首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and structure-activity relationships of ureas as CCR3 antagonists are described. Optimization starting with lead compound 2 (IC(50)=190 nM) derived from initial screening hit compound 1 (IC(50)=600 nM) led to the identification of (S)-N-((1R,3S,5S)-8-((6-fluoronaphthalen-2-yl)methyl)-8-azabicyclo[3.2.1]octan-3-yl)-N-(2-nitrophenyl)pyrrolidine-1,2-dicarboxamide 27 (IC(50)=4.9 nM) as a potent CCR3 antagonist.  相似文献   

2.
Linear unselective CCR3 antagonist leads with IC(50) values in the 200 nM range were converted into low nM binding compounds selective at CCR3 by moving the piperidine nitrogen substituent to the carbon at the 2-position of the ring. Substitution of the piperidine nitrogen with simple alkyl and acyl groups was found to improve the selectivity of this new compound class. In particular, N-{3-[(2S, 4R)-1-(propyl)-4-(4-fluorobenzyl)piperidinyl]propyl}-N'-(3-acetylphenyl)urea exhibited single digit nanomolar IC(50) values for CCR3 with >100-fold selectivity against an extensive counter screen panel.  相似文献   

3.
In our previous study on discovering novel types of CCR3 antagonists, we found a fluoronaphthalene derivative (1) that exhibited potent CCR3 inhibitory activity with an IC(50) value of 20 nM. However, compound 1 also inhibited human cytochrome P450 2D6 (CYP2D6) with an IC(50) value of 400 nM. In order to reduce its CYP2D6 inhibitory activity, we performed further systematic structural modifications on 1. In particular, we focused on reducing the number of lipophilic moieties in the biphenyl part of 1, using ClogD(7.4) values as the reference index of lipophilicity. This research led to the identification of N-{(3-exo)-8-[(6-fluoro-2-naphthyl)methyl]-8-azabicyclo[3.2.1]oct-3-yl}-3-(piperidin-1-ylcarbonyl)isonicotinamide 1-oxide (30) which showed comparable CCR3 inhibitory activity (IC(50)=23 nM) with much reduced CYP2D6 inhibitory activity (IC(50)=29,000 nM) compared with 1.  相似文献   

4.
(2S)-2-(3-Chlorophenyl)-1-[N-(methyl)-N-(phenylsulfonyl)amino]-4-[spiro(2,3-dihydrobenzthiophene-3,4'-piperidin-1'-yl)]butane S-oxide (1b) has been identified as a potent CCR5 antagonist having an IC50=10 nM. Herein, structure-activity relationship studies of non-spiro piperidines are described, which led to the discovery of 4-(N-(alkyl)-N-(benzyloxycarbonyl)amino)piperidine derivatives (3-5) as potent CCR5 antagonists.  相似文献   

5.
A new series of quinazolines that function as CCR4 antagonists were discovered during the screening of our corporate compound libraries. Subsequent compound optimization elucidated the structure-activity relationships and led the identification of 2-(1,4'-bipiperidine-1'-yl)-N-cycloheptyl-6,7-dimethoxyquinazolin-4-amine 14a, which showed potent inhibition in the [(35)S]GTPgammaS-binding assay (IC(50)=18nM). This compound also inhibited the chemotaxis of human and mouse CCR4-expressing cells (IC(50)=140nM, 39nM).  相似文献   

6.
SAR studies were conducted around lead compound 1 using high-throughput parallel solution and solid phase synthesis. Our lead optimization efforts led to the identification of several CCR2b antagonists with potent activity in both binding and functional assays [Compound 71 CCR2b Binding IC(50) 3.2 nM; MCP-1-Induced Chemotaxis IC(50) 0.83 nM; Ca(2+) Flux IC(50) 7.5 nM].  相似文献   

7.
In searching for a novel CCR3 receptor antagonist, we designed a library that included a variety of carboxamide derivatives based on the structure of our potent antagonists for human CCR1 and CCR3 receptors, and screened the new compounds for inhibitory activity against 125I-Eotaxin binding to human CCR3 receptors expressed in CHO cells. Among them, two 2-(benzothiazolethio)acetamide derivatives (1a and 2a) showed binding affinities with IC50 values of 750 and 1000 nM, respectively, for human CCR3 receptors. These compounds (1a and 2a) also possessed weak binding affinities for human CCR1 receptors. We selected la as a lead compound for derivatization to improve in vitro potency and selectivity for CCR3 over CCRI receptors. Derivatization of la by incorporating substituents into each benzene ring of the benzothiazole and piperidine side chain resulted in the discovery of a compound (1b) exhibiting 820-fold selectivity for CCR3 receptors (IC50 = 2.3 nM) over CCR1 receptors (IC50 = 1900 nM). This compound (1b) also showed potent functional antagonist activity for inhibiting Eotaxin (IC50 = 27 nM)- or RANTES (IC50 = 13 nM)-induced Ca2+ increases in eosinophils.  相似文献   

