首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four overlapping cDNA fragments encoding a partial sequence for uncoupling protein 2 (UCP2) were amplified by PCR using degenerate primers from the liver of a marine teleost fish, red sea bream (Pagrus major). The partial sequence was 674 bp long, encoding 224 amino acids. The deduced amino acid sequence from the cDNA partial sequence contained the signature motifs for mitochondrial transporter protein and revealed positional identity higher than 72.8% with UCP2 from mammals. The fish UCP2 gene was highly expressed in the liver but almost undetectable in the visceral mesenteric adipose tissue. Using beta-actin as control, the UCP2 mRNA level was determined to be at least 20-fold higher in the liver than in the visceral mesenteric adipose tissues. Neither 48 h starvation nor high lipid diet had any significant effect on liver UCP2 gene expression, indicating that the abundant UCP2 gene expression was stable and might have some basic function in a fish liver that always contains high lipid content. The striking contrast of UCP2 gene expression in the two fish fat-depot organs is consistent with their large differences in oxidative capacity. We suggest that the fish liver may adapt to a constantly high fat deposit by maintaining high UCP2 expression to constrain reactive oxygen species (ROS) production and protect hepatocytes from apoptosis.  相似文献   

2.
Quantitative and qualitative studies of proteins from the mature eggs of five carps—Cirrhinus mrigala, Labeo rohita, Cyprinus carpio, Hypophthalmichthys molitrix, Ctenopharyngodon idella were made. It is found that there is much difference both in the quantity and quality of proteins in these five species. As egg proteins in a species depend on the genome, it is suggested that the study of these protein types may be considered as an additional parameter for characterisation of the fish types.  相似文献   

3.
真鲷肝脏解偶联蛋白2(UCP2)基因及其功能的探讨   总被引:6,自引:0,他引:6  
从真鲷(Pagrus major)肝脏通过简并引物PCR克隆解偶联蛋白2(UCP2)cDNA部分序列。该片段长674bp,编码224个氨基酸残基。推测的此部分氨基酸序列包含线粒体载体蛋白的特征结构,并与其它脊椎动物UCP2氨基酸序列同源性在72.8%以上。对变温动物色类UCP2组织表达调控研究表明:与哺乳类UCP2基因不同,真鲷UCP2基因在肝脏大量表达,而在腹腔肠系膜脂肪组织则仅有痕迹量表达,两者表达水平相差20倍以上。饲料中添加10%绿鳕油或48h饥饿对真鲷肝脏UCP2基因的表达水平均无显著影响,表明UCP2基因在脂肪含量高的鱼类肝脏表达十分稳定,为维持其基本功能所必需。真鲷肝脏和腹腔肠系膜脂肪组织UCP2基因表达水平的强烈反差,与鱼类这两种贮脂器官完全不同的氧化活性相一致[动物学报49(1):110—117,2003]。  相似文献   

4.
Recently, a family of uncoupling protein (UCP) genes has been discovered. The role of these genes is unknown, but it has been suggested that they are involved in regulating resting metabolic rate. In this study, we hypothesised that thyroid hormone status may influence the expression of UCP2 mRNA. The adipose tissue levels of UCP2 mRNA were measured in eight female subjects before and after treatment for thyrotoxicosis. All subjects in the hyperthyroid condition had markedly enhanced plasma levels of thyroxine (62.0 +/- 6.9 vs. 17.9 +/- 1.7, p = 0.012) and triiodothyronine (37.9 +/- 6.9 vs. 5.9 +/- 0.9, p = 0.012), accelerated heart rate (94 +/- 7 vs. 69 +/- 5, p = 0.012), decreased BMI (24.5 +/- 1.9 vs. 25.1 +/- 1.9, p = 0.025) and decreased percentage body fat (32.8 +/- 4.4 vs. 37.1 +/- 4.5, p = 0.018), as compared to the euthyroid state. Using RT-competitive-PCR, the UCP2 mRNA levels were found to be 2.5-fold upregulated in hyperthyroidism (10.4 +/- 1.7 vs. 4.2 +/- 1.3 amol/microg RNA, p = 0.012). In contrast, no difference in expression levels of the reference gene 18SrRNA was seen in the hyperthyroid versus the euthyroid state (317 +/- 49 vs. 279 +/- 25 amol/microg RNA, p = 0.48) but the difference in UCP2 mRNA levels between the hyper- and euthyroid state remained when UCP2 was related to 18SrRNA (p = 0.012). In conclusion, thyrotoxicosis markedly increases the expression of UCP2 mRNA in adipose tissue, which suggests a role for thyroid hormones in the regulation of this uncoupling protein in man.  相似文献   

