首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the stem bark of Platycelphium voënse (Leguminosae) four new isoflavanones were isolated and characterized as (S)-5,7-dihydroxy-2′,4′-dimethoxy-3′-(3″-methylbut-2″-enyl)-isoflavanone (trivial name platyisoflavanone A), (±)-5,7,2′-trihydroxy-4′-methoxy-3′-(3″-methylbut-2″-enyl)-isoflavanone (platyisoflavanone B), 5,7-dihydroxy-4′-methoxy-2″-(2?-hydroxyisopropyl)-dihydrofurano-[4″,5″:3′,2′]-isoflavanone (platyisoflavanone C) and 5,7,2′,3″-tetrahydroxy-2″,2″-dimethyldihydropyrano-[5″,6″:3′,4′]-isoflavanone (platyisoflavanone D). In addition, the known isoflavanones, sophoraisoflavanone A and glyasperin F; the isoflavone, formononetin; two flavones, kumatakenin and isokaempferide; as well as two triterpenes, betulin and β-amyrin were identified. The structures were elucidated on the basis of spectroscopic evidence. Platyisoflavanone A showed antibacterial activity against Mycobacterium tuberculosis in the microplate alamar blue assay (MABA) with MIC = 23.7 μM, but also showed cytotoxicity (IC50 = 21.1 μM) in the vero cell test.  相似文献   

2.
Bioassay-guided fractionation of an EtOAc-soluble extract of Acanthopanax senticosus (Rupr. & Maxim.) Harms yielded two new diphenyl ethers, 3-[3′-methoxy-4′-(4″-formyl-2″,6″-dimethoxy-phenoxy)-phenyl]-propenal (1) and 3-[3′,5′-dihydroxy-4′-(4″-hydroxymethyl-3″,5″-dimethoxy-phenoxy)-phenyl]-propenal (2), along with eight other known compounds (310). The structures of these new ethers were elucidated with spectroscopic and physico-chemical analyses. All of the isolates were evaluated for their in vitro inhibitory activity against PTP1B, VHR and PP1. The new compounds (1 and 2) inhibited PTP1B with IC50 values ranging from 9.2 ± 1.4 to 12.6 ± 1.2 μM.  相似文献   

3.
Four homoisoflavonoids named portulacanones A−D, identified as 2′-hydroxy- 5,7-dimethoxy-3-benzyl-chroman-4-one, 2′-hydroxy-5,6,7-trimethoxy-3-benzyl-chroman-4-one, 5,2′-dihydroxy-6,7-dimethoxy-3-benzyl-chroman-4-one, and 5,2′-dihydroxy-7-methoxy-3-benzylidene-chroman-4-one, were isolated from aerial parts of the plant Portulaca oleracea along with nine other known metabolites. Their structures were established on the basis of extensive spectroscopic analyses. Portulacanones A−D is the first group of homoisoflavonoids so far reported from the family Portulacaceae. They represent a rare subclass of homoisoflavonoids in nature with a structural feature of a single hydroxyl group substituted at C-2′ rather than at C-4′ in ring B of the skeleton. Three homoisoflavonoids and the known compound 2,2′-dihydroxy-4′,6′-dimethoxychalcone selectively showed in vitro cytotoxic activities towards four human cancer cell lines. Especially 2,2′-dihydroxy-4′,6′-dimethoxychalcone showed cytotoxic activity against cell line SGC-7901 with an IC50 value of 1.6 μg/ml, which was more potent than the reference compound mitomycin C (IC50 13.0 μg/ml).  相似文献   

