首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At present, effective treatment for non-severe malaria is the most important malaria control strategy in Africa. Pyrimethamine-sulfadoxine (PSD) is rapidly becoming the first-line treatment in areas of chloroquine resistance, although the parasite chemoresistance factors that dispose towards clinical failure with PSD are still unclear. Here, Bill Watkins and colleagues analyse the relationship between the pharmacokinetic properties of two treatment combinations (PSD and chlorproguanil-dapsone) in vivo and the respective in vitro isobolograms for parasites with specific drug-resistance patterns. From this relationship, they develop a hypothesis that may explain clinical drug failure and differential efficacy between treatments. The deductions can be tested in field studies to validate or refute the model.  相似文献   

2.
A major issue in the control of malaria is the evolution of drug resistance. Ecological theory has demonstrated that pathogen superinfection and the resulting within-host competition influences the evolution of specific traits. Individuals infected with Plasmodium falciparum are consistently infected by multiple parasites; however, while this probably alters the dynamics of resistance evolution, there are few robust mathematical models examining this issue. We developed a general theory for modelling the evolution of resistance with host superinfection and examine: (i) the effect of transmission intensity on the rate of resistance evolution; (ii) the importance of different biological costs of resistance; and (iii) the best measure of the frequency of resistance. We find that within-host competition retards the ability and slows the rate at which drug-resistant parasites invade, particularly as the transmission rate increases. We also find that biological costs of resistance that reduce transmission are less important than reductions in the duration of drug-resistant infections. Lastly, we find that random sampling of the population for resistant parasites is likely to significantly underestimate the frequency of resistance. Considering superinfection in mathematical models of antimalarial drug resistance may thus be important for generating accurate predictions of interventions to contain resistance.  相似文献   

3.
The evolution of drug resistance, a key challenge for our ability to treat and control infections, depends on two processes: de-novo resistance mutations, and the selection for and spread of resistant mutants within a population. Understanding the factors influencing the rates of these two processes is essential for maximizing the useful lifespan of drugs and, therefore, effective disease control. For malaria parasites, artemisinin-based drugs are the frontline weapons in the fight against disease, but reports from the field of slower parasite clearance rates during drug treatment are generating concern that the useful lifespan of these drugs may be limited. Whether slower clearance rates represent true resistance, and how this provides a selective advantage for parasites is uncertain. Here, we show that Plasmodium chabaudi malaria parasites selected for resistance to artesunate (an artemisinin derivative) through a step-wise increase in drug dose evolved slower clearance rates extremely rapidly. In single infections, these slower clearance rates, similar to those seen in the field, provided fitness advantages to the parasite through increased overall density, recrudescence after treatment and increased transmission potential. In mixed infections, removal of susceptible parasites by drug treatment led to substantial increases in the densities and transmission potential of resistant parasites (competitive release). Our results demonstrate the double-edged sword for resistance management: in our initial selection experiments, no parasites survived aggressive chemotherapy, but after selection, the fitness advantage for resistant parasites was greatest at high drug doses. Aggressive treatment of mixed infections resulted in resistant parasites dominating the pool of gametocytes, without providing additional health benefits to hosts. Slower clearance rates can evolve rapidly and can provide a strong fitness advantage during drug treatment in both single and mixed strain infections.  相似文献   

4.
Mathematical models have been used to provide an explicit framework for understanding malaria transmission dynamics in human population for over 100 years. With the disease still thriving and threatening to be a major source of death and disability due to changed environmental and socio-economic conditions, it is necessary to make a critical assessment of the existing models, and study their evolution and efficacy in describing the host-parasite biology. In this article, starting from the basic Ross model, the key mathematical models and their underlying features, based on their specific contributions in the understanding of spread and transmission of malaria have been discussed. The first aim of this article is to develop, starting from the basic models, a hierarchical structure of a range of deterministic models of different levels of complexity. The second objective is to elaborate, using some of the representative mathematical models, the evolution of modelling strategies to describe malaria incidence by including the critical features of host-vector-parasite interactions. Emphasis is more on the evolution of the deterministic differential equation based epidemiological compartment models with a brief discussion on data based statistical models. In this comprehensive survey, the approach has been to summarize the modelling activity in this area so that it helps reach a wider range of researchers working on epidemiology, transmission, and other aspects of malaria. This may facilitate the mathematicians to further develop suitable models in this direction relevant to the present scenario, and help the biologists and public health personnel to adopt better understanding of the modelling strategies to control the disease  相似文献   