5.
We have examined the uncoupling (UCP) protein gene expression in euthyroid and hypothyroid rats. UCP mRNA levels were estimated by northern blot analysis of total RNA from brown adipose tissue (BAT). Stimuli were endogenous (cold) and exogenous norepinephrine (NE), isoproterenol, T3, and T4. While the euthyroid rats UCP mRNA levels increase 2- to 3-fold by 2 h after NE or overnight cold exposure, these stimuli and isoproterenol are ineffective in hypothyroid rats. One single dose of T4, equal to the daily production rate, brings about a normal response in hypothyroid rats exposed to cold overnight. Hypothyroid rats recover their responsiveness to NE approximately 4 h after a receptor saturating dose of T3. On the other hand, such a dose of T3 induces a 3- to 4-fold increase in UCP mRNA levels in hypothyroid rats without the need of exogenous NE, and this response is not reduced by raising ambient temperature to thermoneutrality (28 C). However, the following evidence indicates that T3 requires adrenergic input to stimulate the accumulation of UCP mRNA: first, euthyroid animals maintained at 28 C do not respond to such a treatment. Second, when T3 was injected to hypothyroid rats with unilaterally denervated BAT, only the intact side responded to T3 with an elevation of the UCP mRNA levels, but both sides remained responsive to T3 + NE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
Using an antibody specific and selective to mitochondrial uncoupling protein 1 (UCP1) peptide, this study confirms the observation that UCP 1 is present in thymocytes isolated from UCP 1 wild-type, but not UCP 1 knock-out mice. UCP 1 is also shown to be present in thymocytes isolated from rat. It was also demonstrated that an antibody raised to the full-length UCP 1 protein appears to be non-specific for UCP 1, as it detects protein in UCP 1 wild-type and UCP 1 knock-out mice, protein in mitochondria isolated from brown adipose tissue of both UCP 1 wild-type and UCP 1 knock-out mice, as well as detecting protein in mitochondria isolated from rat spleen, kidney, skeletal muscle and liver, tissues that do not express UCP 1. We were also able to show that CIDEA, a soluble protein with a suggested role in regulating UCP 1 function, is equally abundant in thymocytes from UCP 1 wild-type and UCP 1 knock-out mice. Taken together our data demonstrate that (a) UCP 1 is present in rat and mouse thymocytes, (b) that the antibody to full-length UCP 1 is not specific for UCP 1 and (c) that the absence of UCP 1 does not affect native expression of CIDEA in thymocytes.  相似文献   

8.
Uncoupling protein 2 (UCP2) uncouples respiration from oxidative phosphorylation and may contribute to obesity through effects on energy metabolism. Because basal metabolic rate is decreased in obesity, UCP2 expression is predicted to be reduced. Paradoxically, hepatic expression of UCP2 mRNA is increased in genetically obese (ob/ob) mice. In situ hybridization and immunohistochemical analysis of ob/ob livers demonstrate that UCP2 mRNA and protein expression are increased in hepatocytes, which do not express UCP2 in lean mice. Mitochondria isolated from ob/ob livers exhibit an increased rate of H+ leak which partially dissipates the mitochondrial membrane potential when the rate of electron transport is suppressed. In addition, hepatic ATP stores are reduced and these livers are more vulnerable to necrosis after transient hepatic ischemia. Hence, hepatocytes adapt to obesity by up-regulating UCP2. However, because this decreases the efficiency of energy trapping, the cells become vulnerable to ATP depletion when energy needs increase acutely.  相似文献   

