首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A novel mechanism for enhancement of adherence of Staphylococcus aureus to host components is described. A secreted protein, Eap (extracellular adherence protein), was purified from the supernatant of S. aureus Newman and found to be able to bind to at least seven plasma proteins, e.g., fibronectin, the alpha-chain of fibrinogen, and prothrombin, and to the surface of S. aureus. Eap bound much less to cells of Staphylococcus epidermidis, Streptococcus mutans, or Escherichia coli. The protein can form oligomeric forms and is able to cause agglutination of S. aureus. Binding of S. aureus to fibroblasts and epithelial cells was significantly enhanced by addition of Eap, presumably due to its affinity both for plasma proteins on the cells and for the bacteria.  相似文献   

4.
5.
6.
Staphylococcus aureus is a leading cause of bacteraemia, which frequently results in complications such as infective endocarditis, osteomyelitis and exit from the bloodstream to cause metastatic abscesses. Interaction with endothelial cells is critical to these complications and several bacterial proteins have been shown to be involved. The S. aureus extracellular adhesion protein (Eap) has many functions, it binds several host glyco-proteins and has both pro- and anti-inflammatory activity. Unfortunately its role in vivo has not been robustly tested to date, due to difficulties in complementing its activity in mutant strains. We previously found Eap to have pro-inflammatory activity, and here show that purified native Eap triggered TNFα release in whole human blood in a dose-dependent manner. This level of TNFα increased adhesion of S. aureus to endothelial cells 4-fold via a mechanism involving protein A on the bacterial surface and gC1qR/p33 on the endothelial cell surface. The contribution this and other Eap activities play in disease severity during bacteraemia was tested by constructing an isogenic set of strains in which the eap gene was inactivated and complemented by inserting an intact copy elsewhere on the bacterial chromosome. Using a murine bacteraemia model we found that Eap expressing strains cause a more severe infection, demonstrating its role in invasive disease.  相似文献   

7.
Sae is a regulatory locus that activates the production of several exoproteins in Staphylococcus aureus. A 3.4-kb fragment of a S. aureus genomic library, screened with a probe adjacent to the transposon insertion of a sae::Tn551 mutant, was cloned into a bifunctional vector. This fragment was shown to carry the sae locus by restoration of exoprotein production in sae mutants. The sae locus was mapped to the SmaI-D fragment of the staphylococcal chromosome by pulse-field electrophoresis. Sequence analysis of the cloned fragment revealed the presence of two genes, designated saeR and saeS, encoding a response regulator and a histidine protein kinase, respectively, with high homology to other bacterial two-component regulatory systems.  相似文献   

8.
9.
10.
Staphylococcus aureus causes life-threatening pneumonia in hospitals and deadly superinfection during viral influenza. The current study investigated the role of surfactant protein A (SP-A) in opsonization and clearance of S. aureus. Previous studies showed that SP-A mediates phagocytosis via the SP-A receptor 210 (SP-R210). Here, we show that SP-R210 mediates binding and control of SP-A-opsonized S. aureus by macrophages. We determined that SP-A binds S. aureus through the extracellular adhesin Eap. Consequently, SP-A enhanced macrophage uptake of Eap-expressing (Eap(+)) but not Eap-deficient (Eap(-)) S. aureus. In a reciprocal fashion, SP-A failed to enhance uptake of Eap(+) S. aureus in peritoneal Raw264.7 macrophages with a dominant negative mutation (SP-R210(DN)) blocking surface expression of SP-R210. Accordingly, WT mice cleared infection with Eap(+) but succumbed to sublethal infection with Eap- S. aureus. However, SP-R210(DN) cells compensated by increasing non-opsonic phagocytosis of Eap(+) S. aureus via the scavenger receptor scavenger receptor class A (SR-A), while non-opsonic uptake of Eap(-) S. aureus was impaired. Macrophages express two isoforms: SP-R210(L) and SP-R210(S). The results show that WT alveolar macrophages are distinguished by expression of SP-R210(L), whereas SR-A(-/-) alveolar macrophages are deficient in SP-R210(L) expressing only SP-R210(S). Accordingly, SR-A(-/-) mice were highly susceptible to both Eap(+) and Eap(-) S. aureus. The lungs of susceptible mice generated abnormal inflammatory responses that were associated with impaired killing and persistence of S. aureus infection in the lung. In conclusion, alveolar macrophage SP-R210(L) mediates recognition and killing of SP-A-opsonized S. aureus in vivo, coordinating inflammatory responses and resolution of S. aureus pneumonia through interaction with SR-A.  相似文献   

