首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protein tyrosine kinase Pyk2 acts as an upstream regulator of mitogen-activated protein (MAP) kinase cascades in response to numerous extracellular signals. The precise molecular mechanisms by which Pyk2 activates distinct MAP kinase pathways are not yet fully understood. In this report, we provide evidence that the protein tyrosine kinase Src and adaptor proteins Grb2, Crk, and p130Cas act as downstream mediators of Pyk2 leading to the activation of extracellular signal-regulated kinase (ERK) and c-Jun amino-terminal kinase (JNK). Pyk2-induced activation of Src is necessary for phosphorylation of Shc and p130Cas and their association with Grb2 and Crk, respectively, and for the activation of ERK and JNK cascades. Expression of a Grb2 mutant with a deletion of the amino-terminal Src homology 3 domain or the carboxyl-terminal tail of Sos strongly reduced Pyk2-induced ERK activation, with no apparent effect on JNK activity. Grb2 with a deleted carboxyl-terminal Src homology 3 domain partially blocked Pyk2-induced ERK and JNK pathways, whereas expression of dominant interfering mutants of p130Cas or Crk specifically inhibited JNK but not ERK activation by Pyk2. Taken together, our data reveal specific pathways that couple Pyk2 with MAP kinases: the Grb2/Sos complex connects Pyk2 to the activation of ERK, whereas adaptor proteins p130Cas and Crk link Pyk2 with the JNK pathway.  相似文献   

2.
The mechanisms underlying the inhibition of bile acid-induced apoptosis by cyclic AMP (cAMP) were studied in 24-h-cultured rat hepatocytes. Taurolithocholate 3-sulfate (TLCS, 100 micromol/l) led to a sustained activation of mitogen activated protein (MAP) kinases (JNK, p38(MAPK), and ERKs), dephosphorylation of protein kinase B (PKB), activation of caspases 3 and 8, and hepatocyte apoptosis. cAMP prevented TLCS-induced apoptosis, shifted the persistent TLCS-induced MAP kinase response to a transient pattern, and prevented PKB dephosphorylation. TLCS-induced CD95 and TRAIL receptor-2 trafficking to the plasma membrane were significantly inhibited. Blockade of protein kinase A (PKA) abolished the inhibitory effect of cAMP on TLCS-induced CD95 membrane targeting, but not TRAIL receptor-2 membrane targeting, PKB and MAP kinase responses. H89, an inhibitor of PKA, had no effect on cAMP-induced inhibition of TLCS-triggered poly(ADP) ribose polymerase (PARP) cleavage and caspase activation, but abolished the cAMP-induced inhibition of TLCS-triggered TUNEL- and Annexin V staining. It is concluded that cAMP inhibits bile acid-induced apoptosis via PKA-dependent and -independent mechanisms.  相似文献   

3.
Paeoniflorin (PF), isolated from paeony root, has been used as a herbal medicine for more than 1,200 years in China, Korea, and Japan for its anti-allergic, anti-inflammatory, and immunoregulatory effects. In this study, we found that PF induces apoptosis in both murine T-lineage cells and human T-cell leukemia Jurkat cells. This apoptosis was mediated through the reduction of mitochondrial membrane potential, activation of caspase, and fragmentation of DNA. Interestingly, PF induced generation of reactive oxygen species (ROS) and a reducing agent, dithiothreitol (DTT), and a ROS scavenger, N-acetyl cysteine (NAC), successfully attenuated the PF-induced apoptosis. Additionally, PF induced the phosphorylation of three mitogen-activated protein (MAP) family kinases, extracellular signal-regulated kinase, c-Jun amino-terminal kinase (JNK), and p38 MAP kinase. Curcumin, an anti-oxidant and JNK inhibitor, inhibited PF-induced apoptosis, suggesting the possible involvement of curcumin-sensitive JNK or other redox-sensitive elements in PF-induced apoptosis. These results partially explain the action mechanism of PF-containing paeony root as a herbal medicine.  相似文献   

4.
5.
A family of mitogen-activated protein (MAP) kinases comprising the extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs), and p38 MAP kinases are involved in proliferation and apoptosis. However, there are some arguments concerning the role of these kinases in Ag-induced B cell apoptosis. Two of the B lymphoma cell lines (CH31 and WEHI-231) susceptible to anti-IgM-induced apoptosis were used as a model. To address these issues, we examined the kinetics of anti-IgM-induced activation of MAP kinases and established cell lines overexpressing a dominant-negative (dn) mutant form of JNK1 (dnJNK1). Anti-IgM induced a sustained JNK1 activation with a peak at 8 h, with a marginal activation of ERK1/ERK2 in CH31 cells. The sustained JNK1 activation was not a secondary event through a caspase activation. The peak point of the JNK1 activation was just before the onset of a decline in mitochondrial membrane potential, which preceded anti-IgM-induced cell death. Following anti-IgM stimulation, dnJNK1 prevented a decline in mitochondrial membrane potential at 24 h, with a prolonged inhibition up to 72 h in WEHI-231, although it did so only partially during a later time period in CH31. The dnJNK1 cells also demonstrated diminished procaspase-3 activation and a decreased rate of apoptosis upon anti-IgM stimulation, with a concomitant increased arrest in G(1) phase, which could be explained by enhanced levels of cyclin-dependent kinase inhibitor p27(Kip1) protein. Thus, anti-IgM-induced JNK activation might be implicated in cell cycle progression as well as in apoptosis regulation, probably involving p27(Kip1) protein.  相似文献   

