首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although generalist predators catch a great diversity of prey species, foraging theory has mostly been concerned with quantitative aspects and neglected questions about the nutrient quality of prey. Here, we test the hypothesis that the life history of a trap-building predator is affected by both prey availability and by the nutrient quality of prey. Under controlled laboratory conditions, orb-weaving spiders ( Zygiella x-notata ) were raised from hatchlings to maturity on prey of different nutrient quality and in different amounts. Both prey nutrient quality and availability had significant but different effects on many important life history traits, such as instar duration, number of instars used in the development, body weight at maturation and development time. Prey availability was especially important for growth rates whereas prey nutrient quality had the most severe effects on juvenile survivorship and female fecundity. Furthermore, while prey of low quality tended to reduce the number of instars used in the development, prey availability induced sex-specific responses in instar numbers. Thus, both prey nutrient quality and availability may be important factors shaping the evolution of life history traits in generalist predators.  相似文献   

2.
Effects of chronic exposure to a toxic prey in a generalist predator   总被引:2,自引:0,他引:2  
Abstract.  Generalist predators experience large differences in prey quality, and eating toxic prey may affect their fitness even if the toxic prey constitutes only a small fraction of a mixed diet. Feeding and life history parameters were examined in the wolf spider Pardosa prativaga during continuous exposure to the toxic collembolan Folsomia candida . Spiderlings were divided into a control group fed adult Drosophila melanogaster , a group fed only F. candida , and a mixed diet group fed both types of prey. Folsomia candida reduced survival, developmental stage attained and growth rate of all exposed spiders. Spiders chronically exposed to F . candida increased their consumption of D. melanogaster compared to control spiders. Folsomia candida thus inhibited the utilization of the high-quality food and/or increased the respiration rate. The intake of F . candida remained at a constant low level throughout the experiment, indicating that P. prativaga was unable to develop an absolute aversion against this prey. Half of the control group was also given the mixed diet after a large juvenile instar was attained. These spiders were not affected to the same extent as the newly hatched spiderlings, indicating an ontogenetically increased tolerance. Comparison of laboratory-raised and field-caught spiders confirmed that tolerance to F. candida was size-dependent and thus not an induced response. A differential survival in the mixed diet group, based partly on maternal effects, indicated possible genetic variability in the physiological tolerance to F. candida .  相似文献   

3.
Effects of prey density, prey instar, and patch size on the development of the predatory mosquito larva, Toxorhynchites towadensis, were investigated in the laboratory. Survivors of T. towadensis showed different developmental patterns in relation to prey age structure. All predatory larvae in containers with only second instar prey developed into the third instar. However, in several containers with fourth instar prey, mortality of predators was observed. During the third instar, no predatory larva died, but both prey density and prey instar significantly affected the survival of predators during their fourth instar. Large prey size promoted large predator adults, and predatory larvae which grew up in small surface containers responded by developing to large sizes than those in large containers. Larval developmental time of the predators differed in each treatment. During first and second instars, faster predator development was observed in containers with small surface areas and containing young prey individuals. However, when development was enhanced by the presence of old prey individuals, no surface effect was observed. The fastest predator development was observed with prey of mixed instars and high density. This study suggests that a small surface container containing prey of mixed instars and high density is suitable for development of predators.  相似文献   

4.
Numerous studies have found that predators can suppress prey densities and thereby impact important ecosystem processes such as plant productivity and decomposition. However, prey suppression by spiders can be highly variable. Unlike predators that feed on prey within a single energy channel, spiders often consume prey from asynchronous energy channels, such as grazing (live plant) and epigeic (soil surface) channels. Spiders undergo few life cycle changes and thus appear to be ideally suited to link energy channels, but ontogenetic diet shifts in spiders have received little attention. For example, spider use of different food channels may be highly specialized in different life stages and thus a species may be a multichannel omnivore only when we consider all life stages. Using stable isotopes, we investigated whether wolf spider (Pardosa littoralis, henceforth Pardosa) prey consumption is driven by changes in spider size. Small spiders obtained > 80% of their prey from the epigeic channel, whereas larger spiders used grazing and epigeic prey almost equally. Changes in prey consumption were not driven by changes in prey density, but by changes in prey use by different spider size classes. Thus, because the population size structure of Pardosa changes dramatically over the growing season, changes in spider size may have important implications for the strength of trophic cascades. Our research demonstrates that life history can be an important component of predator diet, which may in turn affect community- and ecosystem-level processes.  相似文献   

