首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 5′-untranslated sequence of tobacco mosaic virus RNA – the so called omega leader – is a well-known translational enhancer. The structure of the omega RNA has unusual features. Despite the absence of extensive secondary structure of the Watson–Crick type, the omega RNA possesses a stable compact conformation. The central part of the omega sequence contains many CAA repeats and is flanked by U-rich regions. In this work we synthesized the polyribonucleotides containing modified omega sequences, and studied them using analytical ultracentrifugation and thermal melting techniques. It was demonstrated that changes made in both the central and the 3′-proximal part of the sequence led to a strong destabilization of the omega RNA structure. We conclude that the regular (CAA)n core region and the 3′-proximal AU-rich region of the omega RNA interact with each other and contribute together to the formation of a stable tertiary structure.  相似文献   

2.
The leader (called omega) of tobacco mosaic virus RNA enhances translation in both eukaryotes and prokaryotes. Although little secondary structure is predicted to exist within omega, the primary sequence of the 68 base leader is highly organized. Three copies of an eight base direct repeat and a (CAA)n region represent the two motifs found in the leaders of many TMV strains, and together these comprise 72% of omega. In previous deletion studies, no mutants exhibited loss-of-function, suggesting that functional redundancy exists within omega. We report here that a more comprehensive deletion analysis identified the motifs involved in translational enhancement. In a separate approach, oligonucleotides containing the sequence of each motif were used to construct leaders that varied in the number and configuration of the motifs. beta-Glucuronidase mRNA constructs containing these mutant leaders were synthesized in vitro and their translational efficiency measured in vivo following mRNA delivery to carrot protoplasts via electroporation. A combination of one copy of the 8 base direct repeat and a 25 base (CAA)n region was identified as the core regulatory element, although the (CAA)n motif is more critical. Two copies of the (CAA)n region are sufficient to confer a high level of enhancement and a leader composed of multiple copies of the direct repeat is moderately enhancing. Thus, these two motifs are functionally redundant.  相似文献   

3.
The 5′-untranslated sequence of tobacco mosaic virus RNA — the so-called omega leader — exhibits features of a translational enhancer of homologous and heterologous mRNAs. The absence of guanylic residues, the presence of multiple trinucleotide CAA repeats in its central region, and the low predictable probability of the formation of an extensive secondary structure of the Watson-Crick type were reported as the peculiarities of the primary structure of the omega leader. In this work we performed chemical and enzymatic probing of the secondary structure of the omega leader. The isolated RNA comprising omega leader sequence was subjected to partial modifications with dimethyl sulfate and diethyl pyrocarbonate and partial hydrolyses with RNase A and RNase V1. The sites and the intensities of the modifications or the cleavages were detected and measured by the primer extension inhibition technique. The data obtained have demonstrated that RNase A, which attacks internucleotide bonds at the 3′ side of pyrimidine nucleotides, and diethyl pyrocarbonate, which modifies N7 of adenines not involved in stacking interactions, weakly affected the core region of omega leader sequence enriched with CAA-repeats, this directly indicating the existence of a stable spatial structure. The significant stability of the core region structure to RNase A and diethyl pyrocarbonate was accompanied by its complete resistance against RNase V1, which cleaves a polyribonucleotide chain involved in Watson-Crick double helices and generally all A-form RNA helices, thus being an evidence in favor of a non-Watson-Crick structure. The latter was confirmed by the full susceptibility of all adenines and cytosines of the omega polynucleotide chain to dimethyl sulfate, which exclusively modifies N1 of adenines and N3 of cytosines not involved in Watson-Crick interactions. Thus, our data have confirmed that (1) the regular (CAA)n sequence characteristic of the core region of the omega leader does form stable secondary structure, and (2) the structure formed is not the canonical double helix of the Watson-Crick type.  相似文献   

4.
5.
The regular (CAA)n polyribonucleotide, as well as the omega leader sequence containing (CAA)-rich core, have recently been shown to form cooperatively melted and compact structures. In this report, we propose a structural model for the (CAA)n sequence in which the polyribonucleotide chain is folded upon itself, so that it forms an intramolecular triple helix. The triple helix is stabilized by hydrogen bonding between bases thus forming coplanar triads, and by stacking interactions between the base triads. A distinctive feature of the proposed triple helix is that it does not contain the canonical double-helix elements. The difference from the known triple helices is that Watson-Crick hydrogen bond pairings do not take place in the interactions between the bases within the base triads.  相似文献   