6.
Garat C  Arend WP 《Cytokine》2003,23(1-2):31-40
Interleukin-1 (IL-1) plays a pivotal role in the pathogenesis of inflammatory bowel disease (IBD). IL-1 action is regulated in part by its naturally occurring inhibitor, the IL-1 receptor antagonist (IL-1Ra). Four splice variants of IL-1Ra gene product have been described, one secreted (sIL-1Ra) and three intracellular (icIL-1Ra1, 2, 3). Although sIL-1Ra and icIL-1Ra1 bind to type I IL-1 receptor with equal affinity, icIL-1Ra1 may carry out unique functions inside cells. The goal of this study was to determine the role of icIL-1Ra1 in regulation of cytokine-induced IL-6 and IL-8 production in Caco-2 intestinal epithelial cells. icIL-1Ra1 inhibited IL-1-induced IL-6 and IL-8 production. IL-1 activated all three mitogen-activated protein (MAP) kinase family members: p38 MAP kinase, extracellular-regulated kinases (ERK), and c-Jun amino-terminal kinases (JNK). Specific inhibitors of each MAP kinase pathway decreased IL-1-induced IL-6 and IL-8 production. Overexpression of icIL-1Ra1 inhibited p38 MAP kinase phosphorylation, but had no effect on ERK and JNK phosphorylation. In addition, icIL-1Ra1 inhibited nuclear translocation of NF-kappaB after IL-1 stimulation. In conclusion, these data indicate that icIL-1Ra1, acting in the cytoplasm of Caco-2 cells, decreased IL-1-induced IL-6 and IL-8 production. This intracellular anti-inflammatory activity of icIL-1Ra1 was mediated through inhibition of p38 MAP kinase and NF-kappaB signal transduction pathways.  相似文献   

7.
Renewed interest in arsenic has been shown recently due to its dual nature of being a potent toxin and a drug for treatment of acute promyelocytic leukemia (APL) because of its ability to trigger caspase activation. Here, we found that sodium arsenite (NaAsO(2)) also triggers the signal for activation of Akt and downstream glycogen synthase 3beta (GSK3beta). Such Akt/GSK3beta activation was abrogated completely by wortmannin, an inhibitor of PI-3 kinase, and greatly by pertussis toxin, a G-protein inhibitor. Arsenite-induced Akt phosphorylation also was inhibited by sequestrating membrane cholesterol with beta cyclodextrin. Reducing reagents/reactive oxygen species (ROS) scavengers reduced arsenite-induced Akt phosphorylation and beta cyclodextrin reduced arsenite-mediated ROS production, suggesting that arsenite-induced G-protein/Akt/GSK3beta pathway is membrane raft dependent and redox linked. We also found that a combination of a low concentration (1 microM) of arsenite and wortmannin triggers the signal for caspase activation, whereas neither of these elements alone did so. These results suggested that selective blockade of the arsenite-provoked PI-3 kinase/Akt pathway can promote the arsenite-triggered pathway for caspase activation, and this may open a new study area for wider applications of arsenic as a drug for treating various kinds of leukemia.  相似文献   

8.
The mechanism of acacetin-induced apoptosis of human breast cancer MCF-7 cells was investigated. Acacetin caused 50% growth inhibition (IC50) of MCF-7 cells at 26.4% 0.7% M over 24 h in the MTT assay. Apoptosis was characterized by DNA fragmentation and an increase of sub-G1 cells and involved activation of caspase-7 and PARP (poly-ADP-ribose polymerase). Maximum caspase 7 activity was observed with 100 microM acacetin for 24 h. Caspase 8 and 9 activation cascades mediated the activation of caspase 7. Acacetin caused a reduction of Bcl-2 expression leading to an increase of the Bax:Bcl-2 ratio. It also caused a loss of mitochondrial membrane potential that induced release of cytochrome c and apoptosis inducing factor (AIF) into the cytoplasm, enhancing ROS generation and subsequently resulting in apoptosis. Pretreatment of cells with N-acetylcysteine (NAC) reduced ROS generation and cell growth inhibition, and pretreatment with NAC or a caspase 8 inhibitor (Z-IETD-FMK) inhibited the acacetin-induced loss of mitochondrial membrane potential and release of cytochrome c and AIF. Stress-activated protein kinase/c-Jun NH4-terminal kinase 1/2 (SAPK/ JNK1/2) and c-Jun were activated by acacetin but extracellular-regulated kinase 1/2 (Erk1/2) nor p38 mitogen-activated protein kinase (MAPK) were not. Our results show that acacetin-induced apoptosis of MCF-7 cells is mediated by caspase activation cascades, ROS generation, mitochondria-mediated cell death signaling and the SAPK/JNK1/2-c-Jun signaling pathway, activated by acacetin-induced ROS generation.  相似文献   