4.
The cytotoxic activities of sesquilignans, (7S,8S,7′R,8′R)- and (7R,8R,7′S,8′S)-morinol A and (7S,8S,7′S,8′S)- and (7R,8R,7′R,8′R)-morinol B were compared, showing no significant difference between stereoisomers (IC50 = 24–35 μM). As a next stage, the effect of substituents at 7, 7′, and 7″-aromatic ring on the activity was evaluated to find out the higher activity of (7S,8S,7′R,8′R)-7,7′,7″-phenyl derivative 18 (IC50 = 6–7 μM). In the research on the structure–activity relationship of 7″-position of (7S,8S,7′R,8′R)-7,7′,7″-phenyl derivative 18, the most potent compounds were 7,7′,7″-phenyl derivative 18 (IC50 = 6 μM) against HeLa cells. Against HL-60 cells, 7″-(4-nitrophenyl)-7,7′-phenyl derivative 33 and 7″-hexyl-7,7′-phenyl derivative 37 (IC50 = 5 μM) showed highest activity. We discovered the compounds showed four to sevenfold potent activity than that of natural (7S,8S,7′R,8′R)-morinol A. It was also confirmed that the 7′-benzylic hydroxy group have an important role for exhibiting activity, on the other hand, the resonance system of cinnamyl structure is not crucial for the potent activity.  相似文献   

5.
Purification of n-BuOH fraction from 80% ethanol extract of Hypericum thasium Griseb. resulted in the isolation of three new compounds 3′,4,5′-trihydroxy-6-methoxy-2-O-α-l-arabinosylbenzophenone (1), 3′,4,5′,6-tetrahydroxy-2-O-α-l-arabinosylbenzophenone (2), and 3′,4-dihydroxy-5′-methoxy-2-O-α-l-arabinosyl-6-O-β-d-xylosylbenzophenone (3) along with a known flavonoid glycoside quercetin-3-O-α-l-arabinofuranoside (4). The structures of the new compounds were elucidated by 1D and 2D NMR analysis as well as HRESIMS. The isolated compounds (14), as well as quercetin, and kaempferol previously isolated from EtOAc fraction were screened against MAO-A inhibitory activity. When tested against the MAO-A quercetin and kaempferol displayed IC50 values of 19.6, and 17.5 μM, respectively. The IC50 values for MAO-A inhibition by compounds (14) were 310.3, 111.2, 726.0, and 534.1 μM, respectively. Standard inhibitor (clorgyline) exhibited MAO-A inhibition with an IC50 value of 0.5 μM.  相似文献   

6.
A series of 23 3′,4′,5′-trimethoxychalcone analogues was synthesized and their inhibitory effects on nitric oxide (NO) production in LPS/IFN-γ-treated macrophages, and tumor cell proliferation has been investigated. 4-Hydroxy-3,3′,4′,5′-tetramethoxychalcone (7), 3,4-dihydroxy-3′,4′,5′-trimethoxychalcone (11), 3-hydroxy-3′,4,4′,5′-tetramethoxychalcone (14), and 3,3′,4′,5′-tetramethoxychalcone (15) were the most potent growth inhibitory agents on NO production, with an IC50 value of 0.3, 1.5, 1.3 and 0.3 μM, respectively. The tumor cells proliferation assay results revealed that several compounds exhibited potent inhibition activity against different cancer cell lines. The chalcone 15 was the most potent anti-proliferative compound in the series with IC50 values of 1.8 and 2.2 μM toward liver cancer Hep G2 and colon cancer Colon 205 cell lines, respectively. 2,3,3′,4′,5′-Pentamethoxychalcone (1), 3,3′,4,4′,5,5′-hexamethoxychalcone (3), 2,3′,4,4′,5,5′-hexamethoxychalcone (5), 2-hydroxy-3,3′,4′,5′-tetramethoxychalcone (10), 11 and 14 showed significant anti-proliferation actions in Hep G2 and Colon 205 cells with an IC50 values ranging between 10 and 20 μM. Among the tested agents, compound 7 showed selective NO production inhibition (IC50 = 0.3 μM), while has no effect on tumor cell proliferation (IC50 >100 μM). 3,3′,4,4′,5′-Pentamethoxychalcone (2) showed selective anti-proliferation effect in Hep G2 cells, in addition to its potent NO inhibition, however has no such response in Colon 205 cells. In contrast, 3-formyl-3′,4′,5′-trimethoxychalcone (22) showed moderate growth inhibition in Colon 205 cells, while has no such effect on NO production and Hep G2 cells proliferation. These results provide insight into the correlation between some structural properties of 3′,4′,5′-trimethoxychalcones and their in vitro anti-inflammatory and anti-cancer differentiation activity.  相似文献   