5.
1. Functional responses of predatory Toxorhynchites moctezuma (Dyar & Knab) larvae feeding on Aedes aegypti (L.) larvae (Diptera: Culicidae) were found to be type II of Holling (1959) and Rogers (1972). 2. Estimates of searching rate were generally higher for later instar predators. The search rate of second instar predators declined as prey instar increased, but fourth instar Tx. moctezuma had the highest search rate for second instar Ae. aegypti. 3. Prey handling times were higher for early instar predators and late instar prey. 4. When presented with mixtures of two instars of Ae. aegypti, second instar Tx. moctezuma showed frequency independent selectivity for the early instars, whereas fourth instar predators showed frequency independent selectivity for the late instars of Ae. aegypti. There was no evidence of frequency dependent predation. Preferences appeared to be transitive. 5. Extended random predator equations, using parameters derived from the functional responses, did not adequately describe the outcome of predation in the prey mixture experiment, even when the possibility of optimal switching behaviour was accounted for.  相似文献   

6.
1. Ontogenetic shifts in predator behaviour can affect the assessment of food‐web structure and the development of predator–prey models. Therefore, it is important to establish if the functional response and interference interactions differ between life‐stages. These hypotheses were tested by (i) comparing the functional response of second, third, fourth and fifth larval instars of Rhyacophila dorsalis, using three stream tanks with one Rhyacophila larva per tank and one of 10 prey densities between 20 and 200 larvae of Chironomus sp.; (ii) using other experiments to assess interference within instars (two to five larvae of the same instar per tank), and between pairs of different instars (one, two or three larvae per instar; total predator densities of two, four or six larvae per tank). 2. The first hypothesis was supported. The number of prey eaten by each instar increased with prey density, the relationship being described by a type II model. The curvilinear response was stronger for fourth and fifth instars than for second and third instars. Mean handling time did not change significantly with prey density, and increased with decreasing instar number from 169 s for fifth instars to 200 s for second instars. Attack rate decreased progressively with decreasing instar number. Handling time varied considerably for each predator–prey encounter, but was normally distributed for each predator instar. Variations in attack rate and handling time were related to differences in activity between instars, fourth and fifth instars being more active and aggressive than second and third instars, and having a higher food intake. 3. The second hypothesis was partially supported. In the interference experiments between larvae of the same instar or different instars, mean handling time did not change significantly with increasing predator density, and attack rate did not change for second and third instars but decreased curvilinearly for fourth and fifth instars. Interference between some instars could not be studied because insufficient second instars were available at the same time as fourth and fifth instars, and most third instars were eaten by fourth and fifth instars in the experiments. Prey capture always decreased with decreasing attack rate. Therefore, interference reduced prey consumption in fourth and fifth instars, but not in second and third instars. The varying feeding responses of different instars should be taken into account when assessing their role in predator–prey relationships in the field.  相似文献   

7.
Abstract. 1. Attack rates and handling times are measured by a series of separate functional response experiments for each instar of Notonecta glauca attacking four size classes of Daphnia magna as prey. The resulting attack rate and handling time surfaces are complex, with maximum attack rates for small predators attacking small prey, and large predators attacking large prey. Adult Notonecta have lower attack rates than the two previous juvenile instars (4 and 5).
2. The literature on attack rates and handling times in other predator—prey interactions that involve a series of different predator and prey size or age classes is reviewed in the context of the Notonecta-Daphnia results. The data suggest that small predator instars will usually compete with large instars for food, unless there is spatial or temporal separation between them.
3. Complex attack rate and handling time surfaces are to be expected wherever a wide range of prey and predator sizes is involved.
4. Size related changes in attack rates and handling times can introduce very complex dynamics into predator-prey interactions.  相似文献   