9.
10.
Thy-1 (CD90) crosslinking by monoclonal antibodies (mAb) in the context of costimulation causes the activation of mouse T-lymphocytes; however, the associated signal transduction processes have not been studied in detail. In this study we investigated the role of mitogen-activated protein kinases (MAPKs) in Thy-1-mediated T-lymphocyte activation using mAb-coated polystyrene microspheres to crosslink Thy-1 and costimulatory CD28 on murine T-lymphocytes. Concurrent Thy-1 and CD28 crosslinking induced DNA synthesis by T-lymphocytes, as well as interleukin (IL)-2 and IL-2 receptor (IL-2R) α chain (CD25) expression. Increased phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK, and c-Jun N-terminal protein kinase (JNK) was also observed. Pharmacologic inhibition of ERK1/2 or JNK activation inhibited Thy-1-induced DNA synthesis and IL-2 production by T-lymphocytes. p38 MAPK inhibition also decreased DNA synthesis in Thy-1-stimulated T-lymphocytes; however, IL-2 production was increased in these cells. Inhibition of JNK, but not ERK1/2 or p38 MAPK, caused a marked reduction in Thy-1-induced CD25 expression. In addition, inhibition of p38 MAPK or JNK, but not ERK1/2, impaired the growth of IL-2-dependent CTLL-2 T-lymphocytes but did not substantially affect CD25 expression. Finally, exogenous IL-2 reversed the inhibitory effect of ERK1/2 or JNK inhibition on Thy-1-stimulated DNA synthesis by T-lymphocytes but did not substantially reverse JNK inhibition of CD25 expression. Collectively, these results suggest that during Thy-1-induced T-lymphocyte activation, ERK1/2 and JNK promoted IL-2 production whereas p38 MAPK negatively regulated IL-2 expression. JNK signalling was also required for CD25 expression. IL-2R signalling involved both p38 MAPK and JNK in CTLL-2 cells, whereas p38 MAPK was most important for IL-2R signalling in primary T-lymphocytes. MAPKs are therefore essential signalling intermediates for the Thy-1-driven proliferation of mouse T-lymphocytes.  相似文献   

11.
The role of stress-activated protein kinases (SAPKs), c-Jun NH(2)-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase, in preconditioning (PC) was examined with the use of isolated rat hearts subjected to four cyclic episodes of 5-min ischemia and 10-min reperfusion followed by 30-min ischemia and 2-h reperfusion (I/R). A group of hearts was preperfused with 100 microM curcumin, a c-Jun and JNK1 inhibitor, or 5 microM SB 203580, a p38 MAP kinase inhibitor. Another group of hearts was preperfused with 20 microM anisomycin, a stimulator for both JNK and p38 MAP kinases. I/R increased the protein levels of JNK1, c-Jun, and p38 MAP kinase. PC also enhanced the induction of these kinases, but subsequent I/R-mediated increase was blocked by PC. Curcumin blocked I/R- and PC-mediated increase in JNK1 and c-Jun protein levels, whereas it had no effects on p38 MAP kinase. SB 203580, on the other hand, was equally effective in reducing the p38 MAP kinase activation but exerted no effects on JNK1 and c-Jun induction. I/R-mediated increased myocardial infarction was reduced by any of the following compounds: anisomycin, curcumin, and SB 203580. The cardioprotective effects of PC were abolished by either curcumin or SB 203580. The results demonstrate that PC is mediated by a signal-transduction pathway involving both JNK1 and p38 MAP kinase. Activation of SAPKs, although transient, is obligatory for PC.  相似文献   