5.
Systemic endectocidal drugs, used to control nematodes in humans and other vertebrates, can be toxic to Anopheles spp. mosquitoes when they take a blood meal from a host that has recently received one of these drugs. Recent laboratory and field studies have highlighted the potential of ivermectin to control malaria parasite transmission if this drug is distributed strategically and more often. There are important theoretical benefits to this strategy, as well as caveats. A better understanding of drug effects against vectors and malaria ecologies are needed. In the near future, ivermectin and other endectocides could serve as potent and novel malaria transmission control tools that are directly linked to the control of neglected tropical diseases in the same communities.  相似文献   

6.
In this paper we build a population dynamics of malaria including drug treatment. By taking into account both sensitive and resistant parasites, we want to see the effect of treatments on resistance phenomenon and prevent it from overspreading. Our main results include a new dynamics model, its mathematical properties which are found through analysis, the determination of unknown parameters with help of a data set for malaria from Burkina Faso and the numerical simulations of the fitted model. Based on these results, treatment strategies to reduce drug resistance can be elaborated.  相似文献   

7.
Building a mathematical model of population dynamics of pathogens within their host involves considerations of factors similar to those in ecology, as pathogens can prey on cells in the host. But within the multicellular host, attacked cell types are integrated with other cellular systems, which in turn intervene in the infection. For example, immune responses attempt to sense and then eliminate or contain pathogens, and homeostatic mechanisms try to compensate for cell loss. This review focuses on modeling applied to malarias, diseases caused by single-cell eukaryote parasites that infect red blood cells, with special concern given to vivax malaria, a disease often thought to be benign (if sometimes incapacitating) because the parasite only attacks a small proportion of red blood cells, the very youngest ones. However, I will use mathematical modeling to argue that depletion of this pool of red blood cells can be disastrous to the host if growth of the parasite is not vigorously check by host immune responses. Also, modeling can elucidate aspects of new field observations that indicate that vivax malaria is more dangerous than previously thought.  相似文献   

8.
Anti-malarial drugs can make a significant contribution to the control of malaria in endemic areas when used for prevention as well as for treatment. Chemoprophylaxis is effective in preventing deaths and morbidity from malaria, but it is difficult to sustain for prolonged periods, may interfere with the development of naturally acquired immunity and will facilitate the emergence and spread of drug resistant strains if applied to a whole community. However, chemoprophylaxis targeted to groups at high risk, such as pregnant women, or to periods of the year when the risk from malaria is greatest, can be an effective and cost effective malaria control tool and has fewer drawbacks. Intermittent preventive treatment, which involves administration of anti-malarials at fixed time points, usually when a subject is already in contact with the health services, for example attendance at an antenatal or vaccination clinic, is less demanding of resources than chemoprophylaxis and is now recommended for the prevention of malaria in pregnant women and infants resident in areas with medium or high levels of malaria transmission. Intermittent preventive treatment in older children, probably equivalent to targeted chemoprophylaxis, is also highly effective but requires the establishment of a specific delivery system. Recent studies have shown that community volunteers can effectively fill this role. Mass drug administration probably has little role to play in control of mortality and morbidity from malaria but may have an important role in the final stages of an elimination campaign.  相似文献   

9.
The malaria disease has become a cause of poverty and a major hindrance to economic development. The culprit of the disease is the parasite, which secretes an array of proteins within the host erythrocyte to facilitate its own survival. Accordingly, the secretory proteins of malaria parasite have become a logical target for drug design against malaria. Unfortunately, with the increasing resistance to the drugs thus developed, the situation has become more complicated. To cope with the drug resistance problem, one strategy is to timely identify the secreted proteins by malaria parasite, which can serve as potential drug targets. However, it is both expensive and time-consuming to identify the secretory proteins of malaria parasite by experiments alone. To expedite the process for developing effective drugs against malaria, a computational predictor called “iSMP-Grey” was developed that can be used to identify the secretory proteins of malaria parasite based on the protein sequence information alone. During the prediction process a protein sample was formulated with a 60D (dimensional) feature vector formed by incorporating the sequence evolution information into the general form of PseAAC (pseudo amino acid composition) via a grey system model, which is particularly useful for solving complicated problems that are lack of sufficient information or need to process uncertain information. It was observed by the jackknife test that iSMP-Grey achieved an overall success rate of 94.8%, remarkably higher than those by the existing predictors in this area. As a user-friendly web-server, iSMP-Grey is freely accessible to the public at http://www.jci-bioinfo.cn/iSMP-Grey. Moreover, for the convenience of most experimental scientists, a step-by-step guide is provided on how to use the web-server to get the desired results without the need to follow the complicated mathematical equations involved in this paper.  相似文献   

10.