9.
This study examined the beta-adrenergic regulation of uncoupling protein (UCP) 2 and UCP3 gene expression in porcine tissues. In vitro experiments examined changes in UCP2 and UCP3 gene expression in middle (MSQ) and outer (OSQ) subcutaneous adipose tissues from crossbred neutered male pigs. Incubation of tissue slices (24 h) with 0 to 1000 nM isoproterenol increased UCP2 and UCP3 mRNA abundance in MSQ and OSQ, relative to 18S rRNA (P<0.05). For the in vivo experiment, nine randomly selected pigs (80 kg) were presented with a diet supplemented with 10.0 ppm ractopamine for 2 weeks. Another eight pigs were maintained on a control diet. Dietary ractopamine did not affect adipose UCP2 or UCP3 gene expression (P>0.05). However, UCP2 mRNA abundance was depressed in semitendinosus white (STW, P<0.05) and semitendinosus red (STR, P<0.001) by ractopamine feeding. Also, ractopamine decreased UCP3 mRNA abundance by 28% in STW (P<0.05). The in vitro data suggest that beta-adrenergic agonists directly affect adipose tissue UCP expression, although these adipose effects can be masked by the in vivo physiology. The in vivo data indicate that beta-adrenergic agonists may function in regulating UCP2 and UCP3 expression in selected muscles.  相似文献   

10.
Uncoupling proteins (UCPs) are mitochondrial membrane transporters which are involved in dissipating the proton electrochemical gradient thereby releasing stored energy as heat. This implies a major role of UCPs in energy metabolism and thermogenesis which when deregulated are key risk factors for the development of obesity and other eating disorders. From the three different human UCPs identified so far by gene cloning both UCP2 and UCP3 were mapped in close proximity (75-150 kb) to regions of human chromosome 11 (11q13) that have been linked to obesity and hyperinsulinaemia. At the amino acid level hUCP2 has about 55% identity to hUCP1 while hUCP3 is 71% identical to hUCP2. In this study we have deduced the genomic structure of the human UCP2 gene by PCR and direct sequence analysis. The hUCP2 gene spans over 8.7 kb distributed on 8 exons. The localization of the exon/intron boundaries within the coding region matches precisely that of the hUCP1 gene and is almost conserved in the recently discovered hUCP3 gene as well. The high degree of homology at the nucleotide level and the conservation of the exon /intron boundaries among the three UCP genes suggests that they may have evolved from a common ancestor or are the result from gene duplication events. Mutational analysis of the hUCP2 gene in a cohort of 172 children (aged 7 - 13) of Caucasian origin revealed a polymorphism in exon 4 (C to T transition at position 164 of the cDNA resulting in the substitution of an alanine by a valine at codon 55) and an insertion polymorphism in exon 8. The insertion polymorphism consists of a 45 bp repeat located 150 bp downstream of the stop codon in the 3'-UTR. The allele frequencies were 0.63 and 0.37 for the alanine and valine encoded alleles, respectively, and 0.71 versus 0.29 for the insertion polymorphism. The allele frequencies of both polymorphisms were not significantly elevated in a subgroup of 25 children characterized by low Resting Metabolic Rates (RMR). So far a direct correlation of the observed genotype with (RMR) and Body Mass Index (BMI) was not evident. Expression studies of the wild type and mutant forms of UCP2 should clarify the functional consequences these polymorphisms may have on energy metabolism and body weight regulation.  相似文献   

11.
12.
13.
Nonshivering thermogenesis induced in brown adipose tissue (BAT) during high-fat feeding is mediated through uncoupling protein 1 (UCP1). UCP2 is a recently identified homologue found in many tissues. To determine the role of UCP1 and UCP2 in thermoregulation and energy balance, we investigated the long-term effect of high-fat feeding on mRNA levels in mice at two different ambient temperatures. We also treated mice with the anorectic peptide enterostatin and compared mRNA levels in BAT, white adipose tissue (WAT), stomach, and duodenum. Here, we report that high-fat feeding at 23 degrees C increased UCP1 and UCP2 levels in BAT four- and threefold, respectively, and increased UCP2 levels fourfold in WAT. However, at 29 degrees C, UCP1 decreased, whereas UCP2 remained unchanged in BAT and increased twofold in WAT. Enterostatin increased UCP1 and decreased UCP2 mRNA in BAT. In stomach and duodenum, high-fat feeding decreased UCP2 mRNA, whereas enterostatin increased it. Our results suggest that the regulation of uncoupling protein mRNA levels by high-fat feeding is dependent on ambient temperature and that enterostatin is able to modulate it.  相似文献   