11.
In Staphylococcus aureus, enterotoxin B (SEB) is a superantigen that activates host interleukins and induces adverse responses, ranging from food poisoning to toxic shock. The alternate sigma factor, sigmaB (SigmaB), and agr are two known regulators of S. aureus. Northern blots of strain COL, a sigB-positive strain, showed an inverse correlation between sigmaB expression and seb message. seb expression was also measured as a function of a seb promoter linked to green fluorescent protein (GFP) expression in RN6390, COL, and Newman. In sigB mutants of RN6390, SH1000, COL, and Newman, seb promoter activities, as measured by GFP expression, increased relative to the respective parental types but at differing levels, suggesting alternate strain-specific regulation. In agr mutants of RN6390 and Newman, seb promoter activities were intermediate between the high level seen for the sigB mutant and the low level in the sigB active strains. A sigB agr double mutant of RN6390 displayed lower GFP expression than the agr mutant. These results suggest that while sigmaB and agr regulate seb expression in a divergent manner, other activator(s) of seb that depend on sigB expression may be present in S. aureus.  相似文献   

12.
Staphylococcus aureus is a human pathogen that secretes proteins that contribute to bacterial colonization. Here we describe the extracellular adherence protein (Eap) as a novel anti-inflammatory factor that inhibits host leukocyte recruitment. Due to its direct interactions with the host adhesive proteins intercellular adhesion molecule 1 (ICAM-1), fibrinogen or vitronectin, Eap disrupted beta(2)-integrin and urokinase receptor mediated leukocyte adhesion in vitro. Whereas Eap-expressing S. aureus induced a 2 3-fold lower neutrophil recruitment in bacterial peritonitis in mice as compared with an Eap-negative strain, isolated Eap prevented beta(2)-integrin-dependent neutrophil recruitment in a mouse model of acute thioglycollate-induced peritonitis. Thus, the specific interactions with ICAM-1 and extracellular matrix proteins render Eap a potent anti-inflammatory factor, which may serve as a new therapeutic substance to block leukocyte extravasation in patients with hyperinflammatory pathologies.  相似文献   

13.
Staphylococcus aureus strain Smith 5R produces a two-component pore-forming toxin and forms a rough-surfaced colony with hemolytic haloes on human red blood cell plates (R[+]). Serial subcultures of the strain in broth caused the appearance of gamma-hemolysin negative variants with a smooth colony shape (S[-]), and the S[-] valiant became predominant in culture. The R[+] strain, in which agrA is naturally disrupted by an insertion of IS1181, produced high levels of gamma-hemolysin. In the S[-] variant, expression of both hlg and lukS-F mRNAs was strongly reduced. Nucleotide sequencing of the sae locus revealed that all isolated S[-] variants had spontaneous mutations in the sae locus. Recovery of gamma-hemolysin productivity in S[-] by transformation of the wild-type sae allele strongly suggested that the expression of gamma-hemolysin is positively regulated by sae in an agr-independent manner.  相似文献   

14.
15.
Besides a number of cell wall-anchored adhesins, the majority of Staphylococcus aureus strains produce anchorless, cell wall-associated proteins, such as Eap (extracellular adherence protein). Eap contains four to six tandem repeat (EAP)-domains. Eap mediates diverse biological functions, including adherence and immunomodulation, thus contributing to S. aureus pathogenesis. Eap binding to host macromolecules is unusually promiscuous and includes matrix or matricellular proteins as well as plasma proteins. The structural basis of this promiscuity is poorly understood. Here, we show that in spite of the preferential location of the binding epitopes within triple helical regions in some collagens there is a striking specificity of Eap binding to different collagen types. Collagen I, but not collagen II, is a binding substrate in monomolecular form. However, collagen I is virtually unrecognized by Eap when incorporated into banded fibrils. By contrast, microfibrils containing collagen VI as well as basement membrane-associated networks containing collagen IV, or aggregates containing fibronectin bound Eap as effectively as the monomeric proteins. Therefore, Eap-binding to extracellular matrix ligands is promiscuous at the molecular level but not indiscriminate with respect to supramolecular structures containing the same macromolecules. In addition, Eap bound to banded fibrils after their partial disintegration by matrix-degrading proteinases, including matrix metalloproteinase 1. Therefore, adherence to matrix suprastructures by S. aureus can be supported by inflammatory reactions.  相似文献   