8.
Nilaparvata lugens St?l, the Brown Planthopper (BPH), is a major pest in rice. The lycosid Pardosa pseudoannulata (B?senberg & Strand) and the linyphiid Atypena formosana (Oi) are the early dominant predators in irrigated rice. Later, predatory bugs, including the mirid Cyrtorhinus lividipennis Reuter, become dominant. In unsprayed rice, BPH numbers normally remain low. While P. pseudoannulata is known to be a key natural enemy of BPH, the contribution to BPH reduction by the smaller A. formosana is less well known. Due to the size difference, A. formosana may also be an intraguild prey of P. pseudoannulata. To investigate predation on BPH by the two spider species alone, together and in combination with C. lividipennis, two cage experiments were conducted, the first with adult spiders, the second with immature/unmated spiders. In the latter, spiders were introduced with a delay to allow a better establishment of C. lividipennis. In both experiments, BPH numbers were lowest in treatments with more than one predator species present. Intermediate BPH reduction was obtained with P. pseudoannulata followed by A. formosana and C. lividipennis. While P. pseudoannulata can prey upon large nymphs and adult BPH, A. formosana favour early instar BPH, leading to a more even control across instars in treatments with both spider species. Pardosa pseudoannulata numbers increased more with A. formosana or A. formosana and C. lividipennis present. In contrast, P. pseudoannulata reduced A. formosana and C. lividipennis numbers. The presence of C. lividipennis apparently lessened intraguild predation on A. formosana and may be an intraguild prey of A. formosana. Competition for prey may have added to the antagonistic interactions found. From a biological control perspective, the presence of both spiders in early rice is an advantage for the biological control of BPH in rice. In early rice, results show that A. formosana is an important predator of BPH and, like C. lividipennis, can complement control by P. pseudoannulata and serve as intraguild prey for the latter species.  相似文献   

9.
Understanding how animals weigh habitat features, exposure to predators and access to resources is important to determining their life history and distribution across the landscape. For example, when predators accumulate in structurally complex habitats, they face an environment with different competitive interactions, foraging opportunities and predatory risks. The wolf spider Pardosa milvina inhabits the soil surface of highly disturbed habitats such as agricultural fields throughout eastern North America. Pardosa displays effective antipredator behavior in the presence of chemical cues produced by a larger coexisting wolf spider, Hogna helluo . We used those cues to simulate predation risk in laboratory and field experiments designed to test the effects of habitat substrate and predation risk on site selection and prey consumption of Pardosa . In general, Pardosa preferred more complex substrates over bare dirt but those preferences were eliminated or reversed when cues from Hogna were present. Feeding trials revealed that substrate alone had few effects on Pardosa prey consumption, which we measured by documenting the change in the abdomen width. Although the presence of Hogna cues reduced prey consumption overall in field feeding trials, the negative effect of predation risk on prey consumption was only observed in grass and bare dirt substrates in the laboratory. We also found that prey capture was negatively affected by habitat complexity for both spider species but that same complexity offered Pardosa protection from predation by Hogna. This study provides insight into how two predator species interact to balance site selection and feeding in order to avoid predation. Shifts in foraging and distributional patterns of predators can have profound implications for their role in the food web.  相似文献   