8.
In order to develop orally active CCR5 antagonists, 1-propyl- or 1-isobutyl-1-benzazepine derivatives containing a sulfoxide moiety have been designed, synthesized, and evaluated for their biological activities. Sulfoxide compounds containing a 2-pyridyl group were first investigated, which led to discovering that the presence of a methylene group between the sulfoxide moiety and 2-pyridyl group was necessary for increased inhibitory activity in a binding assay. After further chemical modification, it was found that replacement of the pyridyl group with an imidazolyl or 1,2,4-triazolyl group enhanced activity in the binding assay and that S-sulfoxide compounds were more active than R-isomers. Particularly, compounds (S)-4r, (S)-4s, and (S)-4w exhibited highly potent CCR5 antagonistic activities (IC50=1.9, 1.7, 1.6 nM, respectively) and inhibitory effects (IC50=1.0, 2.8, 7.7 nM, respectively) in the HIV-1 envelope mediated membrane fusion assay, together with good pharmacokinetic properties in rats. In addition, we established the synthesis of (S)-4r and (S)-4w by asymmetric oxidation with titanium-(S)-(-)-1,1'-bi-2-naphthol complex.  相似文献   

9.
Chemokines mediate their diverse activities through G protein-coupled receptors. The human homolog of the bovine orphan receptor PPR1 shares significant similarity to chemokine receptors. Transfection of this receptor into murine L1.2 cells resulted in responsiveness to monocyte chemoattractant protein (MCP)-4, MCP-2, and MCP-1 in chemotaxis assays. Binding studies with radiolabeled MCP-4 demonstrated a single high affinity binding site with an IC(50) of 0.14 nM. As shown by competition binding, other members of the MCP family also recognized this receptor. MCP-2 was the next most potent ligand, with an IC(50) of 0.45 nM. Surprisingly, eotaxin (IC(50) = 6.7 nM) and MCP-3 (IC(50) = 4.1 nM) bind with greater affinity than MCP-1 (IC(50) = 10.7 nM) but only act as agonists in chemotaxis assays at 100-fold higher concentrations. Because of high affinity binding and functional chemotactic responses, we have termed this receptor CCR11. The gene for CCR11 was localized to human chromosome 3q22, which is distinct from most CC chemokine receptor genes at 3p21. Northern blot hybridization was used to identify CCR11 expression in heart, small intestine, and lung. Thus CCR11 shares functional similarity to CCR2 because it recognizes members of the MCP family, but CCR11 has a distinct expression pattern.  相似文献   

10.
Rational design based on a pharmacophore of CCR2 antagonists reported in the literature identified lead compound 9a with potent inhibitory activity against human CCR2 (hCCR2) but moderate activity against murine CCR2 (mCCR2). Modification on 9a led to the discovery of a potent CCR2 antagonist 21 (INCB3344) with IC(50) values of 5.1 nM (hCCR2) and 9.5 nM (mCCR2) in binding antagonism and 3.8 nM (hCCR2) and 7.8 nM (mCCR2) in antagonism of chemotaxis activity. INCB3344 exhibited >100-fold selectivity over other homologous chemokine receptors, a free fraction of 24% in human serum and 15% in mouse serum, and an oral bioavailability of 47% in mice, suitable as a tool compound for target validation in rodent models.  相似文献   

11.
2,4-Diamino-5-[3',4'-dimethoxy-5'-(5-carboxy-1-pentynyl)]benzylpyrimidine (6) and 2,4-diamino-5-[3',4'-dimethoxy-5'-(4-carboxyphenylethynyl)benzylpyrimidine (7) were synthesized from 2,4-diamino-5-(5'-iodo-3',4'-dimethoxybenzyl)pyrimidine (9) via a Sonogashira reaction with appropriate acetylenic esters followed by saponification, and were tested as inhibitors of dihydrofolate reductase (DHFR) from Pneumocystis carinii (Pc), Toxoplasma gondii (Tg), Mycobacterium avium (Ma), and rat in comparison with the widely used antibacterial agent 2,4-diamino-5-(3',4',5'-trimethoxybenzyl)pyrimidine (trimethoprim, TMP). The selectivity index (SI) for each compound was calculated by dividing its 50% inhibitory concentration (IC(50)) against rat DHFR by its IC(50) against Pc, Tg, or Ma DHFR. The IC(50) of 6 against Pc DHFR was 1.0 nM, with an SI of 5000. Compound 7 had an IC(50) of 8.2 nM against Ma DHFR, with an SI of 11000. By comparison, the IC(50) of TMP was 12000 nM against Pc, 300 nM against Ma, and 180000 against rat DHFR. The potency and selectivity values of 6 and 7 were not as high against Tg as they were against Pc or Ma DHFR, but nonetheless exceeded those of TMP. Because of the outstanding selectivity of 6 against Pc and of 7 against Ma DHFR, these novel analogues may be viewed as promising leads for further structure-activity optimization.  相似文献   