14.
W Qiu  Y Zhou  L Jiang  L Fang  L Chen  W Su  R Tan  CY Zhang  X Han  J Yang 《PloS one》2012,7(7):e41391
Diabetic nephropathy (DN) is one of the most common causes of end stage renal disease (ESRD) in China, which requires renal replacement therapy. Recent investigations have suggested an essential role of podocyte injury in the initial stage of DN. This study investigated the potential therapeutic role of genipin, an active extract from a traditional Chinese medicine, on progression of DN in diabetic mice induced by intraperitoneally injection of streptozocin (STZ). In diabetic mice, orally administration of genipin postponed the progression of DN, as demonstrated by ameliorating body weight loss and urine albumin leakage, attenuating glomerular basement membrane thickness, restoring the podocyte expression of podocin and WT1 in diabetic mice. The protective role of genipin on DN is probably through suppressing the up-regulation of mitochondrial uncoupling protein 2 (UCP2) in diabetic kidneys. Meanwhile, through inhibiting the up-regulation of UCP2, genipin restores podocin and WT1 expression in cultured podocytes and attenuates glucose-induced albumin leakage through podocytes monolayer. Therefore, these results revealed that genipin inhibited UCP2 expression and ameliorated podocyte injury in DN mice.  相似文献   

15.
Expression of an uncoupling protein gene homolog in chickens   总被引:2,自引:0,他引:2  
An avian uncoupling protein (UCP) gene homolog was recently sequenced from skeletal muscle and was proposed to have a role in thermogenesis in chickens, ducks and hummingbirds. Since mammalian UCP 2 and UCP 3 also appear to have functions associated with energy and substrate partitioning and body weight regulation, the purpose of this study was to further characterize chicken UCP under conditions of nutritional stress and/or leptin administration. Male 3-week-old chickens were starved for 24 or 48 h and then half of each group was refed for an additional 24 h. In a follow-up experiment, chickens were fed or starved for 48 h with or without leptin administration. Feed deprivation increased UCP mRNA expression in skeletal muscle by up to 260% (P<0.001), and in a time-dependent manner in pectoralis muscle. Refeeding for 24 h normalized muscle UCP mRNA levels. Leptin administration had no effect on muscle UCP. Chicken muscle UCP mRNA levels were highly correlated with plasma triglyceride and non-esterified fatty acid (NEFA) concentrations, and with circulating levels of insulin, insulin-like growth factor (IGF)-I and IGF-II. These results suggest that, as in mammals, avian UCP is up-regulated during feed deprivation and is highly correlated with increased fatty acid oxidation and flux into skeletal muscle.  相似文献   

16.
17.
Uncoupling proteins (UCP), capable of increasing proton leakage across the inner mitochondrial membrane, may play a role in the temperature-dependent setting of energy turnover in animals (and their mitochondria). Therefore, the genes and expression of fish UCP were investigated in the Antarctic eelpout Pachycara brachycephalum and a temperate confamilial species, the common eelpout Zoarces viviparus. UCP full-length cDNA was amplified from liver and muscle using RT–PCR and rapid amplification of cDNA ends (RACE). The fish UCP mRNA consists of 1906 bp in P. brachycephalum and of 1876 bp in Z. viviparus. Both zoarcid sequences contain open reading frames of 939 bp, encoding 313 amino acids, with 98% and 99% identity, respectively. Protein sequences of zoarcid UCP are closest related to fish and mammalian UCP2. For analysis of temperature-dependent expression common eelpouts were cold-acclimated from 10 °C to 2 °C and Antarctic eelpouts were warm-acclimated from 0 °C to 5 °C. Identical cDNA probes for both species were developed to investigate fish UCP mRNA expression, and protein expression levels were detected by Western Blot in the enriched membrane fraction. During cold-acclimation in Z. viviparus, mRNA levels increased by a factor up to 2.0, protein levels increased up to 1.5, in line with mitochondrial proliferation during cold-acclimation. Despite decreased mitochondrial protein content, in Antarctic eelpout UCP levels rose upon warm acclimation by a factor up to 2.0 (mRNA) and 1.6 (protein), respectively. Besides the ongoing discussion of UCP function in vertebrates, the data are indicative of a significant role of fish UCP in thermal adaptation of fish mitochondria.  相似文献   

