首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Progesterone produced in response to the midcycle gonadotropin surge is essential for ovulation and luteinization of the primate follicle. Because cell-cycle arrest is associated with the initiation of luteinization, this study was designed to determine the dynamics and regulation of granulosa cell proliferation by gonadotropin and progesterone during the periovulatory interval in the primate follicle. Granulosa cells or ovaries were obtained from macaques undergoing controlled ovarian stimulation either before (0 h) or as long as 36 h following the administration of an ovulatory hCG bolus with or without a 3beta-hydroxysteroid dehydrogenase inhibitor with or without a nonmetabolizable progestin. The percentage of cells staining positive for Ki-67, a nuclear marker for cell proliferation, decreased (P < 0.05) within 12 h of hCG administration in a steroid-independent manner. Levels of cyclin D2 and E mRNA did not decline during the periovulatory interval; however, cyclin B1 mRNA was reduced significantly by 12 h. Steroid depletion increased (P < 0.05) cyclin B1 mRNA at both 12 and 36 h post-hCG and was reversible by progestin replacement at 36 h. The cyclin-dependent kinase inhibitor p21(Cip1) was transiently increased 12 h post-hCG, whereas p27(Kip1) mRNA levels increased at 36 h in a steroid-independent fashion. These data suggest that a gonadotropin bolus inhibits mitosis in granulosa cells early (12 h) in the periovulatory interval, whereas progesterone may play a later, antiproliferative role in luteinized cells of primates.  相似文献   

2.
During the periovulatory interval, intrafollicular progesterone (P) prevents follicular atresia and promotes ovulation. Whether P influences oocyte quality or maturation and follicle rupture independent of the midcycle gonadotropin surge was examined. Rhesus monkeys underwent controlled ovarian stimulation with recombinant human gonadotropins followed by a) experiment 1: an ovulatory bolus of hCG alone or with a steroid synthesis inhibitor (trilostane, TRL), or TRL + the progestin R5020; or b) no hCG, but rather sesame oil (vehicle), R5020, or dihydrotestosterone (DHT). In experiment 1, the majority of oocytes remained immature (65% +/- 20%) by 12 h post-hCG. However, the percentage of degenerating oocytes increased (P < 0.05) with TRL (42% +/- 22% vs. 0% controls), but was reduced (P < 0.05) by progestin replacement (15% +/- 7%). By 36 h post-hCG, the majority of oocytes in all three groups reached metaphase II (MI). In experiment 2, no evidence of follicle rupture was observed in the vehicle, R5020, or DHT groups. Despite the absence of hCG, a significant (P < 0.05) percentage of oocytes resumed meiosis to metaphase I in R5020- (41 +/- 9) and DHT- (36 +/- 15) but not vehicle- (4 +/- 4) treated animals. Only oocytes from R5020-treated animals continued meiosis in vivo to MII. More (P < 0.05) oocytes fertilized in vitro with R5020 (40%) than with vehicle (20%) or DHT (22%). Thus, P is unable to elicit ovulation in the absence of an ovulatory gonadotropin surge; however, P and/or androgens may prevent oocyte atresia and promote oocyte nuclear maturation in primate follicles.  相似文献   

3.
Proteinases and their inhibitors control follicular connective tissue remodeling associated with follicular rupture. We examined the regulation and cellular localization of plasminogen activator inhibitor type-1 (PAI-1) and tissue inhibitor of metalloproteinase type-1 (TIMP-1) mRNAs by in situ hybridization. [35S]UTP-labeled RNA probes were hybridized to ovarian sections of eCG-primed immature rats treated with hCG. Before hCG stimulation of ovulation, very low expression of PAI-1 mRNA was observed in theca cells. After hCG administration, expression of PAI-1 mRNA was increased in theca cells of most antral follicles, whereas expression in granulosa cells was limited to preovulatory follicles and only to areas where the basal membrane was dissociated. Before hCG treatment, low expression of TIMP-1 mRNA was observed in theca cells, but not in granulosa cells. After hCG treatment, TIMP-1 mRNA was greatly stimulated in theca cells irrespective of follicle size, while the expression in granulosa cells was limited to large antral follicles. The present study demonstrates cell-specific expression of PAI-1 and TIMP-1 mRNAs in the LH/hCG-stimulated ovary, thus confirming the localized control of preovulatory proteolysis by coexpression of both enzymes and their respective inhibitors.  相似文献   