Background

The spread of drug resistance is making malaria control increasingly difficult. Mathematical models for the transmission dynamics of drug sensitive and resistant strains can be a useful tool to help to understand the factors that influence the spread of drug resistance, and they can therefore help in the design of rational strategies for the control of drug resistance.

Methods

We present an epidemiological framework to investigate the spread of anti-malarial resistance. Several mathematical models, based on the familiar Macdonald-Ross model of malaria transmission, enable us to examine the processes and parameters that are critical in determining the spread of resistance.

Results

In our simplest model, resistance does not spread if the fraction of infected individuals treated is less than a threshold value; if drug treatment exceeds this threshold, resistance will eventually become fixed in the population. The threshold value is determined only by the rates of infection and the infectious periods of resistant and sensitive parasites in untreated and treated hosts, whereas the intensity of transmission has no influence on the threshold value. In more complex models, where hosts can be infected by multiple parasite strains or where treatment varies spatially, resistance is generally not fixed, but rather some level of sensitivity is often maintained in the population.

Conclusions

The models developed in this paper are a first step in understanding the epidemiology of anti-malarial resistance and evaluating strategies to reduce the spread of resistance. However, specific recommendations for the management of resistance need to wait until we have more data on the critical parameters underlying the spread of resistance: drug use, spatial variability of treatment and parasite migration among areas, and perhaps most importantly, cost of resistance.  相似文献   

11.
Where malaria is transmitted by zoophilic vectors, two types of malaria control strategies have been proposed based on animals: using livestock to divert vector biting from people (zooprophylaxis) or as baits to attract vectors to insecticide sources (insecticide-treated livestock). Opposing findings have been obtained on malaria zooprophylaxis, and despite the success of an insecticide-treated livestock trial in Pakistan, where malaria vectors are highly zoophilic, its effectiveness is yet to be formally tested in Africa where vectors are more anthropophilic. This study aims to clarify the different effects of livestock on malaria and to understand under what circumstances livestock-based interventions could play a role in malaria control programmes. This was explored by developing a mathematical model and combining it with data from Pakistan and Ethiopia. Consistent with previous work, a zooprophylactic effect of untreated livestock is predicted in two situations: if vector population density does not increase with livestock introduction, or if livestock numbers and availability to vectors are sufficiently high such that the increase in vector density is counteracted by the diversion of bites from humans to animals. Although, as expected, insecticide-treatment of livestock is predicted to be more beneficial in settings with highly zoophilic vectors, like South Asia, we find that the intervention could also considerably decrease malaria transmission in regions with more anthropophilic vectors, like Anopheles arabiensis in Africa, under specific circumstances: high treatment coverage of the livestock population, using a product with stronger or longer lasting insecticidal effect than in the Pakistan trial, and with small (ideally null) repellency effect, or if increasing the attractiveness of treated livestock to malaria vectors. The results suggest these are the most appropriate conditions for field testing insecticide-treated livestock in an Africa region with moderately zoophilic vectors, where this intervention could contribute to the integrated control of malaria and livestock diseases.  相似文献   

12.
The development of transgenic mosquitoes that are resistant to diseases may provide a new and effective weapon of diseases control. Such an approach relies on transgenic mosquitoes being able to survive and compete with wild-type populations. These transgenic mosquitoes carry a specific code that inhibits the plasmodium evolution in its organism. It is said that this characteristic is hereditary and consequently the disease fades away after some time. Once transgenic mosquitoes are released, interactions between the two populations and inter-specific mating between the two types of mosquitoes take place. We present a mathematical model that considers the generation overlapping and variable environment factors. Based on this continuous model, the malaria vector control is formulated and solved as an optimal control problem, indicating how genetically modified mosquitoes should be introduced in the environment. Numerical simulations show the effectiveness of the proposed control.  相似文献   