6.
Micro-injection into the oocytes and eggs of Xenopus laevis was used to ascertain the effects of synthetic polyribonucleotides on protein synthesis in living cells. Poly(U) and poly(A) were not translated detectably, nor did they change the rate of endogenous protein synthesis. The same was true of poly(G,U), poly(A,G,U), poly(A,C,G,U), G-U-G-(U)(n), A-(U)(n) and AUG. In contrast, A-U-G-(U)(n) was a potent inhibitor of protein synthesis in the cell. This might be because it is initiated normally but lacks a termination codon, or because it inhibits the translation of other molecules in some way not dependent on its normal initiation. Poly(G,U), poly(A,G,U) and poly(A,C,G,U) inhibited haemoglobin synthesis when they were injected into the oocyte with haemoglobin mRNA. The synthetic polyribonucleotides did not inhibit the translation of the natural mRNA when the two sorts of molecules were injected at different times. It is suggested that the synthetic RNA molecules compete with the natural mRNA for a pre-initiation factor in limited supply.  相似文献   

7.
8.
Mutational analysis of the 5'-untranslated leader sequence (omega) of tobacco mosaic virus (TMV) was carried out to determine those sequences necessary for the translational enhancement associated with omega. Five deletion mutants, a single base substitution, and a 25 base replacement mutant were tested for alterations in omega's ability to enhance expression of beta-glucuronidase (GUS) mRNA in tobacco mesophyll protoplasts and Escherichia coli or chloramphenicol acetyltransferase (CAT) mRNA in Xenopus laevis oocytes. Alteration of an eight base subsequence required for the binding of a second ribosome resulted in the loss of translational enhancement in X. laevis oocytes but not in protoplasts. Substantial increases in enhancement were observed for several of the mutants in E. coli.  相似文献   

9.
Li X  Peng Y  Ren J  Qu X 《Biochemistry》2006,45(45):13543-13550
Several factors can influence charge transport (CT)-mediated DNA, such as sequence, distance, base stacking, base pair mismatch, conformation, tether length, etc. However, the DNA context effect or how flanking sequences influence redox active drugs in the DNA CT reaction and later in DNA enzymatic repair and synthesis is still not well understood. The set of seven DNA molecules in this study have been characterized well for the study of flanking sequence effects. These DNA duplexes are formed from self-complementary strands and contain the common central four-base sequence 5'-A-G-C-T-3', flanked on both sides by either (AT)(n) or (AA)(n) (n = 2, 3, or 4) or AA(AT)(2). UV-vis, fluorescence, UV melting, circular dichroism, and cyclic voltammetry experiments were used to study the flanking sequence effect on CT-mediated DNA by using daunomycin or adriamycin cross-linked with these seven DNA molecules. Our results showed that charge transport was related to the flanking sequence, DNA melting free energy, and ionic strength. For (AA)(n) or (AT)(n) species of the same length, (AA)(n) series were more stable and more efficient CT was observed through the (AA)(n) series. The same trend was observed for (AA)(n)() and (AT)(n) series at different ionic strengths, further supporting the idea that flanking sequence can result in different base stacking and modulate charge transport through these seven DNA molecules.  相似文献   

10.
Melting curves and circular dichroism spectra were measured for a number of DNA dumbbell and linear molecules containing dinucleotide repeat sequences of different lengths. To study effects of different sequences on the melting and spectroscopic properties, six DNA dumbbells whose stems contain the central sequences (AA)(10), (AC)(10), (AG)(10), (AT)(10), (GC)(10), and (GG)(10) were prepared. These represent the minimal set of 10 possible dinucleotide repeats. To study effects of dinucleotide repeat length, dumbbells with the central sequences (AG)(n), n = 5 and 20, were prepared. Control molecules, dumbbells with a random central sequence, (RN)(n), n = 5, 10, and 20, were also prepared. The central sequence of each dumbbell was flanked on both sides by the same 12 base pairs and T(4) end-loops. Melting curves were measured by optical absorbance and differential scanning calorimetry in solvents containing 25, 55, 85, and 115 mM Na(+). CD spectra were collected from 20 to 45 degrees C and [Na(+)] from 25 to 115 mM. The spectral database did not reveal any apparent temperature dependence in the pretransition region. Analysis of the melting thermodynamics evaluated as a function of Na(+) provided a means for quantitatively estimating the counterion release with melting for the different sequences. Results show a very definite sequence dependence, indicating the salt-dependent properties of duplex DNA are also sequence dependent. Linear DNA molecules containing the (AG)(n) and (RN)(n), sequences, n = 5, 10, 20, and 30, were also prepared and studied. The linear DNA molecules had the exact sequences of the dumbbell stems. That is, the central repeat sequence in each linear duplex was flanked on both sides by the same 12-bp sequence. Melting and CD studies were also performed on the linear DNA molecules. Comparison of results obtained for the same sequences in dumbbell and linear molecular environments reveals several interesting features of the interplay between sequence-dependent structural variability, sequence length, and the unconstrained (linear) or constrained (dumbbell) molecular environments.  相似文献   

