首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The purpose of this study was to examine theresponse of heart rate variability (HRV), a noninvasive index ofautonomic control, to head-down neck flexion (HDNF), which engages bothotoliths and neck muscle afferents, and to lateral decubitus neckflexion (LNF), in which neck afferents are activated, whereas otolith afferent input is not. HRV and forearm blood flow wereevaluated in participants lying prone, during HDNF, lying in thelateral decubitus position, and during LNF. Compared with the proneposition, HDNF resulted in lower high-frequency (46.9 ± 7.1 vs.62.3 ± 6.2) and higher low-frequency (53.1 ± 7.1 vs.37.7 ± 6.2) power, expressed as normalized units, along withhigher low-frequency-to-high-frequency ratio (1.65 ± 0.3 vs.0.78 ± 0.2), whereas LNF resulted in no alterations in HRVindexes. Furthermore, there were no significant differences in forearmblood flow or vascular resistance among any of the positions. Our datasuggest that otolith organs influence autonomic modulation of theheart, supporting previous studies reporting that HDNF elicitsincreased sympathetic outflow. These data further suggest that HDNFresults in a parasympathetic withdrawal from the heart in addition tosympathetic activation.

  相似文献   

2.
Nineteen males (aged 45-68 yr) were studied before and after either a period of regular endurance exercise [walk/jog 3-4 days/wk for 30 +/- 1 (SE) wk, n = 11] or unchanged physical activity (38 +/- 2 wk, n = 8) (controls) to determine the influence of physical training on cardiac parasympathetic (vagal) tone and baroreflex control of heart rate (HR) and limb vascular resistance (VR) at rest in middle-aged and older men. Training resulted in a marked increase in maximal O2 uptake (31.6 +/- 1.2 vs. 41.0 +/- 1.8 ml.kg-1.min-1, 2.56 +/- 0.16 vs. 3.20 +/- 0.18 l/min, P less than 0.05) and small (P less than 0.05) reductions in body weight (81.2 +/- 3.5 vs. 78.7 +/- 4.0 kg) and body fat (23.8 +/- 1.3 vs. 20.9 +/- 1.3%). HR at rest was slightly, but consistently, lower after training (63 +/- 2 vs. 58 +/- 1 beats/min, P less than 0.05). In general, HR variability (index of cardiac vagal tone) was greater after training. Chronotropic responsiveness to either brief carotid baroreflex stimulation (neck suction) or inhibition (neck pressure), or to non-specific arterial baroreflex inhibition induced by a hypotensive level of lower body suction, was unchanged after training. In contrast, the magnitude of the reflex increase in forearm VR in response to three levels of lower body suction was markedly attenuated after training (38-59%; P less than 0.05 at -10 and -30 mmHg; P = 0.07 at -20 mmHg). None of these variables or responses was altered over time in the controls. These findings indicate that in healthy, previously sedentary, middle-aged and older men, strenuous and prolonged endurance training 1) elicits large increases in maximal exercise capacity and small reductions in HR at rest, 2) may increase cardiac vagal tone at rest, 3) does not alter arterial baroreflex control of HR, and 4) results in a diminished forearm vasoconstrictor response to reductions in baroreflex sympathoinhibition.  相似文献   

3.
4.
In this study respiratory rates of 3, 4, 6, 8, 10, 12, and 14 breaths per minute were employed to investigate the effects of these rates on heart rate variability (HRV). Data were collected 16 times at each respiratory rate on 3 female volunteers, and 12 times on 2 female volunteers. Although mean heart rates did not differ among these respiratory rates, respiratory-induced trough heart rates at 4 and 6 breaths per minute were significantly lower than those at 14 breaths per minute. Slower respiratory rates usually produced higher amplitudes of HRV than did faster respiratory rates. However, the highest amplitudes were at 4 breaths per minute. HRV amplitude decreased at 3 breaths per minute. The results are interpreted as reflecting the possible effects of the slow rate of acetylcholine metabolism and the effect of negative resonance at 3 cycles per minute.  相似文献   

5.
Frequency estimates of the heart rate variability (HRV) spectrum influenced by external periodic stimuli were studied in healthy subjects and patients with coronary heart disease (CHD). Sensory stimulation by periodic eye opening at a rate of 15, 10, 8, 6, or 5 times per minute, as well as spontaneous and controlled breathing at a rate of 15, 10, 8, 6, or 5 times per minute, was used. It was found that the spectral response to external periodic oscillations was determined by a frequency-dependent phenomenon, the maximal amplitude of heart rate variations being observed in the case of external stimuli at a frequency of 0.1 Hz. A resonance frequency in the 0.1-Hz range may be suggested to exist in the cardiovascular controls. Significant differences in the HRV frequency characteristics between CHD patients and healthy subjects were shown. CHD patients had a characteristic decline in HRV responses to external oscillations; the power of these responses did not depend on the frequency of external stimuli.  相似文献   

