首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyaluronan is synthesized within the cytoplasm and exported into the extracellular matrix through the cell membrane of fibroblasts by the MRP5 transporter. In order to meet the law of electroneutrality, a cation is required to neutralize the emerging negative hyaluronan charges. As we previously observed an inhibiting of hyaluronan export by inhibitors of K(+) channels, hyaluronan export was now analysed by simultaneously measuring membrane potential in the presence of drugs. This was done by both hyaluronan import into inside-out vesicles and by inhibition with antisense siRNA. Hyaluronan export from fibroblast was particularly inhibited by glibenclamide, ropivacain and BaCl(2) which all belong to ATP-sensitive inwardly-rectifying K(ir) channel inhibitors. Import of hyaluronan into vesicles was activated by 150 mM KCl and this activation was abolished by ATP. siRNA for the K(+) channels K(ir)3.4 and K(ir)6.2 inhibited hyaluronan export. Collectively, these results indicated that hyaluronan export depends on concurrent K(+) efflux.  相似文献   

2.
Cellular export of cyclic nucleotides has been observed in various tissues and may represent an elimination pathway for these signaling molecules, in addition to degradation by phosphodiesterases. In the present study we provide evidence that this export is mediated by the multidrug resistance protein isoform MRP5 (gene symbol ABCC5). The transport function of MRP5 was studied in V79 hamster lung fibroblasts transfected with a human MRP5 cDNA. An MRP5-specific antibody detected an overexpression of the glycoprotein of 185 +/- 15 kDa in membranes from MRP5-transfected cells and a low basal expression of hamster Mrp5 in control membranes. ATP-dependent transport of 3',5'-cyclic GMP at a substrate concentration of 1 micrometer was 4-fold higher in membrane vesicles from MRP5-transfected cells than in control membranes. This transport was saturable with a K(m) value of 2.1 micrometer. MRP5-mediated transport was also detected for 3',5'-cyclic AMP at a lower affinity, with a K(m) value of 379 micrometer. A potent inhibition of MRP5-mediated transport was observed by several compounds, known as phosphodiesterase modulators, including trequinsin, with a K(i) of 240 nm, and sildenafil, with a K(i) value of 267 nm. Thus, cyclic nucleotides are physiological substrates for MRP5; moreover, MRP5 may represent a novel pharmacological target for the enhancement of tissue levels of cGMP.  相似文献   

3.
Effect of hyaluronan on MMP expression and activation   总被引:1,自引:0,他引:1  
  相似文献   

4.
When secreted from malignant cells, hyaluronan facilitates tumor invasion and metastasis, as inhibition of its export by zaprinast inhibited metastasis formation in mice. However, the precise steps of the metastatic cascade, which were influenced by zaprinast, have not been identified as yet. Here we analyzed the cell biological effects of the inhibitor on three human melanoma cell lines that differed in their hyaluronan production and their metastatic capability when xenografted into SCID mice. We measured the influence of zaprinast on cellular hyaluronan export, surface coat formation, proliferation, random migration, colony formation in soft agar, adhesion, and transepithelial resistance. Concentrations of zaprinast not affecting cell proliferation, adhesion and transepithelial resistance, nevertheless reduced hyaluronan export by 50%, surface coat formation, random migration, and colony formation in soft agar. These results indicate that hyaluronan enhances metastasis formation primarily in those steps of the metastatic cascade, which involves tumor cell migration.  相似文献   

5.
We recently discovered that hyaluronan was exported from fibroblasts by MRP5 and from epithelial cells by cystic fibrosis (CF) transmembrane conductance regulator (CFTR) that was known as a chloride channel. On this basis we developed membrane permeable analogs of hyaluronan disaccharide as new class of compounds to modify their efflux. We found substances that activated hyaluronan export from human breast cancer cells. The most active compound 2-(2-acetamido-3,5-dihydroxyphenoxy)-5-aminobenzoic acid (Hylout4) was tested for its influence on the activity of epithelial cells. It activated the ion efflux by normal and defective ΔF508-CFTR. It also enhanced the plasma membrane concentration of the ΔF508-CFTR protein and reduced the transepithelial resistance of epithelial cells. In human trials of healthy persons, it caused an opening of CFTR in the nasal epithelium. Thus compound Hylout4 is a corrector that recovered ΔF508-CFTR from intracellular degradation and activated its export function.  相似文献   