4.
The extraction of a tissue collagenase associated with ovulation in the rat   总被引:2,自引:0,他引:2  
A method has been developed to assay collagenase in ovarian extracts in the presence of tissue inhibitors. Rat ovarian tissue is first extracted with Triton X-100 and then heated to 60 degrees C in 50 mM Tris buffer containing 100 mM CaCl2. This extract contains collagenase activity and putative inhibitor(s). The inhibitory activity is removed by reduction with dithiothreitol and alkylation with iodoacetamide. Collagenase is then activated with aminophenylmercuric acetate and assayed using 3H-acetylated collagen from which the telopeptides have been removed. Identification of this activity as collagenase was performed by using the metalloprotease inhibitors EDTA and o-phenanthroline and by demonstration of the typical collagen cleavage fragments on sodium dodecyl sulfate-gel electrophoresis. To investigate the changes in collagenase activity associated with ovulation, immature rats received 20 IU of pregnant mare's serum gonadotropin and 52 h later 10 IU of human chorionic gonadotropin (hCG). After hCG administration, ovaries were removed at intervals from 0 to 20 h. Collagenase activity rose from 4.9 +/- 1.4% digestion of the 3H-collagen at 0 time to a maximum of 24.7 +/- 1.5% digestion at 8 h after hCG and remained high at 12 h (time of ovulation) and up to 20 h (18.7 +/- 1.9% and 16.1 +/- 1.6% digestion, respectively). These findings support a role of collagenase in the rupture of the follicle and they suggest a further role for this enzyme in the events following ovulation.  相似文献   

5.
Complex role of matrix metalloproteinases in angiogenesis   总被引:49,自引:0,他引:49  
Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) play a significant role in regulating angiogenesis,the process of new blood vessel formation.Interstitial collagenase (MMP-1),72kDa gelatinase A/type IV collagenase (MMP-2),and 92 kDA gelatinase B/type IV collagenase (MMP-9) dissolve extracellular matrix (ECM) and may initiate and promote angiogenesis.TIMP-1,TIMP-2,TIMP-3,and possibly,TIMP-4 inhibit neovascularization.A new paradign is emerging that matrilysin (MMP-7),MMP-9,and metalloelastase (MMP-12) may block angiogenesis by converting plasminogen to angiostatin,which is one of the most potent angiogenesis antagonists.MMPs and TIMPs play a complex role in regulating angiogenesis.An understanding of the biochemical and cellular pathways and mechanisms of angiogenesis will provide important information to allow the control of angiogenesis,e.g.the stimulation of angiogenesis for coronary collateral circulation formation;while the inhibition for treating arthritis and cancer.  相似文献   

6.
Ovulation and luteal formation in primates are associated with the sustained synthesis of progesterone. The observed high intrafollicular concentrations of progesterone during the periovulatory interval raise the possibility that this steroid serves as a precursor for mineralocorticoids. The aim of this study was to determine if mineralocorticoids are synthesized by the luteinizing macaque follicle during controlled ovarian stimulation cycles in which follicular fluid and granulosa cell aspirates were obtained before or after an ovulatory hCG bolus. Follicular fluid concentrations of progesterone and 17alpha-hydroxyprogesterone increased within 3 h of an ovulatory hCG bolus. Their respective metabolites, 11-deoxycorticosterone (DOC) and 11-deoxycortisol, were not detectable before an ovulatory stimulus and increased starting at 6 h after hCG, while corticosterone and aldosterone were undetectable. Cortisol was present before and after hCG administration and had increased 2-fold at 24 h after an ovulatory stimulus. The expression of 21-hydroxylase (CYP21A2) mRNA increased within 3 h of hCG administration, while 11beta-hydroxylase-1 (CYP11B1) and 11beta-hydroxylase-2 (CYP11B2) mRNAs were not detectable. 11beta-Hydroxysteroid dehydrogenase-1 (HSD11B1) mRNA had increased at 12 h after hCG administration, and 11beta-hydroxysteroid dehydrogenase-2 (HSD11B2) had decreased by 3 h after hCG administration. Mineralocorticoid receptor mRNA levels did not change following hCG administration, while glucocorticoid receptor mRNA levels increased in response to an ovulatory stimulus.Treatment of granulosa cells with the mineralocorticoid receptor antagonist spironolactone blocked hCG-induced progesterone synthesis in vitro. These data indicate that macaque granulosa cells can synthesize mineralocorticoids in response to an ovulatory stimulus and that the mineralocorticoid receptor plays a key role in steroid synthesis associated with luteinization of macaque granulosa cells.  相似文献   