6.
7.
目的:观察不同频率迷走神经刺激对蟾蜍离体心脏的心率及心率变异的影响。方法:将蟾蜍心脏和右侧迷走交感干离体后,以不同频率电刺激神经,记录心电图曲线并作心率变异性(HRV)分析。结果:交感神经阻断后,电刺激迷走交感干,心率(HR)显著下降(P0.01),全部正常心动周期的标准差(SDNN)和相邻正常心动周期差值的均方根(RMSSD)显著升高(P0.01),不同频率刺激组之间没有明显差异;与对照组相比,各指标变化较大;给药组0.2Hz时高频(HF)显著升高(P0.01),低频/高频比值(LF/HF)明显降低(P0.05),0.8Hz时HF和LF/HF接近刺激前水平。结论:一定范围内增加刺激频率,迷走神经降低心率的作用增强;没有交感神经调节条件下的迷走神经对心率和心率变异的调节可能存在不同的机制。  相似文献   

8.
By considering three kinds of music and noise, this research investigates the influence of music on the living body by comparing the difference of influence on heart rate variability and comfort when subjects listen to music and are exposed to noise. We used two pieces of classical music, rock music, and noise recorded by a tape recorder. The following conclusions were made from the findings of the research: 1) Hearing classical music results in a small variance of Mayer Wave related Sinus Arrhythmia (MWSA) component and Respiratory Sinus Arrhythmia (RSA) component compared with a body being at rest. This is because the sympathetic nerve is suppressed by the sound of classical music. With rock music and noise, however, the MWSA component increases and the RSA component decreases. 2) From a psychological evaluation, we found that classical music tends to cause comfort and rock music and noise tend to cause discomfort. 3) A correlation was found between the balance of the MWSA component and the RSA component and the psychological evaluation. As the comfort increases, the variance of MWSA decreases; as discomfort increases, the variance of MWSA increases.  相似文献   

9.
The study presents a mathematical model of non-linear dynamics of the heart rate variability (HRV). The model is based on quantitative characteristics of pulse conduction in the heart conducting system: the delays of sinoatrial (SA) and atrioventricular (AV) pulse conduction and refractors periods of the SA and AV nodes. The model predicts heart rate disturbances in fast electric activity of the atria, increase in the delay of the AV conduction, the critical value of atrial period where transition to non-linear dynamics of the heart rate variability starts. The correlation between indexes of HRV and period of stimulation of atria for 1-contour cardiac control model has been demonstrated.  相似文献   

10.
The notion that sedentary behavior is harmful to human health is widespread. Little is known about the short term influence of sedentary behavior on heart rate (HR) and heart rate variability (HRV) circadian rhythms. Therefore the purpose of the present study was to examine the influence of short term sedentary behavior on the circadian rhythms of HR and HRV using cosine periodic regression analysis. Sixteen healthy young students were included in a randomized crossover study. All subjects underwent 24-h ECG Holter monitoring in two different states of physical activity, an active condition (more than 15,000 steps per day) and a sedentary condition (less than 1,000 steps per day). Hourly mean values were calculated for HR and HRV, and then were evaluated using cosine periodic regression analysis. The circadian rhythm parameters, amplitude, mesor, and acrophase for HR and HRV variables were obtained. As a result, the significance of the circadian rhythm was confirmed for all variables in each condition. The measure of fit R2 value was decreased in sedentary condition. The amplitude of the sedentary condition was significantly smaller than that of the active condition with respect to HR (7.94 ± 1.91 bpm vs. 15.4 ± 3.93 bpm, p < 0.001), natural log of the high frequency measurement (lnHF) (0.38 ± 0.21 ms2 vs. 0.80 ± 0.28 ms2, p < 0.001), and low frequency/high frequency ratio (LF/HF) (0.75 ± 0.54 vs. 1.24 ± 0.69, p = 0.008). We found that sedentary behavior not only significantly lowered the amplitude of HR and HRV variables, but also might have led to weakness of the circadian rhythm of the HR and HRV variables.  相似文献   