6.
Hyaluronan.   总被引:22,自引:0,他引:22  
Hyaluronan (hyaluronic acid) is a high-molecular-mass polysaccharide found in the extracellular matrix, especially of soft connective tissues. It is synthesized in the plasma membrane of fibroblasts and other cells by addition of sugars to the reducing end of the polymer, whereas the nonreducing end protrudes into the pericellular space. The polysaccharide is catabolized locally or carried by lymph to lymph nodes or the general circulation, from where it is cleared by the endothelial cells of the liver sinusoids. The overall turnover rate is surprisingly rapid for a connective tissue matrix component (t1/2 0.5 to a few days). Hyaluronan has been assigned various physiological functions in the intercellular matrix, e.g., in water and plasma protein homeostasis. Hyaluronan production increases in proliferating cells and the polymer may play a role in mitosis. Extensive hyaluronidase-sensitive coats have been identified around mesenchymal cells. They are either anchored firmly in the plasma membrane or bound via hyaluronan-specific binding proteins (receptors). Such receptors have now been identified on many different cells, e.g., the lymphocyte homing receptor CD 44. Interaction between a hyaluronan receptor and extracellular polysaccharide has been connected with locomotion and cell migration. Hyaluronan seems to play an important role during development and differentiation and has other cell regulatory activities. Hyaluronan has also been recognized in clinical medicine. A concentrated solution of hyaluronan (10 mg/ml) has, through its tissue protective and rheological properties, become a device in ophthalmic surgery. Analysis of serum hyaluronan is promising in the diagnosis of liver disease and various inflammatory conditions, e.g., rheumatoid arthritis. Interstitial edema caused by accumulation of hyaluronan may cause dysfunction in various organs.  相似文献   

7.
Cyclic nucleotides are known to be effluxed from cultured cells or isolated tissues. Two recently described members of the multidrug resistance protein family, MRP4 and MRP5, might be involved in this process, because they transport the 3',5'-cyclic nucleotides, cAMP and cGMP, into inside-out membrane vesicles. We have investigated cGMP and cAMP efflux from intact HEK293 cells overexpressing MRP4 or MRP5. The intracellular production of cGMP and cAMP was stimulated with the nitric oxide releasing compound sodium nitroprusside and the adenylate cyclase stimulator forskolin, respectively. MRP4- and MRP5-overexpressing cells effluxed more cGMP and cAMP than parental cells in an ATP-dependent manner. In contrast to a previous report we found no glutathione requirement for cyclic nucleotide transport. Transport increased proportionally with intracellular cyclic nucleotide concentrations over a calculated range of 20-600 microm, indicating low affinity transport. In addition to several classic inhibitors of organic anion transport, prostaglandins A(1) and E(1), the steroid progesterone and the anti-cancer drug estramustine all inhibited cyclic nucleotide efflux. The efflux mediated by MRP4 and MRP5 did not lead to a proportional decrease in the intracellular cGMP or cAMP levels but reduced cGMP by maximally 2-fold over the first hour. This was also the case when phosphodiesterase-mediated cyclic nucleotide hydrolysis was inhibited by 3-isobutyl-1-methylxanthine, conditions in which efflux was maximal. These data indicate that MRP4 and MRP5 are low affinity cyclic nucleotide transporters that may at best function as overflow pumps, decreasing steep increases in cGMP levels under conditions where cGMP synthesis is strongly induced and phosphodiesterase activity is limiting.  相似文献   

8.
Hyaluronan, a macromolecular glycosaminoglycan, is normally synthesized by hyaluronan synthases at the plasma membrane using cytosolic UDP-GlcUA and UDP-GlcNAc substrates and extruding the elongating chain into the extracellular space. The cellular metabolism (synthesis and catabolism) of hyaluronan is dynamic. UDP-GlcNAc is also the substrate for O-GlcNAc transferase, which is central to the control of many cytosolic pathways. This Perspective outlines recent data for regulation of hyaluronan synthesis and catabolism that support a model that hyaluronan metabolism can be a rheostat for controlling an acceptable normal range of cytosolic UDP-GlcNAc concentrations in order to maintain normal cell functions.  相似文献   