13.
The evolution of antimalarial drug resistance is often considered to be a single-stage process in which parasites are either fully resistant or completely sensitive to a drug. However, this does not take into account the important intermediate stage of drug tolerance. Drug-tolerant parasites are killed by the high serum concentrations of drugs that occur during direct treatment of the human host. However, these parasites can spread in the human population because many drugs persist long after treatment, and the tolerant parasites can infect people in which there are residual levels of the drugs. This intermediate stage between fully sensitive and fully resistant parasites has far-reaching implications for the evolution of drug-resistant malaria.  相似文献   

14.
In Turkey, the mosquito Anopheles sacharovi has been under field selection pressure sequentially with DDT, dieldrin, malathion and pirimiphosmethyl over a period of 30 years for the purpose of malaria control. In 1984, the field population of An.sacharovi in the malarious Cukurova plain of Adana Province contained an altered acetylcholinesterase-based resistance gene giving broad spectrum resistance against organophosphorus and carbamate insecticides. The cross-resistance spectrum from this mechanism conferred resistance to malathion but not to the organophosphorus insecticide pirimiphos-methyl. Over the 6 years that pirimiphos-methyl has been applied for malaria vector control in this area, the frequency of the altered acetylcholinesterase resistance gene has declined, although in 1989 and 1990 it was still present at measurable frequencies in An.sacharovi from Cukurova. In addition to the acetylcholinesterase resistance mechanism there is evidence of an increased level of glutathione S-transferase in some of the An.sacharovi populations tested. This is known to be correlated with DDT resistance in other anophelines. In Turkish An.sacharovi, DDT resistance and elevated glutathione S-transferase occur in the same populations at similar frequencies. The continued prevalence of resistance to DDT and dieldrin, long after the 1971 cessation of DDT spraying for malaria control in Turkey, suggests that the DDT resistance gene has insufficient reduced fitness associated with it to have been lost from the field population during the past two decades. The implications of the slow decline in resistance gene frequencies in this field population are discussed in relation to mathematical models for managing resistance.  相似文献   

15.
Malaria is a devastating disease that still claims over half a million lives every year, mostly in sub–Saharan Africa. One of the main barriers to malaria control is the evolution and propagation of drug-resistant mutant parasites. Knowing the genes and respective mutations responsible for drug resistance facilitates the design of drugs with novel modes of action and allows predicting and monitoring drug resistance in natural parasite populations in real-time. The best way to identify these mutations is to experimentally evolve resistance to the drug in question and then comparing the genomes of the drug-resistant mutants to that of the sensitive progenitor parasites. This simple evolutive concept was the starting point for the development of a paradigm over the years, based on the use of the rodent malaria parasite Plasmodium chabaudi to unravel the genetics of drug resistance in malaria. It involves the use of a cloned parasite isolate (P. chabaudi AS) whose genome is well characterized, to artificially select resistance to given drugs through serial passages in mice under slowly increasing drug pressure. The end resulting parasites are cloned and the genetic mutations are then discovered through Linkage Group Selection, a technique conceived by Prof. Richard Carter and his group, and/or Whole Genome Sequencing. The precise role of these mutations can then be interrogated in malaria parasites of humans through allelic replacement experiments and/or genotype-phenotype association studies in natural parasite populations. Using this paradigm, all the mutations underlying resistance to the most important antimalarial drugs were identified, most of which were pioneering and later shown to also play a role in drug resistance in natural infections of human malaria parasites. This supports the use of P. chabaudi a fast-track predictive model to identify candidate genetic markers of resistance to present and future antimalarial drugs and improving our understanding of the biology of resistance.  相似文献   

16.
Antimalarial drugs will be essential tools at all stages of malaria elimination along the path towards eradication, including the early control or "attack" phase to drive down transmission and the later stages of maintaining interruption of transmission, preventing reintroduction of malaria, and eliminating the last residual foci of infection. Drugs will continue to be used to treat acute malaria illness and prevent complications in vulnerable groups, but better drugs are needed for elimination-specific indications such as mass treatment, curing asymptomatic infections, curing relapsing liver stages, and preventing transmission. The ideal malaria eradication drug is a coformulated drug combination suitable for mass administration that can be administered in a single encounter at infrequent intervals and that results in radical cure of all life cycle stages of all five malaria species infecting humans. Short of this optimal goal, highly desirable drugs might have limitations such as targeting only one or two parasite species, the priorities being Plasmodium falciparum and Plasmodium vivax. The malaria research agenda for eradication should include research aimed at developing such drugs and research to develop situation-specific strategies for using both current and future drugs to interrupt malaria transmission.  相似文献   