11.
This study investigated the problem of the influence of 50 Hz magnetic field (MF) on human heart rate variability (HRV). The exposure system was a commercial device for magnetotherapy, generating field of the strength of 500 microT at the center of the coil, 150-200 microT at the position of human subjects' heart and 20-30 microT at the position of subjects' head. The exposure protocols, applied randomly, were either "half hour MF-off/half hour MF-on" or "half hour MF-off/half hour MF-off." The phonocardiographic (PhCG) signal of 15 volunteers were obtained during exposure and used for calculation of time-domain HRV parameters (mean time between heart beats (N-N), standard deviation of time between heart beats (SDNN), and the number of differences of successive beat-to-beat intervals greater than 50 ms, divided by the total number of beat-to-beat intervals (pNN50)) and nonlinear HRV measures (approximate entropy (ApEn), detrended fluctuation scaling exponents). The protocol MF-off/MF-on was applied in nine subjects. Repeated measures ANOVA (RMANOVA) performed for Mf-off/MF-off protocol indicated no statistical difference among four 15 min intervals of HRV data (P value >20% for all parameters except for N-N, where P = 3.7%). RMANOVA followed by the post hoc Tukey test performed for Mf-off/MF-on protocol indicated a statistically significant difference during MF on for N-N (8% increase, P <.1%), SDNN (40% increase, P = 1.1%), and pNN50 (110% increase, P <.1%). The results of the analysis indicate that the changes of these parameters could be associated with the influence of MF.  相似文献   

12.
Recent studies have suggested a genetic component to heart rate (HR) and HR variability (HRV). However, a systematic examination of the genetic contribution to the variation in HR and HRV has not been performed. This study investigated the genetic contribution to HR and HRV using a wide range of inbred and recombinant inbred (RI) mouse strains. Electrocardiogram data were recorded from 30 strains of inbred mice and 29 RI strains. Significant differences in mean HR and total power (TP) HRV were identified between inbred strains and RI strains. Multiple significant differences within the strain sets in mean low-frequency (LF) and high-frequency (HF) power were also found. No statistically significant concordance was found between strain distribution patterns for HR and HRV phenotypes. Genomewide interval mapping identified a significant quantitative trait locus (QTL) for HR [LOD (likelihood of the odds) score = 3.763] on chromosome 6 [peak at 53.69 megabases (Mb); designated HR 1 (Hr1)]. Suggestive QTLs for TP were found on chromosomes 2, 4, 5, 6, and 14. A suggestive QTL for LF was found on chromosome 16; for HF, we found one significant QTL on chromosome 5 (LOD score = 3.107) [peak at 53.56 Mb; designated HRV-high-frequency 1 (Hrvhf1)] and three suggestive QTLs on chromosomes 2, 11 and 15. In conclusion, the results demonstrate a strong genetic component in the regulation of resting HR and HRV evidenced by the significant differences between strains. A lack of correlation between HR and HRV phenotypes in some inbred strains suggests that different sets of genes control the phenotypes. Furthermore, QTLs were found that will provide important insight to the genetic regulation of HR and HRV at rest.  相似文献   

13.

Background:

Heart rate and heart rate variability, markers of cardiac autonomic function, have been linked with cardiovascular disease. We investigated whether heart rate and heart rate variability are associated with functional status in older adults, independent of cardiovascular disease.

Methods:

We obtained data from the Prospective Study of Pravastatin in the Elderly at Risk (PROSPER). A total of 5042 participants were included in the present study, and mean follow-up was 3.2 years. Heart rate and heart rate variability were derived from baseline 10-second electrocardiograms. Heart rate variability was defined as the standard deviation of normal-to-normal RR intervals (SDNN). Functional status in basic (ADL) and instrumental (IADL) activities of daily living was measured using Barthel and Lawton scales, at baseline and during follow-up.

Results:

The mean age of the study population was 75.3 years. At baseline, higher heart rate was associated with worse ADL and IADL, and lower SDNN was related to worse IADL (all p values < 0.05). Participants in the highest tertile of heart rate (range 71–117 beats/min) had a 1.79-fold (95% confidence interval [CI] 1.45–2.22) and 1.35-fold (95% CI 1.12–1.63) higher risk of decline in ADL and IADL, respectively (p for trend < 0.001 and 0.001, respectively). Participants in the lowest tertile of SDNN (range 1.70–13.30 ms) had 1.21-fold (95% CI 1.00–1.46) and 1.25-fold (95% CI 1.05–1.48) higher risk of decline in ADL and IADL, respectively (both p for trends < 0.05). All associations were independent of sex, medications, cardiovascular risk factors and comorbidities.

Interpretation:

Higher resting heart rate and lower heart rate variability were associated with worse functional status and with higher risk of future functional decline in older adults, independent of cardiovascular disease. This study provides insight into the role of cardiac autonomic function in the development of functional decline.Elevated heart rate and reduced heart rate variability — the beat-to-beat variation in heart rate intervals — both reflect an altered balance of the autonomic nervous system tone characterized by increased sympathetic and/or decreased parasympathetic activity.13 Sympathetic overactivity has been linked to a procoagulant state and also to risk factors for atherosclerosis, including metabolic syndrome, obesity and subclinical inflammation.24 Moreover, increased heart rate is related to atherosclerosis, not only as an epiphenomenon of sympathetic overactivity, but also through hemodynamic mechanisms, such as high pulsatile shear stress, which leads to endothelial dysfunction.5Atherosclerosis has been linked to increased risk of functional decline in older people via cardiovascular events.6 As the world population is aging, the burden of functional disability is expected to increase.6 It has been hypothesized that heart rate and heart rate variability are markers of frailty, an increased vulnerability to stressors and functional decline.7 However, the direct link between these 2 parameters and risk of functional decline has not been fully established, and it is uncertain whether this association is independent of cardiovascular comorbidities.In this study, we examined whether heart rate and heart rate variability were cross-sectionally and longitudinally associated with functional status in older adults at high risk of cardiovascular disease, independent of cardiovascular risk factors and comorbidities.  相似文献   