12.
A series of racemic and homochiral alpha-aminothiazole-gamma-aminobutyroamides that display high affinities for human and murine CCR2 and functional antagonism by inhibition of monocyte recruitment are described. A representative example is (2S)-2-[2-(acetylamino)-1,3-thiazol-4-yl]-N-[3-methyl-5-(trifluoromethyl)benzyl]-4-(4-phenylpiperidin-1-yl)butanamide, which shows 5 nM affinity for human monocytes and CHO cells expressing the human CCR2b receptor. It also inhibited MCP-1 initiated chemotaxis of human monocytes with an IC50 of 0.69 nM.  相似文献   

13.
The discovery of novel and selective small molecule antagonists of the CC Chemokine Receptor-3 (CCR3) is presented. Simple conversion from a 4- to 3-benzylpiperidine gave improved selectivity for CCR3 over the serotonin 5HT(2A) receptor. Chiral resolution and exploration of mono- and disubstitution of the N-propylurea resulted in several 3-benzylpiperidine N-propylureas with CCR3 binding IC(50)s under 5 nM. Data from in vitro calcium mobilization and chemotaxis assays for these compounds ranged from high picomolar to low nanomolar EC(50)s and correlated well with antagonist binding IC(50)s.  相似文献   

14.
A new class of 4-(aminoheterocycle)piperidine derived 1,3,4 trisubstituted pyrrolidine CCR5 antagonists is reported. Compound 4a is shown to have good binding affinity (1.8 nM) and antiviral activity in PBMC's (IC(95)=50 nM). Compound 4a also has improved PK properties relative to 1.  相似文献   

15.
A series of cis-3,4-disubstituted piperidines was synthesized and evaluated as CC chemokine receptor 2 (CCR2) antagonists. Compound 24 emerged with an attractive profile, possessing excellent binding (CCR2 IC(50)=3.4 nM) and functional antagonism (calcium flux IC(50)=2.0 nM and chemotaxis IC(50)=5.4 nM). Studies to explore the binding of these piperidine analogs utilized a key CCR2 receptor mutant (E291A) with compound 14 and revealed a significant reliance on Glu291 for binding.  相似文献   

16.
Structure-activity relationship studies directed toward the optimization of (2S)-2-(3-chlorophenyl)-1-[N-(methyl)-N-(phenylsulfonyl)amino]-4-[4-(substituted)piperidin-1-yl]butanes as CCR5 antagonists resulted in the synthesis of the spiro-indanone derivative 8c (IC50=5 nM). These and previous results are summarized in a proposed pharmacophore model for this class of CCR5 antagonist.  相似文献   

17.
18.
CCR3 antagonist leads with IC(50) values in the microM range were converted into low nM binding compounds that displayed in vitro inhibition of human eosinophil chemotaxis induced by human eotaxin. In particular, 4-benzylpiperidin-1-yl-n-propylureas and erythro-3-(4-benzyl-2-(alpha-hydroxyalkyl)piperidin-1-yl)-n-propylureas (obtained via Beak reaction of N-BOC-4-benzylpiperidine) exhibited single digit nanomolar IC(50) values for CCR3.  相似文献   

19.
A novel class of potent CCR3 receptor antagonists were designed and synthesized starting from N-{1-[(6-fluoro-2-naphthyl)methyl]piperidin-4-yl}benzamide (1),which was found by subjecting our chemical library to high throughput screening (HTS). The CCR3 inhibitory activity of the synthesized compounds against eotaxin-induced Ca(2+) influx was evaluated using CCR3-expressing preB cells. Systematic chemical modifications of 1 revealed that the 6-fluoro-2-naphthylmethyl moiety was essential for CCR3 inhibitory activity in this new series of CCR3 antagonists. Further structural modifications of the benzamide and piperidine moieties of 1 led to the identification of exo-N-{8-[(6-fluoro-2-naphthyl)methyl]-8-azabicyclo[3.2.1]oct-3- yl}biphenyl-2-carboxamide [corrected] (31) as a potent CCR3 antagonist with an IC(50) value of 0.020 microM.  相似文献   

20.
(2S)-2-(3,4-Dichlorophenyl)-1-[N-(methyl)-N-(phenylsulfonyl)amino]-4-[spiro(2,3-dihydrobenzthiophene-3,4'-piperidin-1'-yl)]butane S-oxide (3) has been identified as a potent CCR5 antagonist lead structure having an IC50 = 35 nM. Herein, we describe the structure-activity relationship studies directed toward the requirement for and optimization of the C-2 phenyl fragment. The phenyl was found to be important for CCR5 antagonism and substitution was limited to small moieties at the 3-position (13 and 16: X= H, 3-F, 3-Cl, 3-Me).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号