7.
Phytochemical investigation of the fresh leaves of Friesodielsia discolor (Craib) D. Das led to the isolation of four new flavonoids, 3′-formyl-2′,4′-dihydroxy-6′-methoxychalcone (1), 8-formyl-7-hydroxy-5-methoxyflavanone (2), 8-formyl-5,7-dihydroxyflavanone (3) and 5,3′-dihydroxy-7-methoxyflavone (6), together with two known compounds, lawinal (4) and tectochrysin (5). The structures of the compounds were elucidated by spectroscopic analysis, mainly 1D and 2D NMR techniques (1H, 13C, COSY, HMQC and HMBC), as well as comparison with literature data. The isolates were tested for antiplasmodial, antimycobacterial and cytotoxic activities. Compounds 1, 2, 5 and 6 exhibited cytotoxicity against human tumor cell lines, KB and MCF-7 with the IC50 values in the range of 3.45–14.82 μg/ml. Compounds 1, 2, and 5 also showed significant antiplasmodial activity with respective IC50 values of 2.75, 2.78 and 2.08 μg/ml.  相似文献   

8.
Chemical investigation of leaves and heartwood of Dalbergia boehmii resulted in the isolation of two new phenolic compounds, designated dalbergestan (1) and dalbergichromone (2), along with eleven known compounds, carpachromene (3), proanthocyanidin A-2 (4); piceatannol (5); biochanin A (6); macckiain (7); homopterocarpin (8); angolensin (9); medicarpin (10); 2′,7-dihydroxy-4′,5′-dimethoxyisoflavone (11); 2′-methoxyformononetin (12); and genistein (13). The structures of the new compounds were elucidated on the basis of extensive spectroscopic analyses including, IR, UV, 1D and 2D – NMR as well as HRMS data. Some of the isolated compounds were evaluated for their in vitro insulin secretion activity on isolated mice islets, leishmanicidal activity against L. major (DESTO) promastigotes and in vitro cytotoxicity on MCF-7 cell lines. All tested compounds were inactive on glucose-stimulated insulin secretion at stimulatory glucose (20.0 mM) from MIN6 cells. Compounds 3 (IC50, 70.0 μg/ml), 6 (IC50, 60.3 μg/ml), 7 (IC50, 86.5 μg/ml) and 13 (IC50, 62.6 μg/ml) exhibited low leishmanicidal activity while compound 12 (IC50, 56.8 μg/ml) displayed a moderate activity. Compounds 3 and 5 were found to be active against MCF-7 at 50 μM with IC50 value 33.2 ± 3.79 μg/ml and 42.64 ± 5.05 μg/ml respectively.  相似文献   

9.
The study presented herein constitutes an extensive investigation of constituents in Hydrastis canadensis L. (Ranunculaceae) leaves. It describes the isolation and identification of two previously unknown compounds, 3,4-dimethoxy-2-(methoxycarbonyl)benzoic acid (1) and 3,5,3′-trihydroxy-7,4′-dimethoxy-6,8-C-dimethyl-flavone (2), along with the known compounds (±)-chilenine (3), (2R)-5,4′-dihydroxy-6-C-methyl-7-methoxy-flavanone (4), 5,4′-dihydroxy-6,8-di-C-methyl-7-methoxy-flavanone (5), noroxyhydrastinine (6), oxyhydrastinine (7) and 4′,5′-dimethoxy-4-methyl-3′-oxo-(1,2,5,6-tetrahydro-4H-1,3-dioxolo-[4′,5′:4,5]-benzo[1,2-e]-1,2-oxazocin)-2-spiro-1′-phtalan (8). Compounds 38 have been reported from other sources, but this is the first report of their presence in H. canadensis extracts. A mass spectrometry based assay was employed to demonstrate bacterial efflux pump inhibitory activity against Staphylococcus aureus for 2, with an IC50 value of 180 ± 6 μM. This activity in addition to that of other bioactive compounds such as flavonoids and alkaloids, may explain the purported efficacy of H. canadensis for treatment of bacterial infections. Finally, this report includes high mass accuracy fragmentation spectra for all compounds investigated herein which were uploaded into the Global Natural Products Social molecular networking library and can be used to facilitate their future identification in H. canadensis or other botanicals.  相似文献   

