to examine whether the mechanisms of ectodermal cell fate decisions are conserved among vertebrates. We show that a P19 cell line expressing Δ1XAR1 will differentiate into neurons. In addition, BMP4 inhibits retinoic acid (RA)-induced neural differentiation of P19 cells and induces keratin expression. These results suggest that in mammals as in amphibians neural fate is under inhibitory control and BMP4 can alter ectodermal differentiation. Received: 23 September 1996 / Accepted: 8 January 1997  相似文献   

18.
 In this article, a neural model for generating and learning a rapid ballistic movement sequence in two-dimensional (2D) space is presented and evaluated in the light of some considerations about handwriting generation. The model is based on a central nucleus (called a planning space) consisting of a fully connected grid of leaky integrators simulating neurons, and reading an input vector Ξ (t) which represents the external movement of the end effector. The movement sequencing results in a succession of motor strokes whose instantiation is controlled by the global activation of the planning space as defined by a competitive interaction between the neurons of the grid. Constraints such as spatial accuracy and movement time are exploited for the correct synchronization of the impulse commands. These commands are then fed into a neuromuscular synergy whose output is governed by a delta lognormal equation. Each movement sequence is memorized originally as a symbolic engram representing the sequence of the principal reference points of the 2D movement. These points, called virtual targets, correspond to the targets of each single rapid motor stroke composing the movement sequence. The task during the learning phase is to detect the engram corresponding to a new observed movement; the process is controlled by the dynamics of the neural grid. Received: 16 March 1995/Accepted in revised form: 25 July 1995  相似文献   

19.
Human infants rapidly learn new skills and customs via imitation, but the neural linkages between action perception and production are not well understood. Neuroscience studies in adults suggest that a key component of imitation–identifying the corresponding body part used in the acts of self and other–has an organized neural signature. In adults, perceiving someone using a specific body part (e.g., hand vs. foot) is associated with activation of the corresponding area of the sensory and/or motor strip in the observer’s brain–a phenomenon called neural somatotopy. Here we examine whether preverbal infants also exhibit somatotopic neural responses during the observation of others’ actions. 14-month-old infants were randomly assigned to watch an adult reach towards and touch an object using either her hand or her foot. The scalp electroencephalogram (EEG) was recorded and event-related changes in the sensorimotor mu rhythm were analyzed. Mu rhythm desynchronization was greater over hand areas of sensorimotor cortex during observation of hand actions and was greater over the foot area for observation of foot actions. This provides the first evidence that infants’ observation of someone else using a particular body part activates the corresponding areas of sensorimotor cortex. We hypothesize that this somatotopic organization in the developing brain supports imitation and cultural learning. The findings connect developmental cognitive neuroscience, adult neuroscience, action representation, and behavioral imitation.  相似文献   

20.
 A mathematical model for the delivery of drug directly to the macrophages by using the phagocytosis of senescent red blood cells is proposed. The model is based on the following assumption: At time t=0 a preassigned red blood cell population n(0, a)=φ(a), a>0, loaded by the drug, is injected in the blood circulation. Among the cells of that population only those with an age a≧ā (ā=120 days) will be phagocytosed by macrophages. Of course, the lifetime of the drug must be higher than ā. Within the red blood cells it cannot be metabolized, neither can it diffuse through their membranes. The emphasis of the paper is on the mathematical properties and on the formulation of the control problem. Received 15 December 1994; received in revised form 20 July 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号