10.
1. Three predatory chironomid species constituted numerically 8.8% (± 95% CL 2.2) of the macro- and meiobenthic community at the sediment surface and in the hyporheic zone of Oberer Seebach, a gravel stream in Lower Austria. Larvae of Thienemannimyia geijskesi (Goetghebuer) and Nilotanypus dubius (Meigen) occurred in higher densities in sediment depths between 10 and 40 cm, whereas Conchapelopia pallidula (Meigen) achieved higher densities at the sediment surface. The three species completed one generation in a year. 2. A total of ninety-seven prey species and instars were identified by gut analyses, of which forty-one benthic rotifer species constituted 69.5% of individuals and twenty-three chironomid species and their instars, 22.9%. The three tanypod species showed shifts from mainly rotifer species in early instars to chironomids and diverse other meio- and macrofaunal taxa in later instars. Rather than shifting towards larger prey sizes, growing predators expanded their upper size thresholds and continued to include smaller prey species in their diet. The extent to which tanypod instars fed on similar prey size classes declined with increasing larval size. Predation by tanypods amounted to 2.2% (± 95% CL 0.1) of the combined prey densities and prey consumption averaged 1.32 (bootstrap 95% CL 1.26–1.39) individuals per predator individual. 3. Preferences for microhabitat flow differed between predator species and in the prey assemblage. Prey densities and densities of T. geijskesi and C. pallidula were highest in pool areas, whereas N. dubius achieved high densities in riffle sites. 4. Tanypod larvae fed non-selectively among prey types. To test the significance of observed size(instar)-specific spatial and dietary overlap values amongst tanypod species, simulations were generated from random models for pairs of intra- and interspecific associations of individuals and groups of prey and predator species. Groups and individuals of tanypod instars fed near randomly on groups of prey types and a high proportion (P > 0.60) of prey individuals are quasi-randomly chosen by tanypods in those patches. Tanypod instar-pairs did not show a sustained trophic resource partitioning in time, thus reducing the degree of competitive interactions for food in this predator guild. Spatially segregated and non-segregated tanypod instars formed random aggregations independent of each other at different flow microhabitats. 5. Species-rich prey assemblages such as benthic rotifers and larval chironomids increased the probability of non-selective feeding upon a wide spectrum of prey species by tanypods. Prey choice was governed by prey availability and tanypod individuals fed on many species at rather even proportions independent of each other.  相似文献   

11.
Abstract The biological parameters of Macrolophus pygmaeus Rambur after prolonged rearing in the absence of plant materials were compared with those of conventionally plant‐reared predators. When eggs of Ephestia kuehniella Zeller were provided as food, developmental and reproductive fitness of M. pygmaeus reared for over 30 consecutive generations using artificial living and oviposition substrates was similar to that of predators kept on tobacco leaves. Plantless‐reared fifth instars of the predator also had similar predation rates on second instars of the tobacco aphid, Myzus persicae nicotianae Blackman, as their peers maintained on plant materials. In a further experiment, predation on aphid prey by fifth instar M. pygmaeus fed one of two egg yolk‐based artificial diets was compared with that of nymphs fed E. kuehniella eggs. Despite their lower body weights, predators produced on either artificial diet killed similar numbers of prey as their counterparts reared on lepidopteran eggs. Our study indicates that artificial rearing systems may be useful to further rationalize the production of this economically important biological control agent.  相似文献   

12.
1. Interactions between multiple predators can modify prey risk and profoundly alter ecological community dynamics. Further, ontogenic prey size changes are known to mediate prey risk through refuge effects. Understandings of these biotic factors is important for robust quantifications of natural enemy effects on target species, yet their combined influence lacks investigation. 2. Functional responses were used to quantify the predatory impacts of Notonecta glauca (water boatman; Ng) and Gammarus pulex (river shrimp; Gp) towards four different larval instars of Culex pipiens in container-style habitats. Using conspecific pairs of predators, multiple predator effects (MPEs) of both predator species were examined across larval prey sizes, and prey preference tests were applied to examine prey selectivity across predator–prey body size ratios. 3. Both predators were able to feed on C. pipiens across their larval ontogeny; however, Ng consumed significantly more larvae than Gp. Functional responses of Ng were typically Type IIs, whereas Gp trended towards sigmoidal Type IIIs. Predation by pairs of Ng and Gp showed independent MPEs towards first-, third-, and fourth-instar stages (except predation by Gp at higher densities of fourth-instar) stages, whereas, for second-instar stages, Ng showed synergistic MPEs and Gp showed antagonistic MPEs. Both predators preferred late instar mosquitoes (Ng: fourth instar; Gp: third instar). These preferences reflected predator:prey weight–length ratios, showing that relative sizes of predators and prey are important factors in prey selectivity. 4. The results obtained in the present study demonstrate that MPEs, combined with intraspecific prey preferences, may modulate trophic interactions within ecosystems. Therefore, such effects should be increasingly considered to further the understanding of agent efficacies.  相似文献   