14.
Two different spectral analyses of heart rate (HR) variability (HRV) were performed on seven young male subjects to evaluate the effects of different color temperatures of light exposure (6700 K, 5000 K, 3000 K) before sleep on cardiac vagal activity. In investigating HRV, we used an ordinary fast Fourier transform (FFT) and coarse graining spectral analysis (CGSA), which selectively extracts random fractal components from a given time series. The results showed that suppressions of HR during sleep after 6700 K light exposure were more inhibited than the other two lighting conditions. Increases in high-frequency (HF) components of HRV during sleep were also inhibited by 6700 K pre-sleep lighting. These results indicate that pre-sleep exposure to light of a higher color temperature may inhibit the enhancement of cardiac vagal activity during sleep. Moreover, significant HF alterations were shown in fractal-free HF (not in ordinary HF) components by CGSA. Because the HF component originates from respiratory sinus arrhythmia with periodical fluctuations, CGSA may be an appropriate approach for HRV evaluation during sleep.  相似文献   

15.
16.
心率变异性 (heartratevariability ,HRV)正在被临床广泛用于作为疾病的诊断、治疗和愈后的指标。目前认为 ,在HRV频谱分析图中 ,高频波段 (highfrequency ,HF)与呼吸活动有关 ,由迷走神经单独介导。低频波段 (lowfrequency ,LF)受交感神经和副交感神经活动的双重调节。而极低频波段 (verylowfrequencyVLF)除受自主神经的调节外 ,还受温度、外周血管运动活动以及神经激素的影响。近来有报道在慢性心衰患者中 ,VLF与外周化学感受器的敏感性增加有关。本实验通…  相似文献   

17.
18.
Heart rate variability (HRV) is an important measure of sympathetic and parasympathetic functions of the autonomic nervous system and a key indicator of cardiovascular condition. This paper proposes a novel method to investigate HRV, namely by modelling it as a linear combination of Gaussians. Results show that three Gaussians are enough to describe the stationary statistics of heart variability and to provide a straightforward interpretation of the HRV power spectrum. Comparisons have been made also with synthetic data generated from different physiologically based models showing the plausibility of the Gaussian mixture parameters.  相似文献   

19.
Purpose: In recent years, the measurement of heart rate variability (HRV) has gained ground even outside research settings in everyday clinical and outpatient practice and in health promotion. Methods: Using the search terms “heart rate variability”, “hrv” and “circadian”, a systematic review was carried out in the PubMed database to find original work that analysed the course of HRV parameters over a 24-h period. Results: A total of 26 original studies were found. Almost all the studies detected a circadian rhythm for the HRV parameters analysed. HRV increased during the night in particular and a nighttime peak during the second half of the night was identified. Conclusions: HRV follows a circadian rhythm. But until today, there isn′t any possibility to make quantitative statements about changes over the course of the day for planning short-term measurements. More qualitative studies must be carried in order to close this knowledge gaps.  相似文献   

20.
We investigated the effects of laughing and weeping induced by watching comedy and tragedy videos on mood and autonomic nervous function. Ten healthy female subjects volunteered for the experiment. Chest electrocardiogram and respiration curve were recorded before, after, and during watching a comedy or a tragedy video. We also asked them to fill out profiles of mood states (POMS) to evaluate their mood states while watching videos. Autonomic nervous function was estimated by spectral analysis of heart rate variability (HRV). All subjects more or less laughed and wept while watching comedy and tragedy videos, respectively. Anger-hostility score of the POMS decreased and vigor score increased significantly after watching comedy videos, while depression-dejection score increased significantly after watching tragedy ones. Although both contents tended to increase a low to high frequency component ratio (LF/HF ratio) of HRV, the time course of responses was different. The LF/HF ratio which reflects cardiac sympathovagal balance increased immediately after they started watching comedy videos, and returned to the basal level right after they stopped watching, whereas the LF/HF ratio increased gradually to a lesser extent while watching tragedy videos. In contrast, the high-frequency component which reflects cardiac parasympathetic nerve activity gradually decreased while watching both videos but did not return to the basal level after watching tragedy ones. These results suggest that laughing has strong but transient effects on the autonomic nervous system, while weeping or feeling sad has moderate but sustained effects on it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号