10.
Two new lignans, named (+)-(7′S, 7″S, 8′R, 8″R)-4, 4′, 4″-trihydroxy-3, 5′, 3″-trimethoxy-7-oxo-8-ene [8-3′, 7′-O-9″, 8′-8″, 9′-O-7″] lignoid (1) and (1S)-4-Hydroxy-3-[2-(4-hydroxy-3-methoxy-phenyl)-1-hydroxymethyl-2-oxo-ethyl]-5-methoxy-benzaldehyde (2), along with five known (37) ones, have been isolated from the 95% ethanol extract of the seeds of Herpetospermum caudigerum Wall. The structures of the new compounds, including the absolute configurations, were elucidated by spectroscopic and CD analysis. Compounds 1, 2, and 7 displayed inhibitory activities on HBsAg secretion with IC50 values of 20.5, 0.34, and 4.89 μM, while 1, 2, and 7 displayed inhibitory activities on HBeAg secretion with IC50 values of 3.54, 4.83 × 10−4, and 8.02 μM, and cytotoxicity on HepG 2.2.15 cells with CC50 values of 12.7, 2.96 × 105, and 11.4 μM, respectively.  相似文献   

11.
Three novel compounds; two polymethoxylated flavonoids, 5,7,4′-trihydroxy-3,8,3′,5′-tetramethoxyflavone (1), 5,7,3′-trihydroxy-3,8,4′,5′-trimethoxyflavone (2), and a clerodane diterpenoid; 8-acetoxyisochiliolide lactone (3) were characterized from the leaf exudates of Microglossa pyrifolia. In addition, three known polymethoxylated flavonoids including; 5,7,4′-trihydroxy-3,8,3′-trimethoxyflavone (4), 5,3′4′-trihydroxy-3,7,8-trimethoxyflavone (5), 5,3′4′-trihydroxy-7-methoxyflavanone (6) and a clerodane diterpenoid; 7,8-epoxyisocholiolide lactone (7) were identified. Their structures were determined on the basis of spectroscopic evidence. All the compounds did not exhibit antiplasmodial and antimicrobial activities at 47.6 μg/mL and were not cytotoxic at 5 μg/mL. Compound 6 exhibited modest antileishmanial activity with IC50 value of 13.13 μg/mL with 5 and 7 showing activities with IC50 values of 31.13 and 38.00 μg/mL, respectively, therefore inactive. The flavonoids (quercetin derivatives, 4 and 5) showed similar antioxidant activities, using 2,2-diphenylpicrylhydrazyl (DPPH) assay, with IC50 values of 6.2 ± 0.3 μg/mL for 4 (17.3 μM) and 5 (17.8 μM) respectively. These activities were comparable to that of the standard quercetin (IC50 value of 6.0 ± 0.2 μg/mL (19.9 μM)), irrespective of methylation of the characteristic hydroxyl groups expected to be responsible for activity and additional substitution at C-8 in ring A of the flavonoid ring. These studies revealed that the presence of an hydroxyl group at C-4′ positions and oxygenation at C-3 in flavone skeleton, appears to be necessary for good antioxidant activities as encountered in compounds 1, 4 and 5. Substantial reduction in antioxidant activity was shown by methoxylation of the 4′-OH as observed in compound 2 with an IC50 value of 8.79 ± 0.3 μg/mL (24.4 μM).  相似文献   