13.
Some prey can distinguish between chemical cues from predators fed different diets. Here we document the first evidence of diet-based chemical discrimination of predators in a terrestrial arthropod and measure the survival value of behavioural responses to predator chemical cues. We tested activity level and avoidance behaviour of the wolf spider, Pardosa milvina, to faeces and silk associated with the predatory wolf spider, Hogna helluo, fed either P. milvina or crickets (Acheta domesticus). We then measured survival of Pardosa in the presence of Hogna when placed on blank paper or paper previously occupied by Hogna fed either crickets or Pardosa. Filter paper previously occupied by Hogna from each diet treatment or a blank control were simultaneously presented to adult female Pardosa among four treatment pairs (N=15/treatment): (1) blank paper/blank paper, (2) Hogna fed crickets/blank, (3) Hogna fed Pardosa /blank and (4) Hogna fed Pardosa / Hogna fed crickets. Cues from Hogna fed either crickets or Pardosa elicited significantly less activity relative to blank controls. Cues from Hogna fed Pardosa elicited a significantly greater reduction in activity than Hogna fed crickets. When given a choice, Pardosa initially chose the blank substrate significantly more often than either substrate with Hogna cues. Spiders survived longer in the presence of cues from either Hogna diet treatment relative to blank paper, but there was no significant effect of predator diet on survival. Results suggest diet-based predator cues elicit different levels of activity in Pardosa that reduce predation in the presence of Hogna. Copyright 2001 The Association for the Study of Animal Behaviour.  相似文献   

14.
Abstract.  1. The hypothesis that size-selective predation and species-specific prey behaviours facilitate the coexistence between larvae of invasive Aedes albopictus (Skuse) and U.S.A.-native Ochlerotatus triseriatus (Say) was tested experimentally with the predator Corethrella appendiculata (Grabham).
2. Larval behaviours associated with a higher risk of predation were identified, and prey behavioural responses were tested in either the physical presence of predators or in water containing predation cues. Larvae that thrashed on container bottoms had a higher risk of being captured by fourth instar C. appendiculata than did larvae resting on the water surface. Ochlerotatus triseriatus , but not A. albopictus , adopted low-risk behaviours in response to water-borne cues to predation. Both prey species reduced risky behaviours in the physical presence of the predator, but O. triseriatus showed a stronger response.
3. The vulnerability of 2nd and 3rd instar prey to predation was compared, and behavioural responses were correlated with prey vulnerability. Second instars of both species were more vulnerable to predation by C. appendiculata than were 3rd instars, and the 3rd instar A. albopictus was more vulnerable than O. triseriatus of the same stage. All instars of O. triseriatus showed a similar reduction of risky behaviours in response to the presence of C. appendiculata despite 4th instar prey being relatively invulnerable to size-selective predation.
4. Weaker predator avoidance, coupled with superior competitive ability, of invasive A. albopictus is likely to contribute to its coexistence with O. triseriatus in containers of the south-eastern U.S.A., where C. appendiculata can be abundant.  相似文献   

15.
In nature, food is often variable in composition and availability. As a consequence, predators may need to seek non‐prey food sources. Some predators are known to feed on nectar when food is limited. Nectar and other carbohydrate resources could also be beneficial when prey are more abundant if it helps predators balance protein‐biased diets. We tested if an actively hunting predator, the jumping spider, Phidippus audax, benefited from liquid carbohydrates when prey were not limited. We also tested if the benefit of carbohydrates varied with the nutrient content of prey (i.e., from protein to lipid biased). Spiders were reared on one of six live prey, Drosophila melanogaster, treatments that ranged from high protein to high lipid. Half of the spiders were given access to a 20% sucrose solution. After 2 months, we measured spider mass, cephalothorax width, instar duration, percent body fat, survival, and estimated number of prey eaten. Spiders reared on high‐protein diets with carbohydrates were larger and heavier than spiders on other treatments. Access to carbohydrates also increased percent body fat and survival across prey treatments. Our results suggest that carbohydrates may be a valuable component of spider diets, especially when prey have high protein and low lipid content as is commonly observed in prey in the field. Our results highlight the importance of diet balancing for predators, and that liquid carbohydrates can be an important nutrient to supplement a diet of prey rather than just being an energy supplement during periods of starvation.  相似文献   