7.
In the present study, synchronized follicular growth, ovulations, and luteogenesis were prematurely induced in 26-day-old immature rats by the s.c. injection of 4 IU of pregnant mare's serum gonadotropin (PMSG) at 2100 h. Relative blood flow of follicles/corpora lutea, fallopian tube, and uterus was measured with radioactive microspheres during the periovulatory period (Day 28, 1700 h-Day 31, 1300 h). Also, follicular/corpus luteal light microscopy and plasma progesterone were studied at the same intervals after PMSG injection. It was found that the relative follicular blood flow did not increase after the endogenous gonadotropin surge (Day 29, 0300-0500 h) and toward ovulation (Day 29, 1300-1500 h). During the same time period, light microscopy showed an interstitial edema and extravasation of erythrocytes appearing in the follicular wall near the time of ovulation. The relative blood flow reached its nadir in the young corpus luteum (21 h after ovulation) and increased thereafter (i.e., 48 h after ovulation). Plasma progesterone showed a preovulatory increase and then declined just prior to the ovulatory period. Between 24 and 48 h after ovulation, parallel increases in relative blood flow, morphological vascularization, morphological luteinization, and plasma progesterone levels were observed in the growing corpus luteum. These data indicate that a functional relationship between blood flow and steroid output may exist within the ovarian follicle and corpus luteum.  相似文献   

8.
The introduction of rams to a group of previously isolated anoestrous ewes has been shown to stimulate ovarian follicular development and ovulation. The present experiment was carried out to determine the ability of follicles arising from this ram stimulus to produce steroids and bind hCG. Seasonally anoestrous Southdown ewes were exposed to rams for 24 h, 40 h, 3 days, 10 days or 20 days before ovariectomy. Steroid production and the concentration of hCG binding sites in follicles dissected from the ovaries were measured in vitro. The presence of a ram caused ovulation and enhanced oestradiol production by follicles, but had little effect on total androgen production or the number of hCG binding sites present in the follicles when compared to follicles from anoestrous ewes. The oestradiol concentrations in large follicles were not as high as in preovulatory follicles from cyclic ewes reported in other studies. Follicles continued to develop through the ram contact period and when incubated after 40 h and 10 days of ram contact produced high levels of progesterone, indicating partial luteinization, although the corpora lutea (CL) resulting from the induced ovulations regressed prematurely. We suggest that the lack of hCG binding sites in ram-induced follicles may be the cause of poor luteinization and suboptimal development of luteal tissue after induced ovulation in ewes during seasonal anoestrus.  相似文献   

9.
Prepuberal gilts were treated with 750 IU pregnant mare serum gonadotropin (PMSG) followed 72 h later by 500 IU human chorionic gonadotropin (hCG) to induce follicular growth and ovulation. In this model, ovulation occurred at 42 +/- 2 h post hCG treatment. When 500 mug of cloprostenol was injected at 34 and of 36 h after hCG injection, 78% of the preovulatory follicles ovulated by 38 h compared with 0% in the control gilts. In addition, plasma progesterone concentrations were significantly higher in the cloprostenol-treated group than in the control group (P<0.01) at 38 h, indicating luteinization along with premature ovulation. These results suggest that prostaglandin F(2)alpha (PGF(2)alpha) or an analog can be used to advance, synchronize or induce ovulation in gilts.  相似文献   