11.
12.
Rice starch is composed of amylose and amylopectin. Amylose content, an important determinant of rice starch quality, is primarily controlled by the waxy gene, encoding granule-bound starch synthase (GBSS). The starch branching enzyme (SBE) and soluble starch synthase (SSS) play major roles in the synthesis of amylopectin. Microsatellite polymorphisms in the three genes, the wx gene encoding granule-bound starch synthase I, the SBE gene encoding starch branching enzyme I and the SSS gene encoding soluble starch synthase I, were studied for 56 accessions of waxy rice ( Oryza sativa L.). Four (CT)(n) microsatellite alleles, (CT)(16), (CT)(17), (CT)(18) and (CT)(19), at the wx locus were detected in this set of waxy rice, of which (CT)(17) was the most frequent. Three (CT)(n) microsatellite allele classes were found at the SBE locus, (CT)(8) or (CT)(10) together with an insertion sequence of CTCTCGGGCGA, and (CT)(8) alone without the insertion. There were multiple microsatellites clustered at the SSS locus. However, these alleles can also be grouped into three classes, i.e. the allele class SSS-A = (AC)(2) em leader TCC(TC)(11) em leader (TC)(5)C(ACC)(11), the allele class SSS-B = (AC)(3) em leader TCT(TC)(6) em leader (TC)(4)C(ACC)(9), and the allele class SSS-C = (AC)(3) em leader TCT(TC)(6) em leader (TC)(4)C(ACC)(8). The analyses of starch physicochemical properties among different microsatellite genotypes indicated that the waxy rice group with the (CT)(19) allele, the SBE-A allele and the SSS-B allele was quite different from other groups. Nine out of 15 accessions with a high gelatinization temperature (GT) belonged to the wx (CT)(19) group, all of them belonged to the SBE-A group and 13 of them belonged to the SSS-B group. These microsatellites might be useful in marker-assisted breeding for the improvement of rice grain quality.  相似文献   

13.
Tobacco mosaic virus (TMV) RNA with a long 5'-terminal leader sequence, as well as its isolated leader fragment (called omega), can form disome initiation complexes with wheat germ ribosomes. The second ribosome of the disome complex is bound to the leader sequence, upstream of an 80S particle occupying the AUG-containing initiation site [ Filipowicz and Haenni (1979) Proc. Natl Acad. Sci. USA 76, 3111-3115; Konarska et al. (1981) Eur. J. Biochem. 114, 221-227]. In order to identify the parts of omega important for interaction with ribosomes, the 5'-terminally-labelled omega was treated with alkali and the resultant fragments of different lengths were used in binding experiments. A 16-nucleotide-long fragment bearing the AUU sequence at the 3' end is the shortest oligonucleotide capable of forming 80S complexes with wheat germ ribosomes. Full-length (73 nucleotides) omega with AUG at the 3' terminus is the only RNA fragment supporting disome complex formation. Synthetic oligoribonucleotides were prepared for a study of 80S complex assembly at codons other than AUG. Hexadecanucleotide (A) 13A -U-U and, to lesser extent, also (A) 13A -U-C, (A) 13A -U-A and (A) 13A -C-G bind 80S ribosomes. Formation of the (A) 13A -U-U X 80S complex is dependent on the presence of initiator Met- tRNAMerf . Assembly of the 80S particle at the AUU sequence is not an artifact resulting from the terminal position of this triplet. (A) 13A -U-U elongated with over 100 A residues still efficiently binds an 80S ribosome positioned, as established by ribosome protection experiments, at the AUU triplet. The present results support the notion that 80S initiation-like complexes can be formed at sequences containing AUU codons. The possible function of these complexes as intermediates in initiation of translation of some viral RNAs is discussed.  相似文献   