12.
New oxazolinyl derivatives of [17(20)E]-pregna-5,17(20)-diene: 2′-{[(E)-3β-hydroxyandrost-5-en-17-ylidene]methyl}-4′,5′-dihydro-1′,3′-oxazole 1 and 2′-{[(E)-3β-hydroxyandrost-5-en-17-ylidene]methyl}-4′,4′-dimethyl-4′,5′-dihydro-1′,3′-oxazole 2 were evaluated as potential CYP17A1 inhibitors in comparison with 17-(pyridin-3-yl)androsta-5,16-dien-3β-ol 3 (abiraterone). Differential absorption spectra of human recombinant CYP17A1 in the presence of compound 1 (λmax = 422 nm, λmin = 386 nm) and compound 2 (λmax = 416 nm) indicated significant differences in enzyme/inhibitors complexes. CYP17A1 activity was measured using electrochemical methods. Inhibitory activity of compound 1 was comparable with abiraterone 3 (IC50 = 0.9 ± 0.1 μM, and IC50 = 1.3 ± 0.1 μM, for compounds 1 and 3, respectively), while compound 2 was found to be weaker inhibitor (IC50 = 13 ± 1 μM). Docking of aforementioned compounds to CYP17A1 revealed that steroid fragments of compound 1 and abiraterone 3 occupied close positions; oxazoline cycle of compound 1 was coordinated with heme iron similarly to pyridine cycle of abiraterone 3. Configuration of substituents at 17(20) double bond in preferred docked position corresponded to Z-isomers of compounds 1 and 2. Presence of 4′-substituents in oxazoline ring of compound 2 prevents coordination of oxazoline nitrogen with heme iron and worsens its docking score in comparison with compound 1. These data indicate that oxazolinyl derivative of [17(20)E]-pregna-5,17(20)-diene 1 (rather than 4′,4′-dimethyl derivative 2) may be considered as potential CYP17A1 inhibitor and template for development of new compounds affecting growth and proliferation of prostate cancer cells.  相似文献   

13.
Six new compounds including two oleanane-type triterpenoid saponins (1, 2) and four C-glycosyl flavones (36), along with a known saponin (7), three di-C-glycosyl flavones (810) and a glycosyl auronol (11), were isolated from the stem bark of Erythrina abyssinica Lam. The structures of the new compounds, identified as 3-O-[α-l-rhamnopyranosyl-(1  2)-β-d-galactopyranosyl-(1  2)-β-d-glucuronopyranosyl]-22-O-β-d-glucopyranosyl sophoradiol (1), 3-O-[α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranosyl-(1  2)-β-d-glucuronopyranosyl]-22-O-β-d-glucopyranosyl sophoradiol (2), 6-C-β-glucopyranosyl-8-C-β-quinovopyranosyl apigenin (3), 6-C-β-quinovopyranosyl-8-C-β-glucopyranosyl apigenin (4), 8-C-[6″-O-α-l-rhamnopyranosyl-(1‴  6″)]-β-glucopyranosyl 7,4′-dihydroxyflavone (5) and 8-C-[6″-O-β-d-xylopyranosyl-(1‴  6″)]-β-glucopyranosyl 7,4′-dihydroxyflavone (6), were determined by comprehensive spectroscopic analysis, including 1D and 2D NMR techniques, mass spectrometry and acid hydrolysis. These new compounds together with the known saponins 7 were evaluated for their cytotoxic activity against MCF-7 (estrogen dependent) and MDA-MB-231 (estrogen independent) cell lines. The new saponin 2 exhibited the highest cytotoxic activity among tested compounds, exerting a selective inhibitory effect against the proliferation of MCF-7 cells, with lower IC50 value (12.90 μM) than that of the positive control, resveratrol (13.91 μM). Structure–activity relationship of these compounds is also discussed.  相似文献   

14.
All stereoisomers of methoxybutane and fluorobutane type of 1,7-seco-2,7′-cyclolignane were synthesized and cytotoxic activities of these compounds were compared with those of all stereoisomers of butane and butanol type compounds. Both enantiomers of butane type secocyclolignane showed higher cytotoxic activity (IC50 = 16–20 μM) than methoxy type compounds, whereas none was observed for all the stereoisomers of butanol type secocyclolignane, however, (−)-Kadangustin J showed stereospecific cytotoxic activity (IC50 = 47–67 μM). Since (R)-9′-fluoro derivative 23 was most potent (IC50 = 19 μM) among the corresponding fluoro stereoisomers, (R)-9′-alkyl derivatives were synthesized, hydrophobic 9′-heptyl derivative 27 showing highest activity (IC50 = 3.7 μM against HL-60, IC50 = 3.1 μM against HeLa) in this experiment. Apoptosis induction caused by Caspase 3 and 9 for (R)-9′-heptyl derivative 27 was observed in the research on the mechanism. A degradation of DNA into small fragments was also shown by DNA ladder assay.  相似文献   