18.
Chronic exposure to elevated free fatty acids (lipotoxicity) induces uncoupling protein (UCP2) in the pancreatic beta-cell, and therefore a causal link between UCP2 and beta-cell defects associated with obesity may exist. Recently, we showed that lipid treatment in vivo and in vitro in UCP2(-/-) mice/islets does not result in any loss in beta-cell glucose sensitivity. We have now assessed the mechanism of maintained beta-cell function in UCP2(-/-) mice by exposing islets to 0.4 mM palmitate for 48 h. Palmitate treatment increased triglyceride concentrations in wild type (WT) but not UCP2(-/-) islets because of higher palmitate oxidation rates in the UCP2(-/-) islets. Dispersed beta-cells from the palmitate-exposed WT islets had reduced glucose-stimulated hyperpolarization of the mitochondrial membrane potential compared with both control WT and palmitate-exposed UCP2(-/-) beta-cells. The glucose-stimulated increases in the ATP/ADP ratio and cytosolic Ca2+ are attenuated in palmitate-treated WT but not UCP2(-/-) beta-cells. Exposure to palmitate reduced glucose-stimulated insulin secretion (GSIS) in WT islets, whereas UCP2(-/-) islets had enhanced GSIS. Overexpression of recombinant UCP2 but not enhanced green fluorescent protein in beta-cells resulted in a loss of glucose-stimulated hyperpolarization of the mitochondrial membrane potential and GSIS similar to that seen in WT islets exposed to palmitate. Reactive oxygen species (ROS) are known to increase the activity of UCP2. We showed that ROS levels were elevated in control UCP2(-/-) islets as compared with WT and UCP2(-/-) islets overexpressing UCP2 and that palmitate increased ROS in WT and UCP2(-/-) islets overexpressing UCP2 but not in UCP2(-/-) islets. Thus, UCP2(-/-) islets resisted the toxic effects of palmitate by maintaining glucose-dependent metabolism-secretion coupling. We propose that higher free fatty acid oxidation rates prevent accumulation of triglyceride in UCP2(-/-) islets, such accumulation being a phenomenon associated with lipotoxicity.  相似文献   

19.
J Xie  J J Wen  B Chen  J F Gui 《Gene》2001,271(1):109-116
Silver crucian carp (Carassius auratus gibelio) is a unique triploid bisexual species that can reproduce by gynogenesis. As all other gynogenetic animals, it keeps its chromosome integrity by inhibiting the first meiosis division (no extrusion of the first pole body). To understand the molecular events governing this reproduction mode, suppression subtractive hybridization was used to identify the genes differentially expressed in fully-grown oocytes of the gynogenetic and gonochoristic crucian carp (gyno-carp and gono-carp). From two specific subtractive cDNA libraries, the clones screened out by dot blots and virtual Northern blots were chosen to clone full-length cDNA by RACE. Four differentially expressed genes were obtained. Two are novel genes and are expressed specifically in the oocytes. The gyno-carp stores much more mRNA of cyclin A2, a new member of the fish A-type cyclin gene, in its fully-grown oocyte than in the gono-carp. The last gene is histone H2A. The histone H2As of these two closely related crucian carps are quite different in the C-terminus. Preliminary characterization of the four genes has been analyzed by nucleotide and deduced amino acid sequence and Northern analysis.  相似文献   

20.
Macronutrient composition of diets can influence body-weight development and energy balance. We studied the short-term effects of high-protein (HP) and/or high-fat (HF) diets on energy expenditure (EE) and uncoupling protein (UCP1-3) gene expression. Adult male rats were fed ad libitum with diets containing different protein-fat ratios: adequate protein-normal fat (AP-NF): 20% casein, 5% fat; adequate protein-high fat (AP-HF): 20% casein, 17% fat; high protein-normal fat (HP-NF): 60% casein, 5% fat; high protein-high fat (HP-HF): 60% casein, 17% fat. Wheat starch was used for adjustment of energy content. After 4 days, overnight EE and oxygen consumption, as measured by indirect calorimetry, were higher and body-weight gain was lower in rats fed with HP diets as compared with rats fed diets with adequate protein content (P<.05). Exchanging carbohydrates by protein increased fat oxidation in HF diet fed groups. The UCP1 mRNA expression in brown adipose tissue was not significantly different in HP diet fed groups as compared with AP diet fed groups. Expression of different homologues of UCPs positively correlated with nighttime oxygen consumption and EE. Moreover, dietary protein and fat distinctly influenced liver UCP2 and skeletal muscle UCP3 mRNA expressions. These findings demonstrated that a 4-day ad libitum high dietary protein exposure influences energy balance in rats. A function of UCPs in energy balance and dissipating food energy was suggested. Future experiments are focused on the regulation of UCP gene expression by dietary protein, which could be important for body-weight management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号