10.
The angiopoietin (ANGPT)-receptor (TEK) system plays a crucial role in blood vessel formation and stability. Because the endogenous agonist ANGPT1, antagonist ANGPT2, and TEK are expressed in the primate ovary, experiments were designed to investigate their role at a critical time during tissue remodeling/ angiogenesis in the menstrual cycle (i.e., at midcycle during maturation, ovulation, and luteinization of the dominant follicle). Either vehicle, 20 microg of ANGPT1, 2 microg of ANGPT2 (low-dose), or 20 microg of ANGPT2 (high-dose) was injected directly into the preovulatory follicle of monkeys around the day (-1 to 0) of the midcycle estradiol (E2)/LH peak. Ovaries were evaluated on Day 3 postinjection for follicle rupture, and serum samples were analyzed for levels of E2 and progesterone. Similar to controls, ANGPT1 treatment was followed by ovulation, and elevated progesterone levels during the luteal phase. In contrast, high-dose ANGPT2 treatment prevented follicle rupture, and progesterone levels never rose above baseline in the subsequent 12 days. However, an E2 peak typically occurred 12 days postinjection. Laparoscopy detected a preovulatory follicle on the contralateral (noninjected) ovary. Progesterone levels subsequently increased above baseline in these animals. Thus, exogenous ANGPT2 disrupted maturation of the preovulatory follicle, preventing its ovulation and conversion into the corpus luteum. ANGPT antagonism eliminated the dominant structure, thereby resetting the ovarian cycle, with selection and maturation of the next preovulatory follicle occurring in a timely manner. The data are consistent with a critical role of the ANGPT-TIE1/TEK system in the ovary, notably at the late stages of follicle maturation during the menstrual cycle.  相似文献   

11.
ABSTRACT

Prostaglandin E2 (PGE2) is a key paracrine mediator of ovulation. Few specific PGE2-regulated gene products have been identified, so we hypothesized that PGE2 may regulate the expression and/or activity of a network of proteins to promote ovulation. To test this concept, Ingenuity Pathway Analysis (IPA) was used to predict PGE2-regulated functionalities in the primate ovulatory follicle. Cynomolgus macaques underwent ovarian stimulation. Follicular granulosa cells were obtained before (0 h) or 36 h after an ovulatory dose of human chorionic gonadotropin (hCG), with ovulation anticipated 37–40 h after hCG. Granulosa cells were obtained from additional monkeys 36 h after treatment with hCG and the PTGS2 inhibitor celecoxib, which significantly reduced hCG-stimulated follicular prostaglandin synthesis. Granulosa cell RNA expression was determined by microarray and analyzed using IPA. No granulosa cell mRNAs were identified as being significantly up-regulated or down-regulated by hCG?+?celecoxib compared with hCG only. However, IPA predicted that prostaglandin depletion significantly regulated several functional pathways. Cell cycle/cell proliferation was selected for further study because decreased granulosa cell proliferation is known to be necessary for ovulation and formation of a fully-functional corpus luteum. Prospective in vivo and in vitro experiments confirmed the prediction that hCG-stimulated cessation of granulosa cell proliferation is mediated via PGE2. Our studies indicate that PGE2 provides critical regulation of granulosa cell proliferation through mechanisms that do not involve significant regulation of mRNA levels of key cell cycle regulators. Pathway analysis correctly predicted that PGE2 serves as a paracrine mediator of this important transition in ovarian structure and function.  相似文献   