9.
Cell volume is regulated by a delicate balance between ion distribution across the plasma membrane and the osmotic properties of intra‐ and extracellular components. Using a fluorescent calcein indicator, we analysed the effects of glycosaminoglycans on the cell volume of hyaluronan producing fibroblasts and hyaluronan deficient HEK cells over a time period of 30 h. Exogenous glycosaminoglycans induced cell blebbing after 2 min and swelling of fibroblasts to about 110% of untreated cell volume at low concentrations which decreased at higher concentrations. HEK cells did not show cell blebbing and responded by shrinking to 65% of untreated cell volume. Heparin induced swelling of both fibroblasts and HEK cells. Hyaluronidase treatment or inhibition of hyaluronan export led to cell shrinkage indicating that the hyaluronan coat maintained fibroblasts in a swollen state. These observations were explained by the combined action of the Donnan effect and molecular crowding. J. Cell. Biochem. 113: 340–348, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
Stable toxin (ST) peptides are the causative agents for a severe form of watery diarrhea. These peptides bind to a membrane-associated form of guanylyl cyclase, guanylyl cyclase C. The result is an accumulation of cyclic guanosine monophosphate (cGMP) in the intestinal cell, regulating protein kinase activity and the phosphorylation of a number of proteins involved in ion transport across the intestine. Using the human T84 colonic cell line as a model system, we show that cGMP accumulation in these cells after ST application is regulated by the activity of the cGMP-binding, cGMP-specific phosphodiesterase (PDE5). The presence of human PDE5 in this cell line was confirmed by Western blot analysis, using an antibody raised to the bovine enzyme, and by the observation that cGMP hydrolytic activity detected in T84 cell lysates was almost completely inhibited by low concentrations of zaprinast, a specific inhibitor of PDE5. An increase in activity of PDE5 was observed in T84 cell lysates on exposure to the ST peptide and prolonged exposure of T84 cells to the ST peptide led to the induction of cellular refractoriness in these cells, which was largely contributed in terms of an increased rate of degradation of cGMP in desensitized cells as a result of PDE5 activation. This activation was correlated with an increase in the affinity of the enzyme for the substrate cGMP, as well as an increased affinity for zaprinast. We provide evidence for the first time that cGMP levels in the human colonocyte are regulated by the cGMP-hydrolytic activity of PDE5 and suggest that the expression and regulation of PDE5 in the intestine could therefore be important in controlling cGMP-mediated signaling in this tissue.  相似文献   

11.
Hyaluronan accumulation in the retroorbital connective tissue is one of the pathological features of Graves' ophthalmopathy. Interleukin-1beta (IL-1beta) is known to stimulate hyaluronan synthesis in orbital fibroblasts. In the present study, the intracellular signal transduction pathways involved in this stimulatory effect were investigated in cultured human retroorbital fibroblasts from patients with Graves' ophthalmopathy. IL-1beta-induced hyaluronan synthesis was significantly inhibited by pretreatment of the cells with two protein kinase C (PKC) inhibitors, chlerythrine chloride and H-7. In addition, treatment with phorbol 12-myristate 13-acetate (PMA), a direct PKC activator, also resulted in increased hyaluronan production. IL-1beta- or PMA-stimulated hyaluronan synthesis was blocked by the protein synthesis inhibitor, cycloheximide. Moreover, the intracellular Ca(2+) concentration of the orbital fibroblasts was also involved in the IL-1beta induced transduction pathway, the effect being completely inhibited by BAPTA, an internal calcium chelator. In addition, A23187, a calcium ionophore, increased hyaluronan synthesis in unstimulated cells. These results suggest that the Ca(2+)-dependent PKC signal transduction pathway plays an important role in the IL-1beta-induced hyaluronan synthesis. Moreover, IL-1beta treatment resulted in increased PKC activity and the rapid translocation of PKC betaII from the cytoplasm to the plasma membrane. These results indicate that cytosolic Ca(2+) and PKC betaII are involved in IL-1beta-induced hyaluronan synthesis in cultured orbital fibroblasts from patients with Graves' ophthalmopathy.  相似文献   