12.
13.
The aim of this study was to determine whether Helicobacter pylori activates mitogen-activated protein (MAP) kinases in gastric epithelial cells. Infection of AGS cells with an H. pylori cag+ strain rapidly (5 min) induced a dose-dependent activation of extracellular signal-regulated kinases (ERK), p38, and c-Jun N-terminal kinase (JNK) MAP kinases, as determined by Western blot analysis and in vitro kinase assay. Compared with cag+ strains, cag- clinical isolates were less potent in inducing MAP kinase, particularly JNK and p38, activation. Isogenic inactivation of the picB region of the cag pathogenicity island resulted in a similar loss of JNK and p38 MAP kinase activation. The specific MAP kinase inhibitors, PD98059 (25 microM; MAP kinase kinase (MEK-1) inhibitor) and SB203580 (10 microM; p38 inhibitor), reduced H. pylori-induced IL-8 production in AGS cells by 78 and 82%, respectively (p < 0.01 for each). Both inhibitors together completely blocked IL-8 production (p < 0.001). However, the MAP kinase inhibitors did not prevent H. pylori-induced IkappaBalpha degradation or NF-kappaB activation. Thus, H. pylori rapidly activates ERK, p38, and JNK MAP kinases in gastric epithelial cells; cag+ isolates are more potent than cag- strains in inducing MAP kinase phosphorylation and gene products of the cag pathogenicity island are required for maximal MAP kinase activation. p38 and MEK-1 activity are required for H. pylori-induced IL-8 production, but do not appear to be essential for H. pylori-induced NF-kappaB activation. Since MAP kinases regulate cell proliferation, differentiation, programmed death, stress, and inflammatory responses, activation of gastric epithelial cell MAP kinases by H. pylori cag+ strains may be instrumental in inducing gastroduodenal inflammation, ulceration, and neoplasia.  相似文献   

14.
FTY720 is a novel immunosuppressive drug derived from a metabolite from Isaria sinclairii that is known to induce apoptosis of rat splenic T cells. In this study, we examined the intracellular signaling pathway triggered by FTY720. Treatment of human Jurkat T lymphocytes with FTY720-induced apoptosis characterized by DNA fragmentation. The same treatment induced activation of protein kinases such as c-Jun NH2-terminal kinase (JNK), p38/CSBP (CSAID-binding protein), and a novel 36-kDa myelin basic protein (MBP) kinase, but not extracellular signal-regulated kinase (ERK). Pretreatment of Jurkat cells with DEVD-CHO blocked FTY720-induced DNA fragmentation as well as the activation of p38/CSBP. However, DEVD-CHO treatment failed to inhibit FTY720-induced activation of JNK and the 36-kDa MBP kinase. We have also demonstrated that activation of the ERK signaling pathway completely suppressed the FTY720-induced apoptotic process including activation of caspase 3 and activation of JNK and the 36-kDa MBP kinase. Furthermore, transient expression of constitutively active mitogen-activated protein kinase/ERK kinase (MEK) protected the cells from FTY720-induced cell death. The effect of MEK was canceled by coexpression of a mitogen-activated protein kinase phosphatase, CL100. These results indicate that JNK and p38 pathways are differentially regulated during FTY720-induced apoptosis and that activation of ERK pathway alone is sufficient to cancel the FTY720-induced death signal.  相似文献   

15.
Little is known about the specific signaling roles of Rap2, a Ras family small GTP-binding protein. In a search for novel Rap2-interacting proteins by the yeast two-hybrid system, we isolated isoform 3 of the human mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), a previously described but uncharacterized isoform. Other isoforms of MAP4K4 in humans and mice are known as hematopoietic progenitor kinase (HPK)/germinal center kinase (GCK)-like kinase and Nck-interacting kinase, respectively. MAP4K4 belongs to the STE20 group of protein kinases and regulates c-Jun N-terminal kinase (JNK). MAP4K4 interacted with Rap2 through its C-terminal citron homology domain but did not interact with Rap1 or Ras. Interaction with Rap2 required the intact effector region of Rap2. MAP4K4 interacted preferentially with GTP-bound Rap2 over GDP-bound Rap2 in vitro. In cultured cells, MAP4K4 colocalized with Rap2, while a mutant MAP4K4 lacking the citron homology domain failed to do so. Furthermore, Rap2 enhanced MAP4K4-induced activation of JNK. These results suggest that MAP4K4 is a putative effector of Rap2 mediating the activation of JNK by Rap2.  相似文献   

16.
17.
c-Jun N-terminal kinase (JNK) 2 is a member of the mitogen-activated protein (MAP) kinase group of signaling proteins. MAP kinases share a common sequence insertion called “MAP kinase insert”, which, for ERK2, has been shown to interact with regulatory proteins and, for p38α, has been proposed to be involved in the regulation of catalytic activity. We have determined the crystal structure of human JNK2 complexed with an indazole inhibitor by applying a high-throughput protein engineering and surface-site mutagenesis approach. A novel conformation of the activation loop is observed, which is not compatible with its phosphorylation by upstream kinases. This activation inhibitory conformation of JNK2 is stabilized by the MAP kinase insert that interacts with the activation loop in an induced-fit manner. We therefore suggest that the MAP kinase insert of JNK2 plays a role in the regulation of JNK2 activation, possibly by interacting with intracellular binding partners.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号