12.
The matrix metalloproteinase (MMP) system consists of a proteolytic component, the metalloproteinases, and an associated class of tissue inhibitors of metalloproteinases (TIMPs). We investigated the cellular localization of the TIMPs and the gelatinase family of MMPs throughout the latter stages of follicular growth and during the periovulatory period. Immature female rats were injected with eCG, and ovaries were collected at the time of eCG administration (0 h) and at 6, 12, 24, or 36 h after eCG injection (i.e., follicular development group). A second group of animals (periovulatory) was injected with eCG followed by hCG 48 h later, and ovaries were collected at 0, 12, and 24 h after hCG. Ovaries were processed for the cellular localization of gelatinase or TIMP mRNA or gelatinolytic activity. Gelatinase mRNA (MMP-2 and MMP-9) was localized to the theca of developing follicles and to the stroma. Following a hCG stimulus, MMP-2 mRNA increased as the granulosa cells of preovulatory follicles underwent luteinization during formation of the corpus luteum (CL). MMP-9 mRNA remained predominantly in the theca during this period. In situ zymography for gelatinolytic activity demonstrated a pattern of activity that corresponded with the localization of MMP-2 and MMP-9 mRNA around developing follicles. Gelatinolytic activity was observed at the apex of preovulatory follicles and throughout the forming CL. The mRNA for TIMP-1, -2, and -3 was localized to the stroma and theca of developing follicles. TIMP-3 mRNA was present in the granulosa cells of certain follicles but was absent in granulosa cells of adjacent follicles. At 12 h after hCG, luteinizing granulosa cells expressed TIMP-1 and TIMP-3 mRNA, but TIMP-2 mRNA was at levels equivalent to the background. In the newly forming CL at 24 h after hCG administration, the luteal cells expressed TIMP-1, -2, and -3 mRNA, although the pattern of cellular expression was unique for each of the TIMPs. These findings demonstrate that the MMPs and TIMPs are in the cellular compartments appropriate for impacting the remodeling of the extracellular matrix as the follicle grows, ovulates, and forms the CL.  相似文献   

13.
Relaxin participates in extracellular matrix (ECM) remodeling in many reproductive organs, including the ovary, by regulating proteolytic enzyme activity. Accumulated evidence indicates this action of relaxin is involved in ovarian follicle development and ovulation. Equine follicles are embedded in cortex that is at the center of the ovary and they must expand/emigrate to the fossa, the only site in the ovary for ovulation. Due to the tremendous expansion of the follicle in this species, we hypothesized that ovarian stromal remodeling would be extensive. Therefore, cultured equine ovarian stromal cell (EOSC) lines were obtained from stroma at the apex of large follicles and the effects of relaxin on gelatinases A and B, tissue inhibitors of matrix metalloproteinases (TIMPs), plasminogen activators (PAs) and PA inhibitor-1 (PAI-1) activities were assessed. Our results showed that equine relaxin increased the activity of total gelatinase A (both pro forms and mature forms) and latent progelatinase B present in conditioned medium, latent progelatinase A present in cell extracts, and TIMP-1 and TIMP-2 present in conditioned medium. This study also revealed that equine relaxin increased the urokinase-type PA activity in conditioned medium and cell extracts, tissue-type PA activity in ECM and PAI-1 activity in conditioned medium. These results suggest that relaxin may contribute to equine follicle growth and migration, and facilitate ovulation by modulating the degradation of ECM in ovarian stromal tissue.  相似文献   

14.
The present study was undertaken to determine if a short-term prolonged growth of the ovulatory follicle (12 to 18 h after expected time of ovulation), induced by progesterone implants, would cause ultrastructural changes in the follicular wall. Oestrous behaviour, follicular growth, follicular and blood plasma levels of oestradiol-17ß, progesterone and plasma luteinizing hormone (LH) were monitored in heifers oophorectomized at 9 to 12 h (controls) or 36 h after the onset of oestrus, in order to sample the pre-ovulatory follicle present. The suprabasal plasma progesterone concentrations (approximately 1.2 nmol L−1) allowed expression of oestrus at the expected time, but ovulation was delayed owing to the absence of a LH-surge. The resulting prolongation of follicle growth was associated with mild degenerative changes in the follicle wall, i.e. both granulosa and thecal cells presented increased electron density, higher amounts of secondary lysosomes and lipid droplets, increased intercellular spaces with presence of debris. No signs of luteinization were seen.  相似文献   