12.
Human multidrug resistance protein 4 (MRP4) has recently been determined to confer resistance to the antiviral purine analog 9-(2-phosphonylmethoxyethyl)adenine and methotrexate. However, neither its substrate selectivity nor physiological functions have been determined. Here we report the results of investigations of the in vitro transport properties of MRP4 using membrane vesicles prepared from insect cells infected with MRP4 baculovirus. It is shown that expression of MRP4 is specifically associated with the MgATP-dependent transport of cGMP, cAMP, and estradiol 17-beta-D-glucuronide (E(2)17 beta G). cGMP, cAMP, and E(2)17 beta G are transported with K(m) and V(max) values of 9.7 +/- 2.3 microm and 2.0 +/- 0.3 pmol/mg/min, 44.5 +/- 5.8 microm and 4.1 +/- 0.4 pmol/mg/min, and 30.3 +/- 6.2 microm and 102 +/- 16 pmol/mg/min, respectively. Consistent with its ability to transport cyclic nucleotides, it is demonstrated that the MRP4 drug resistance profile extends to 6-mercaptopurine and 6-thioguanine, two anticancer purine analogs that are converted in the cell to nucleotide analogs. On the basis of its capacity to transport cyclic nucleotides and E(2)17 beta G, it is concluded that MRP4 may influence diverse cellular processes regulated by cAMP and cGMP and that its substrate range is distinct from that of any other characterized MRP family member.  相似文献   

13.
Hyaluronan was substituted with tyramine-cellobiose on amino residues exposed after hydrazinolytic N-deacetylation of the polysaccharide. Nonsubstituted amino groups were reacetylated, and the carboxylic hydrazides were removed by treatment with HIO3. The adduct was labeled with 125I before or after coupling to hyaluronan. N-deacetylation increased with prolonged pretreatment with hydrazine, which also reduced the chain length of hyaluronan. Hydrazinolysis for 30 min produced hyaluronan with Mr 2.2-2.9 x 10(5). This material was substituted with varying amounts of tyramine-cellobiose (from 1 per 20 to 1 per 130 disaccharides). Hyaluronan labeled in this way was recognized by Streptomyces hyaluronidase, hyaluronan affinity protein of cartilage proteoglycan, and receptors for specific endocytosis of hyaluronan in liver endothelial cells. Since tyramine-cellobiose is nondegradable and therefore is arrested intralysosomally at the site of uptake, turnover studies of hyaluronan can be easily carried out with this ligand.  相似文献   

14.
Multidrug resistance protein 5 (MRP5) has been linked to cGMP cellular export in peripheral vascular smooth muscle cells (VSMCs) and is widely expressed in brain vascular tissue. In the present study, we examined whether knockdown of MRP5 in pial arterioles [via antisense oligodeoxynucleotide (ODN) applications] affected nitric oxide (NO)/cGMP-induced dilations. The antisense or (as a control) missense ODN was applied to the cortical surface approximately 24 h before study via closed cranial windows. The efficacy of the antisense vs. missense ODN in eliciting selective reductions in MRP5 expression was confirmed by analysis of MRP5 mRNA in pial tissue. Unexpectedly, in initial studies, a significantly lower maximal pial arteriolar diameter increase in the presence of the NO donor S-nitrosoacetylpenicillamine (SNAP) was seen in the antisense vs. missense ODN-treated rats (35 vs. 48% diameter increase, respectively). It was suspected that this related to a reduced vascular smooth muscle cell sensitivity to cGMP due to prolonged exposure to increased intracellular cGMP levels elevated by overnight restriction of cGMP efflux. That postulate was supported by a finding of a diminished vasodilating response to the cGMP-dependent protein kinase-activating cGMP analog 8-p-chlorophenylthio-cGMP in antisense vs. missense ODN-treated rats. To prevent desensitization, additional rats were studied in the presence of chronic NOS inhibition via Nomega-nitro-L-arginine. In the NO synthase (NOS)-inhibited rats, the maximal SNAP response was much higher in the antisense (62% increase) vs. the missense ODN (40% increase) group. A similar result was obtained when monitoring responses to the soluble guanylyl cyclase-activating drugs YC-1 and BAY 41-2272. Moreover, in the presence of NOS inhibition, the normal SNAP-induced rise in periarachnoid cerebrospinal fluid cGMP levels, which reflects cGMP efflux, was absent in the antisense ODN-treated rats, a finding consistent with loss of MRP5 function. In conclusion, if one minimizes the confounding effects of basal cGMP production, a clearer picture emerges, one that indicates an important role for MRP5-mediated cGMP efflux in the regulation of NO-induced cerebral arteriolar relaxation.  相似文献   