15.
Three new flavonoids, 6,7-dimethoxy-4′-hydroxy-8-formylflavon (1), 8-formyl-4′,6,7-trimethoxyflavon (2), 4′,7-dihydroxy-8-formyl-6-methoxyflavon (3), together with fifteen known flavonoids (418) were isolated from the leaves of oriental tobacco (a variety of Nicotiana tabacum L). Their structures were determined by means of HRESIMS, extensive 1D and 2D NMR spectroscopic studies and chemical evidences. The cytotoxicity against five human tumor (NB4, A549, SHSY5Y, PC3, and MCF7) cell lines of compounds 13 were also evaluated. The results showed that compounds 1 and 3 showed high cytotoxicity against PC3 and A549 cell lines with IC50 values of 2.6 and 1.6 μM, respectively.  相似文献   

16.
Described herein is design, synthesis, and biological evaluation of novel series of 2-aryl-7-(3′,4′-dialkoxyphenyl)-pyrazolo[1,5-a]pyrimidines acting as inhibitors of type 4 phosphodiesterase (PDE4) which is known as a good target for the treatment of asthma and COPD. For this purpose, structure optimization was conducted with the aid of structure-based drug design using the known X-ray crystallography. Also, biological effects of these compounds on the target enzyme were evaluated by using in vitro assays, leading to the potent and selective PDE-4 inhibitor (IC50 < 10 nM).  相似文献   

17.
Twenty derivatives of 5-aryl-2-(6′-nitrobenzofuran-2′-yl)-1,3,4-oxadiazoles (120) were synthesized and evaluated for their α-glucosidase inhibitory activities. Compounds containing hydroxyl and halogens (16, and 818) were found to be five to seventy folds more active with IC50 values in the range of 12.75 ± 0.10–162.05 ± 1.65 μM, in comparison with the standard drug, acarbose (IC50 = 856.45 ± 5.60 μM). Current study explores the α-glucosidase inhibition of a hybrid class of compounds of oxadiazole and benzofurans. These findings may invite researchers to work in the area of treatment of hyperglycemia. Docking studies showed that most compounds are interacting with important amino acids Glu 276, Asp 214 and Phe 177 through hydrogen bonds and arene-arene interaction.  相似文献   

18.
The aim of this work was to study the antioxidant activity and the protective effect of 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone (DMC), the main compound from the buds of Cleistocalyx operculatus, on human umbilical vein endothelial cells against cytotoxicity induced by H2O2. The antioxidant activities of DMC were measured by ABTS assay, ferric reducing antioxidant power (FRAP) and hydroxyl radical scavenging activity, and protective effects of DMC on human umbilical vein endothelial cells against cytotoxicity induced by H2O2 were tested. DMC was found to have high ABTS radical scavenging activity (176.5 ± 5.2 μmol trolox equivalents/500 μmol DMC) and strong ferric reducing antioxidant power (213.3 ± 5.8 μmol trolox equivalents/500 μmol DMC). In addition, DMC scavenged the hydroxyl radicals, with IC50 values of 243.7 ± 6.3 μM, slightly lower than the reference antioxidant ascorbic acid (ASC). Moreover, DMC could protect the human umbilical vein endothelial cells against H2O2-induced cytotoxicity by decrease intracellular and extracellular ROS levels, reduction in catalase (CAT) activity and increment in malondialdehyde (MDA) level. These results suggested that DMC has the potential to be used in the therapy of oxidative damage.  相似文献   

19.
20.
《Phytochemistry letters》2008,1(4):175-178
A novel isoflavan-4-ol (pumilanol), (rel)-3β-(2′-hydroxy-4′,5′-methylenedioxyphenyl)-6-methoxy-4α,7-dihydroxybenzo-3,4-dihydropyran (1) and two known flavonoids, tephrinone (2) and rotenone (3) together with lupeol and stigmasterol were isolated from the roots of Tephrosia pumila (Fabaceae) from a collection made in Andhra Pradesh, India. The structures of the compounds were determined by MS, 1D and 2D-NMR spectral analysis. Pumilanol (1) exhibited significant antiprotozoal activity against T. b. rhodensiense, T. cruzi and L. donovani with IC50 of 3.7, 3.35 and 17.2 μg/mL, respectively, but displayed high toxicity towards L-6 (IC50 of 17.12 μg/mL) rat skeletal myoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号