15.
The cadherins and their cytoplasmic counterparts, the catenins, form the adherens junctions, which are of importance for tissue integrity and barrier functions. The development and maturation of the ovarian follicle is characterized by structural changes, which require altered expression or function of the components involved in cell-cell contacts. The present study examined the cell-specific localization and temporal expression of epithelial cadherin (E-cadherin) and alpha- and beta-catenin during follicular development, ovulation and corpus luteum formation in the immature gonadotrophin- and oestrogen-stimulated rat ovary. Immunohistochemistry and immunoblotting demonstrated the expression of E-cadherin in theca and interstitial cells of immature ovaries before and after injection of equine chorionic gonadotrophin (eCG). E-cadherin was not detected in granulosa cells, except in the preantral follicles located to the inner region of the ovary. The content of E-cadherin in theca and interstitial cells decreased after an ovulatory dose of hCG. Granulosa cells of apoptotic follicles did not express E-cadherin. Oestrogen treatment (diethylstilboestrol) of immature rats for up to 3 days did not result in a measurable expression of E-cadherin in granulosa cells. alpha- and beta-catenin were expressed in all ovarian compartments. The concentration of beta-catenin was constant during the follicular phase, whereas the content of alpha-catenin decreased in granulosa cells after treatment with diethylstilboestrol or hCG. The expression of alpha-catenin was also reduced in theca and interstitial cells after hCG. alpha- and beta-catenin were present in most ovarian cells at all stages of folliculogenesis. Therefore, the catenins have the potential to associate with different members of the cadherin family and to participate in the regulation of cytoskeletal structures and intracellular signalling. The restricted expression of E-cadherin in granulosa cells of preantral follicles indicates a role in the recruitment of these follicles to subsequent cycles. The specific decrease of alpha-catenin in granulosa cells and the reduction of both alpha-catenin and E-cadherin in theca cells of ovulatory follicles might reflect some of the molecular changes in cell-cell adhesion associated with ovulation and luteinization.  相似文献   

16.
17.
In bovines characterization of biochemical and molecular determinants of the dominant follicle before and during different time intervals after gonadotrophin surge requires precise identification of the dominant follicle from a follicular wave. The objectives of the present study were to standardize an experimental model in buffalo cows for accurately identifying the dominant follicle of the first wave of follicular growth and characterize changes in follicular fluid hormone concentrations as well as expression patterns of various genes associated with the process of ovulation. From the day of estrus (day 0), animals were subjected to blood sampling and ultrasonography for monitoring circulating progesterone levels and follicular growth. On day 7 of the cycle, animals were administered a PGF(2alpha) analogue (Tiaprost Trometamol, 750 microg i.m.) followed by an injection of hCG (2000 IU i.m.) 36 h later. Circulating progesterone levels progressively increased from day 1 of the cycle to 2.26+/-0.17 ng/ml on day 7 of the cycle, but declined significantly after PGF(2alpha) injection. A progressive increase in the size of the dominant follicle was observed by ultrasonography. The follicular fluid estradiol and progesterone concentrations in the dominant follicle were 600+/-16.7 and 38+/-7.6 ng/ml, respectively, before hCG injection and the concentration of estradiol decreased to 125.8+/-25.26 ng/ml, but concentration of progesterone increased to 195+/-24.6 ng/ml, 24h post-hCG injection. Inh-alpha and Cyp19A1 expressions in granulosa cells were maximal in the dominant follicle and declined in response to hCG treatment. Progesterone receptor, oxytocin and cycloxygenase-2 expressions in granulosa cells, regarded as markers of ovulation, were maximal at 24h post-hCG. The expressions of genes belonging to the super family of proteases were also examined; Cathepsin L expression decreased, while ADAMTS 3 and 5 expressions increased 24h post-hCG treatment. The results of the current study indicate that sequential treatments of PGF(2alpha) and hCG during early estrous cycle in the buffalo cow leads to follicular growth that culminates in ovulation. The model system reported in the present study would be valuable for examining temporo-spatial changes in the periovulatory follicle immediately before and after the onset of gonadotrophin surge.  相似文献   