15.
Okada D  Asakawa S 《Biochemistry》2002,41(30):9672-9679
The effects of cGMP binding on the catalytic activity of cGMP-specific, cGMP-binding phosphodiesterase (PDE5) are unclear because cGMP interacts with both allosteric and catalytic sites specifically. We studied the effects of cGMP on the hydrolysis of a fluorescent substrate analogue, 2'-O-anthraniloyl cGMP, by PDE5 partially purified from rat cerebella. The preparation contained PDE5 as the major cGMP-PDE activity and was not contaminated with cAMP- or cGMP-dependent protein kinases. The Hill coefficients for hydrolysis of the analogue substrate were around 1.0 in the presence of cGMP at concentrations <0.3 microM, while they increased to 1.5 at cGMP concentrations >1 microM, suggesting allosteric activation by cGMP at concentrations close to the bulk binding constant of the enzyme. Consistent with an allosteric activation, increasing concentrations of cGMP enhanced the hydrolysis rate of fixed concentrations of 2'-O-anthraniloyl cGMP, which overcame competition between the two substrates. Such activation was not observed with cAMP, cyclic inosine 3',5'-monophosphate, or 2'-O-monobutyl cGMP, indicating specificity of cGMP. These results demonstrate that cGMP is a specific and allosteric activator of PDE5, and suggest that in cells containing PDE5, such as cerebellar Purkinje cells, intracellular cGMP concentrations may be regulated autonomously through effects of cGMP on PDE5.  相似文献   

16.
Hyaluronan (HA) is a highly hydrated polyanion, which is a network-forming and space-filling component in the extracellular matrix of animal tissues. Confocal fluorescence recovery after photobleaching (confocal-FRAP) was used to investigate intramolecular hydrogen bonding and electrostatic interactions in hyaluronan solutions. Self and tracer lateral diffusion coefficients within hyaluronan solutions were measured over a wide range of concentrations (c), with varying electrolyte and at neutral and alkaline pH. The free diffusion coefficient of fluoresceinamine-labeled HA of 500 kDa in PBS was 7.9 x 10(-8) cm(2) s(-1) and of 830 kDa HA was 5.6 x 10(-8) cm(2) s(-1). Reductions in self- and tracer-diffusion with c followed a stretched exponential model. Electrolyte-induced polyanion coil contraction and destiffening resulted in a 2.8-fold increase in self-diffusion between 0 and 100 mM NaCl. Disruption of hydrogen bonds by strong alkali (0.5 M NaOH) resulted in further larger increases in self- and tracer-diffusion coefficients, consistent with a more dynamic and permeable network. Concentrated hyaluronan solution properties were attributed to hydrodynamic and entanglement interactions between domains. There was no evidence of chain-chain associations. At physiological electrolyte concentration and pH, the greatest contribution to the intrinsic stiffness of hyaluronan appeared to be due to hydrogen bonds between adjacent saccharides.  相似文献   

17.
Streptococcus agalactiae hyaluronate lyase is a virulence factor that helps this pathogen to break through the biophysical barrier of the host tissues by the enzymatic degradation of hyaluronan and certain chondroitin sulfates at beta-1,4 glycosidic linkages. Crystal structures of the native enzyme and the enzyme-product complex were determined at 2.1- and 2.2-A resolutions, respectively. An elongated cleft transversing the middle of the molecule has been identified as the substrate-binding place. Two product molecules of hyaluronan degradation were observed bound to the cleft. The enzyme catalytic site was identified to comprise three residues: His(479), Tyr(488), and Asn(429). The highly positively charged cleft facilitates the binding of the negatively charged polymeric substrate chain. The matching between the aromatic patch of the enzyme and the hydrophobic patch of the substrate chain anchors the substrate chain into degradation position. A pair of proton exchanges between the enzyme and the substrate results in the cleavage of the beta-1,4 glycosidic linkage of the substrate chain and the unsaturation of the product. Phe(423) likely determines the size of the product at the product release side of the catalytic region. Hyaluronan chain is processively degraded from the reducing end toward the nonreducing end. The unsulfated or 6-sulfated regions of chondroitin sulfate can also be degraded in the same manner as hyaluronan.  相似文献   