14.
15.
16.
Both the 68-base 5' leader (omega) and the 205-base 3' untranslated region (UTR) of tobacco mosaic virus (TMV) promote efficient translation. A 35-base region within omega is necessary and sufficient for the regulation. Within the 3' UTR, a 52-base region, composed of two RNA pseudoknots, is required for regulation. These pseudoknots are phylogenetically conserved among seven viruses from two different viral groups and one satellite virus. The pseudoknots contained significant conservation at the secondary and tertiary levels and at several positions at the primary sequence level. Mutational analysis of the sequences determined that the primary sequence in several conserved positions, particularly within the third pseudoknot, was essential for function. The higher-order structure of the pseudoknots was also required. Both the leader and the pseudoknot region were specifically recognized by, and competed for, the same proteins in extracts made from carrot cell suspension cells and wheat germ. Binding of the proteins is much stronger to omega than the pseudoknot region. Synergism was observed between the TMV 3' UTR and the cap and to a lesser extent between omega and the 3' UTR. The functional synergism and the protein binding data suggest that the cap, TMV 5' leader, and 3' UTR interact to establish an efficient level of translation.  相似文献   

17.
A trans-spliced leader sequence on actin mRNA in C. elegans   总被引:73,自引:0,他引:73  
M Krause  D Hirsh 《Cell》1987,49(6):753-761
  相似文献   

18.
A computer modeling of thermodynamic properties of a long DNA of N base pairs that includes omega interstrand crosslinks (ICLs), or omega chemical modifications involving one strand (monofunctional adducts, intrastrand crosslinks) has been carried out. It is supposed in our calculation that both types of chemical modifications change the free energy of the helix-coil transition at sites of their location by deltaF. The value deltaF>0 corresponds to stabilization, i.e., to the increase in melting temperature. It is also taken into account that ICLs form additional loops in melted regions and prohibit strand dissociation after full DNA melting. It is shown that the main effect of interstrand crosslinks on the stability of long DNA's is caused by the formation of additional loops in melted regions. This formation increases DNA melting temperature (T(m)) much stronger than replacing omega base pairs of AT type with GC. A prohibition of strand dissociation after crosslinking, which strongly elevates the melting temperature of oligonucleotide duplexes, does not influence melting behavior of long DNA's (N>/=1000 bp). As was demonstrated earlier for the modifications involving one or the other strand, the dependence of the shift of melting temperature deltaT(m) on the relative number of modifications r = omega/(2N) is a linear function for any deltaF, and deltaT(m)(r) identical with 0 for the ideal modifications (deltaF=0). We have shown that deltaT(m)(r) is the same for periodical and random distribution if the absolute value of deltaF is less 2 kcal. The absolute value of deltaT(m)(r) at deltaF>2 kcal and deltaF<-2 kcal is higher for periodical distribution. For interstrand crosslinks, the character of the dependence deltaT(m)(r) is quite different. It is nonlinear, and the shape of the corresponding curve is strongly dependent on deltaF. For "ideal" interstrand crosslinks (deltaF=0), the function deltaT(m)(r) is not zero. It is monotone positive nonlinear, and its slope decreases with r. If r<0.004, then the entropy stabilizing effect of interstrand crosslinking itself exceeds the influence of a distortion of the double helix at sites of their location. The resulting deltaT(m)(r) is positive even in the case of the infinite destabilization at sites of the ICLs (deltaF--> -infinity). In general, stabilizing influence of interstrand crosslinks is almost fully compensated for by local structural distortions caused by them if 0相似文献   

19.
20.
Reduced level of expression of most cell proteins under stress conditions is determined by low efficiency of cap-dependent translation of corresponding mRNAs. The maize gene encoding alcohol dehydrogenase, adh1, is an example of a gene which mRNA is efficiently translated under hypoxia. Using reporter gene assay we showed that the leader sequence of adh1 mRNA, provides efficient translation of reporter gene gfp in Nicotiana benthamiana cells under hypoxia and heat shock. The presence of this leader sequence in 5' UTR of mRNA does not change the level of expression in aerobic conditions, but under hypoxia and heat shock the levels of reporter gfp expression were reduced about 5-10 fold in the absence of leader and remained unaffected in its presence in 5'UTR. We found that this leader sequence does not change the level of mRNA stability and does not exhibit promoter activity. Consequently, leader sequence acts as translational enhancer providing efficient translation of mRNA in plant cells under stress conditions. Introduction of this sequence into standard expression cassettes may be used for development of new systems of expression of target proteins in plants, efficient under stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号