16.
17.
18.
为研究金黄色葡萄球菌(Staphylococcus aureus)凝集因子A(ClfA)免疫原性及免疫保护作用,应用PCR方法扩增出金黄色葡萄球菌Newman、Wood46和HLJ23-1株的clfa基因并进行序列分析,再将Newman株的clfa基因插入到pQE-30载体上,导入宿主菌Escherichia coli M15(pREP4)并诱导表达和纯化ClfA重组蛋白。用纯化的ClfA免疫小鼠,检测血清中抗体和细胞因子水平,首次免疫后35 d时用金黄色葡萄球菌Wood46、HLJ23-1、Newman株对小鼠攻毒。结果发现:clfa基因序列高度保守;ClfA重组蛋白在E.coli M15中获得表达;在首次免疫后35 d时血清抗体效价和细胞因子浓度与对照组相比,均显著升高(P<0.05);攻毒结果为蛋白免疫组小鼠获得一定的免疫保护。由此表明,ClfA重组蛋白有较好的免疫原性和免疫保护力。  相似文献   

19.
The Staphylococcus aureus regulatory saePQRS system controls the expression of numerous virulence factors, including extracellular adherence protein (Eap), which amongst others facilitates invasion of host cells. The saePQRS operon codes for 4 proteins: the histidine kinase SaeS, the response regulator SaeR, the lipoprotein SaeP and the transmembrane protein SaeQ. S. aureus strain Newman has a single amino acid substitution in the transmembrane domain of SaeS (L18P) which results in constitutive kinase activity. SDS was shown to be one of the signals interfering with SaeS activity leading to inhibition of the sae target gene eap in strains with SaeSL but causing activation in strains containing SaeSP. Here, we analyzed the possible involvement of the SaeP protein and saePQ region in SDS-mediated sae/eap expression. We found that SaePQ is not needed for SDS-mediated SaeS signaling. Furthermore, we could show that SaeS activity is closely linked to the expression of Eap and the capacity to invade host cells in a number of clinical isolates. This suggests that SaeS activity might be directly modulated by structurally non-complex environmental signals, as SDS, which possibly altering its kinase/phosphatase activity.  相似文献   

20.
The ability to attach to host ligands is a well-established pathogenic factor in invasive Staphylococcus aureus disease. In addition to the family of adhesive proteins bound to the cell wall via the sortase A (srtA) mechanism, secreted proteins such as the fibrinogen-binding protein Efb, the extracellular adhesion protein Eap, or coagulase have been found to interact with various extracellular host molecules. Here we describe a novel protein, the extracellular matrix protein-binding protein (Emp) initially identified in Western ligand blots as a 40-kDa protein due to its broad-spectrum recognition of fibronectin, fibrinogen, collagen, and vitronectin. Emp is expressed in the stationary growth phase and is closely associated with the cell surface and yet is extractable by sodium dodecyl sulfate. The conferring gene emp (1,023 nucleotides) encodes a signal peptide of 26 amino acids and a mature protein of a calculated molecular mass of 35.5 kDa. Using PCR, emp was demonstrated in all 240 S. aureus isolates of a defined clinical strain collection as well as in 6 S. aureus laboratory strains, whereas it is lacking in all 10 S. epidermidis strains tested. Construction of an allelic replacement mutant (mEmp50) revealed the absence of Emp in mEmp50, a significantly decreased adhesion of mEmp50 to immobilized fibronectin and fibrinogen, and restoration of these characteristics upon complementation of mEmp50. Emp expression was also demonstrable upon heterologous complementation of S. carnosus. rEmp expressed in Escherichia coli interacted with fibronectin, fibrinogen, and vitronectin in surface plasmon resonance experiments at a K(d) of 21 nM, 91 nM, and 122 pM, respectively. In conclusion, the biologic characterization of Emp suggests that it is a member of the group of secreted S. aureus molecules that interact with an extended spectrum of host ligands and thereby contribute to S. aureus pathogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号