18.
Cyclic GMP transporters   总被引:4,自引:0,他引:4  
The biokinetics of guanosine 3',5'-cyclic monophosphate (cGMP) is characterized by three distinct processes: synthesis by guanylate cyclases (GCs), conversion of cGMP to GMP by cyclic nucleotide phosphodiesterases (PDEs) and the excretion of unchanged cGMP by transport proteins in the cell membrane. Efflux is observed in virtually all cell types including cells which originate from brain. Studies of intact cells, in which metabolic inhibitors and probenecid reduced extrusion of cGMP and wherein cGMP was extruded against concentration gradients, indicated the existence of ATP requiring organic anion transport system(s). Functional studies of inside-out vesicles have revealed cGMP transport systems wherein translocation is coupled to hydrolysis of ATP. The extrusion of cGMP is inhibited by a number of unrelated compounds and this indicates that cGMP is substrate for multispecific transporters. Recent transfection studies suggest that members of the MRP (multidrug resistance protein) family; MRP4, MRP5 and MRP8 translocate cGMP across the cell membrane. Many of the MRPs have been detected in brain. In addition tertiary active transport by the organic anion transporter family has also been identified. At least one member (OAT1) shows relative high affinity for cGMP and is also expressed in brain. The biological significance of cGMP transporters has to be clarified. Their role in cGMP biokinetics, being responsible for one of the cellular elimination pathways, is well established. However, there is growing evidence that extracellular cGMP has effects on cell physiology and pathophysiology by an auto- or paracrine mechanism.  相似文献   

19.
The interaction between nitric oxide (NO) and renin is controversial. cAMP is a stimulating messenger for renin, which is degraded by phosphodiesterase (PDE)-3. PDE-3 is inhibited by cGMP, whereas PDE-5 degrades cGMP. We hypothesized that if endogenous cGMP was increased by inhibiting PDE-5, it could inhibit PDE-3, increasing endogenous cAMP, and thereby stimulate renin. We used the selective PDE-5 inhibitor zaprinast at 20 mg/kg body wt ip, which we determined would not change blood pressure (BP) or renal blood flow (RBF). In thiobutabarbital (Inactin)-anesthetized rats, renin secretion rate (RSR) was determined before and 75 min after administration of zaprinast or vehicle. Zaprinast increased cGMP excretion from 12.75 +/- 1.57 to 18.67 +/- 1.87 pmol/min (P < 0.003), whereas vehicle had no effect. Zaprinast increased RSR sixfold (from 2.95 +/- 1.74 to 17.62 +/- 5.46 ng ANG I. h(-1) x min(-1), P < 0.024), while vehicle had no effect (from 4.08 +/- 2.02 to 3.87 +/- 1.53 ng ANG I x h(-1) x min(-1)). There were no changes in BP or RBF. We then tested whether the increase in cGMP could be partially due to the activity of the neuronal isoform of NO synthase (nNOS). Pretreatment with the nNOS inhibitor 7-nitroindazole (7-NI; 50 mg/kg body wt) did not change BP or RBF but attenuated the renin-stimulating effect of zaprinast by 40% compared with vehicle. In 7-NI-treated animals, zaprinast-stimulated cGMP excretion was attenuated by 48%, from 9.17 +/- 1.85 to 13.60 +/- 2.15 pmol/min, compared with an increase from 10.94 +/- 1.90 to 26.38 +/- 3.61 pmol/min with zaprinast without 7-NI (P < 0.04). This suggests that changes in endogenous cGMP production at levels not associated with renal hemodynamic changes are involved in a renin-stimulatory pathway. One source of this cGMP may be nNOS generation of NO in the kidney.  相似文献   

20.
Hyaluronan, a high-molecular-weight glycosaminoglycan of cartilage, is deposited directly into the extracellular space by hyaluronan synthases, while hyaluronan catabolism is mediated by the hyaluronidases. An in vitro cell culture system has been established in which human dermal fibroblasts are induced to undergo chondrogenesis. Here, we describe the differential modulation of the hyaluronidases and the up-regulation of the hyaluronan receptor, CD44, during such chondrogenesis. Dermal fibroblasts, plated in micromass cultures in the presence of lactic acid and staurosporine for 24 h, were then placed in serum-free, chemically defined medium. At 3 days, RNA was extracted and RT-PCR performed using primers for the hyaluronidase genes. Marked increase in HYAL1 expression was observed, with only moderate increases occurring in HYAL2 and HYAL3. No expression of HYAL4 and PH-20, the sperm-associated hyaluronidase, was detected. RNA levels correlated well with changes in hyaluronidase enzyme activity. Finally, greater expression and staining for the hyaluronan receptor, CD44s, the standard form, were detected. Differential expression of the somatic hyaluronidases and CD44-mediated hyaluronan turnover play a critical role in cartilage development from mesenchymal precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号