18.
Flunixin meglumine (FM), a prostaglandin synthetase inhibitor, causes ovulatory failure in the mare. However, the effect of the FM treatment relative to the time of hCG administration on the ovulation failure has not been determined nor has its effect on the luteal function of treated mares. Estrous mares with a follicle ≥32 mm (range of 32-38 mm) were treated with 1.7 mg/kg b.w. of FM iv at zero, 12, 24 and 36 h (n=6), at 24 and 36 h (n=6), at 28 and 36 h (n=6), at 24h (n=6) or at 30 h (n=6) after treatment with 1500 IU hCG. One group received no FM (control, n=6). Progesterone concentrations were determined using RIA. Mares treated with FM 0-36 h and 24-36 h had higher (P<0.05) incidence of ovulatory failure (83 and 80%, respectively) than mares treated twice at 28 and 36 h, or once at 24 or at 30 h after hCG (16.7, 0 and 0%, respectively). The anovulatory follicles of FM treated mares luteinized and produced progesterone (>2 ng/ml). The progesterone concentration was lower in mares treated with FM at zero to 36 h and at 24-36 h after hCG than in the other groups. In conclusion, the FM administration was effective in blocking ovulation only when the treatment began ≤24 h after hCG and was continued every 12 h until ≥36 h. In addition, the FM-induced anovulatory follicles underwent luteinization of follicular cells with active production of progesterone.  相似文献   

19.
Activation of human monocytes results in the production of interstitial collagenase through a prostaglandin E2 (PGE2)-cAMP-dependent pathway. Inasmuch as interleukin 4 (IL-4) has been shown to inhibit PGE2 synthesis by monocytes, we examined the effect of IL-4 on the production of human monocyte interstitial collagenase. Additionally, we also assessed the effect of IL-4 on the production of 92-kDa type IV collagenase/gelatinase and tissue inhibitor of metalloproteinase-1 (TIMP-1) by monocytes. The inhibition of PGE2 synthesis by IL-4 resulted in decreased interstitial collagenase protein and activity that could be restored by exogenous PGE2 or dibutyryl cyclic AMP (Bt2cAMP). IL-4 also suppressed ConA-stimulated 92-kDa type IV collagenase/gelatinase protein and zymogram enzyme activity that could be reversed by exogenous PGE2 or Bt2cAMP. Moreover, indomethacin suppressed the ConA-induced production of 92-kDa type IV collagenase/gelatinase. These data demonstrate that, like monocyte interstitial collagenase, the conA-inducible monocyte 92-kDa type IV collagenase/gelatinase is regulated through a PGE2-mediated cAMP-dependent pathway. In contrast to ConA stimulation, unstimulated monocytes released low levels of 92-kDa type IV collagenase/gelatinase that were not affected by IL-4, PGE2, or Bt2cAMP, indicating that basal production of this enzyme is PGE2-cAMP independent. IL-4 inhibition of both collagenases was not a result of increased TIMP expression since Western analysis of 28.5-kDa TIMP-1 revealed that IL-4 did not alter the increased TIMP-1 protein in response to ConA. These data indicate that IL-4 may function in natural host regulation of connective tissue damage by monocytes.  相似文献   

20.
Colloidal carbon was injected i.v. in mature virgin rabbits at different times after induction of ovulation by human chorionic gonadotrophin (hCG, 100 iu) or mating. Before induction of ovulation, slight carbon leakage was observed in the inner vascular ring of the theca interna of antral follicles, but blood vessels in the other ovarian compartments were unstained. Between 4 and 10.5 h after hCG-treatment or mating, vascular leakage was most marked in the blood vessels of the interstitial gland and in the theca interna of antral follicles. Just before ovulation, carbon particles were observed between granulosa cells and some carbon was seeping into the follicular fluid of preruptured follicles. Vascular leakage was also observed over the follicle dome before rupture as well as at the dorsomedial junction between the mesovarium and the ovary. The blood vessels stained with carbon were 7-70 microns diameter, representing capillaries and postcapillary venules. About 6 h after hCG injection, an increased number of polymorphonuclear leucocytes migrated from the vessels of these ovarian compartments into the surrounding interstitial tissue. The number of leucocytes seen in the follicular wall and ovarian medulla increased markedly towards ovulation. During early corpus luteum formation, the number of leucocytes decreased markedly. The localized vascular changes seen after mating and hCG stimulation were similar to an inflammatory reaction and could form the basis for the formation of peritoneal exudate after ovulation in rabbits and periovulatory ascitic accumulation seen in the peritoneal cavity of women during the menstrual cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号