17.
Within-host competition between coinfecting parasite strains shapes the evolution of parasite phenotypes such as virulence and drug resistance. Although this evolution has a strong theoretical basis, within-host competition has rarely been studied experimentally, particularly in medically relevant pathogens with hosts that have pronounced specific and nonspecific immune responses against coinfecting strains. We investigated multiple infection in malaria, using two pairs of genetically distinct clones of the rodent malaria Plasmodium chabaudi in mice. Clones were inoculated into mice simultaneously or 3 or 11 days apart, and population sizes were tracked using immunofluorescence or quantitative polymerase chain reaction. In all experiments, at least one of the two clones suffered strong competitive suppression, probably through both resource- and immune-mediated (apparent) competition. Clones differed in intrinsic competitive ability, but prior residency was also an important determinant of competitive outcome. When clones infected mice first, they did not suffer from competition, but they did when infecting mice at the same time or after their competitor, more so the later they infected their host. Consequently, clones that are competitively inferior in head-to-head competition can be competitively superior if they infect hosts first. These results are discussed in the light of strain-specific immunity, drug resistance, and virulence evolution theory.  相似文献   

18.
South Africa is committed to eliminating malaria with a goal of zero local transmission by 2018. Malaria elimination strategies may be unsuccessful if they focus only on vector biology, and ignore the mobility patterns of humans, particularly where the majority of infections are imported. In the first study in Mpumalanga Province in South Africa designed for this purpose, a metapopulation model is developed to assess the impact of their proposed elimination-focused policy interventions. A stochastic, non-linear, ordinary-differential equation model is fitted to malaria data from Mpumalanga and neighbouring Maputo Province in Mozambique. Further scaling-up of vector control is predicted to lead to a minimal reduction in local infections, while mass drug administration and focal screening and treatment at the Mpumalanga-Maputo border are predicted to have only a short-lived impact. Source reduction in Maputo Province is predicted to generate large reductions in local infections through stemming imported infections. The mathematical model predicts malaria elimination to be possible only when imported infections are treated before entry or eliminated at the source suggesting that a regionally focused strategy appears needed, for achieving malaria elimination in Mpumalanga and South Africa.  相似文献   

19.
Antibodies are multifunctional glycoproteins that are found in blood and tissue fluids, and can protect against malaria by binding and neutralizing malaria parasites and preparing them for destruction by immune cells. Important technical advances mean that it is now possible to synthesize antibodies against important Plasmodium antigens that could be used for therapeutic purposes. These reagents could be designed to act like a drug and kill parasites directly, or could be used in vaccine strategies to protect individuals from infection. In this article, we discuss the possible therapeutic uses of antibodies in the treatment and prevention of malaria.  相似文献   

20.
We have proposed a mathematical model for the transmission of Plasmodium vivax malaria quantitatively, which is adjusted to the infected region, Guadalcanal, in the Solomon Islands. The simulation of a transmission model will be instrumental in planning the malaria control strategy. A characteristic of the life cycle of P. vivax is that a sporozoite injected into the blood stream by a mosquito bite may sometimes stay in a hepatocyte as a hypnozoite. Therefore, we have incorporated a phenomenon of renewed infections caused by a relapse into the transmission model. Also through the simulations we have attempted to evaluate the decline in prevalence caused by the programs of selective mass drug administration (MDA) and vector control such as the distribution of permethrin-treated bednets. The simulations have indicated that the concentrated repetition of MDA at 1-week intervals would reduce the prevalence of vivax malaria swiftly in the beginning and would keep the parasite rate below 1% for a few years but the prevalence would increase thereafter. In contrast, the parasite rate would remain below 1% for a long time if a trial of 1 or 2 times MDA is accompanied with some reduction of the vectorial capacity by the enforcement of vector control. In any case, it is important to beware of relapse cases because even after the execution of MDA it takes a long time to decrease the proportion of hypnozoite carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号