16.
Satiated predation, predation rate and prey preference of different weight groups of Rana tigrina (Daud) tadpoles on different larval and pupal stages of Culex fatigans were studied. Irrespective of the prey and predator size, the satiation time remained more or less equal. There exists a mass-dependent predation: Calculated predation rates or predatory constants (Kpr) showed that I instar prey was preyed upon at about equal rate, while other instars and pupa showed an increasing trend with increasing body weight of the predator. The prey preference assessed using the Kpr, revealed that prey size is an important parameter in predation. The R. tigrina tadpole is a more efficient pupal predator than other mosquito predators.  相似文献   

17.
While foraging theory predicts that predatory responses should be determined by the energy content and size of prey, it is becoming increasingly clear that carnivores regulate their intake of specific nutrients. We tested the hypothesis that prey nutrient composition and predator nutritional history affects foraging intensity, consumption, and prey selection by the wolf spider, Pardosa milvina. By altering the rearing environment for fruit flies, Drosophila melanogaster, we produced high quality flies containing more nitrogen and protein and less lipid than low quality fruit flies. In one experiment, we quantified the proportion of flies taken and consumption across a range of densities of either high or low quality flies and, in a second experiment, we determined the prey capture and consumption of spiders that had been maintained on contrasting diets prior to testing. In both cases, the proportion of prey captured declined with increasing prey density, which characterizes the Type II functional response that is typical of wolf spiders. Spiders with similar nutritional histories killed similar numbers of each prey type but consumed more of the low quality prey. Spiders provided high quality prey in the weeks prior to testing killed more prey than those on the low quality diet but there was no effect of prior diet on consumption. In the third experiment, spiders were maintained on contrasting diets for three weeks and then allowed to select from a mixture of high and low quality prey. Interestingly, feeding history affected prey preferences: spiders that had been on a low quality diet showed no preference but those on the high quality diet selected high quality flies from the mixture. Our results suggest that, even when prey size and species identity are controlled, the nutritional experience of the predator as well as the specific content of the prey shapes predator-prey interactions.  相似文献   

18.
1. Diel diet and vertical distribution patterns of the larval instars of Chaoborus edulis were studied in deep water near the central part of Lake Malawi, Africa.
2. First instar larvae contained very little food in their crops and probably depended on reserves from the egg. Second, third and fourth instars fed on zooplankton and were size-selective in their feeding. The mean size of prey eaten by the three instars was significantly different from each other, with larger instars feeding on larger prey. Smallest available prey was selected against and the upper size of prey was probably constrained by larval gape. Nauplii were not found in any of several thousand larvae examined. Phytoplankton did not form a significant part of the diet.
3. There was a progressive and related increase in diel periodicity in feeding and vertical migrations of successive instar stages. Fourth instars migrated particularly large distances. Such migrations removed them from their zooplankton food supply but avoided predators. A refuge from predators is probably found in or near the permanent zero oxygen boundary, at depths greater than 200 m.  相似文献   

19.
A model for two competing prey species and one predator is formulated in which three essential nutrients can limit growth of all populations. Prey take up dissolved nutrients and predators ingest prey, assimilating a portion of ingested nutrients and recycling or respiring the balance. For all species, the nutrient contents of individuals vary and growth is coupled to increasing content of the limiting nutrient. This model was parameterized to describe a flagellate preying on two bacterial species, with carbon (C), nitrogen (N), and phosphorus (P) as nutrients. Parameters were chosen so that the two prey species would stably coexist without predators under some nutrient supply conditions. Using numerical simulations, the long-term outcomes of competition and predation were explored for a gradient of N:P supply ratios, varying C supply, and varying preference of the predator for the two prey. Coexistence and competitive exclusion both occurred under some conditions of nutrient supply and predator preference. As in simpler models of competition and predation these outcomes were largely governed by apparent competition mediated by the predator, and resource competition for nutrients whose effective supply was partly governed by nutrient recycling also mediated by the predator. For relatively small regions of parameter space, more complex outcomes with multiple attractors or three-species limit cycles occurred. The multiple constraints posed by multiple nutrients held the amplitudes of these cycles in check, limiting the influence of complex dynamics on competitive outcomes for the parameter ranges explored.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号