首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seasonal variability of nutrients and productivity were examined in Pyramid Lake, a hyposaline, N-deficient, terminal desert lake, during a dry period. River inflow and N-fixation during 1990 were minimal allowing internal nutrient cycling to be more closely studied. Nutrient cycling was strongly affected by seasonal thermal stratification that was typical for a warm monomictic lake. Concentrations of nitrate, phosphate, and silicate in surface waters were highest during winter mixing and decreased rapidly in the spring due to a diatom bloom. Maximum average chlorophyll concentration in surface waters was 2.7 ± 1.2 µg 1–1 and occurred in April while surface nutrients were being depleted. In contrast to chlorophyll, maximum particulate carbon in surface waters occurred in July–August when areal productivity was highest (367–398 mg C m–2 day–1). Concurrent with spring nutrient depletion in surface waters was increasing N-deficiency in the plankton. After the spring bloom dissipated in May, particulate matter (POM) became increasingly N-deficient reaching maximum elemental C : N of > 18 during summer-fall. Profiles of the C : N ratio of POM were nearly constant with depth for individual sampling dates suggesting that the residence time of POM in the water column was short (< 1 month). While surface waters were nutrient depleted during summer stratification, nutrient concentrations of bottom waters progressively increased, presumably through the oxidation of POM sinking to the bottom (103 m). Converting the rate of oxygen depletion in bottom waters to carbon equivalents of POM suggests that 42 % of mean annual phytoplankton production in overlying waters during 1990 was mineralized in bottom waters.  相似文献   

2.
Nutrient enrichment bioassays, in conjunction with sampling and analysis of surface water chemistry, were conducted in freshwater lakes (kettle ponds) of Cape Cod National Seashore (Massachusetts, USA) to ascertain the importance of nitrogen (N) and phosphorus (P) in regulating the growth of periphyton. Arrays of nutrient diffusing substrata (NDS) were suspended 0.5 m below the water surface in a total of 12 ponds in July and August 2005. Algal biomass developing on each NDS after ~3 weeks of exposure in each month was assessed by quantifying chlorophyll a + phaeophyton pigments. In both July and August, strong responses to N + P and N enrichments were observed in the majority of ponds, while P had no stimulatory effect. These responses correspond well with low atomic ratios (1–18) of dissolved inorganic nitrogen (DIN) to total phosphorus (TP) in ambient surface waters. The results suggest that conditions in the kettle ponds develop whereby nitrogen is the primary limiting nutrient to periphyton growth. While this may be a seasonal phenomenon, it has implications for nutrient management in individual ponds and within the larger watershed.  相似文献   

3.
Nutrient export by rivers may cause coastal eutrophication. Some river basins, however, export more nutrients than others. We model the Basin-Wide Nutrient Export (BWNE) Index, defined as nutrient export by rivers as percentage of external nutrient inputs in the basins. We present results for rivers worldwide for the period 1970–2050. The results indicate that nutrient retentions differ largely among basins. They indicate that BWNE increases with nutrient inputs to the land, indicating that the percentage of, for instance, fertilizers exported to sea increases with fertilization rate. We argue that a better understanding of the BWNE Index might help to identify where measures and technologies to reduce nutrient inputs to coastal waters are most effective.  相似文献   

4.
An in vitro nutrient addition bioassay was performed to testthe relative inorganic nitrogen (N) and phosphorus (P) limitationof phytoplankton in a Spanish karst lake (El Tejo) during thelast part of the stratification period, when nutrient limitationis most pronounced. Nutrient deficiency was tested in samplesfrom three different layers of the lake: the epilimnion, metalimnionand oxic hypolimnion. Nitrogen additions, either without orcombined with P, increased phytoplankton growth in all threestrata, compared with controls or P treatments. This showedthat N was the nutrient limiting phytoplankton growth in latesummer–early fall. Since both hypolimnetic diffusion andgroundwater fluxes of N-rich waters into the lake are much reducedduring summer, N becomes the limiting nutrient as stratificationadvances. We suggest that in this Mediterranean area with lowatmospheric deposition of anthropogenic N and in lakes relativelyfree of surface run-off, nutrient supply by atmospheric depositionmight be a key factor in controlling nutrient deficiency forphytoplankton growth.  相似文献   

5.
Hodgkiss  I.J.  Lu  Songhui 《Hydrobiologia》2004,512(1-3):215-229
Eutrophication has been considered to be undoubtedly one of the key factors stimulating phytoplankton growth, since it involves the enrichment of a water mass with both inorganic and organic nutrients supporting plant growth. Nutrient enrichment as a result of anthropogenic activity occurs in estuaries and coastal waters as well as in lakes and freshwater impoundments, and blooms of phytoplankton are one of the effects of such an accelerated process of nutrient enrichment. This paper presents the results of a two-year survey of the nutrients and phytoplankton at 3 stations in Junk Bay, Hong Kong, carried out from 1997 to 1998. The relationships between nitrogen, phosphorus, and their ratio, with phytoplankton abundance have been studied. The results show that the highest nitrogen concentration was in Station 2 which is close to a sewage input, whereas the highest phosphorus concentration was in Station 1 which is close to a landfill area. The mean N:P ratios at the three stations were between 8 and 14. The diatoms were the dominant group during most of the year but it seems that diatoms were more sensitive than dinoflagellates and other algal groups to the increase in nutrients.  相似文献   

6.
北京市北环水系富营养化因子分析   总被引:2,自引:0,他引:2  
以北京市北环水系水体为例,利用聚类分析将研究区分为河流子系统和湖泊子系统.因子分析表明,河流子系统第一主成分富营养元素为总磷(TP)、总氮(TN)和氨氮(NH4-N),第二主成分为温度(T)和溶解氧(DO);湖泊子系统第一主成分为总氮和氨氮,第二主成分为总磷、酸碱度(pH)、透明度(SD)和温度,第三主成分为溶解氧和叶绿素a(Chla),表明研究区的水体富营养化主要由富营养盐负荷引起.结合逐步回归分析方法,建立富营养水平预测回归模型,根据模型自变量选择证明河流子系统富营养化特征为磷限制型,湖泊子系统为氮限制型.从水量和水质上对营养盐浓度负荷变化分析表明,研究区年最小生态环境用水为4872×104m3,1990~1998年,除1998年外,现实的生态环境需水均不能满足需求.随着流域人口的不断增长,生活污水、城市径流和固体废弃物淋溶液中营养物质进入水体,研究区营养盐浓度负荷有随时间不断增长的趋势,针对这种趋势提出了应对措施.  相似文献   

7.
While the ecological importance of bioturbation is well recognized and the prevalence of aquatic foraging by terrestrial ungulates is increasingly appreciated, research linking how terrestrial ungulates function as disturbance mechanisms via bioturbation in freshwater systems is lacking. The purpose of this study was to quantify potential nutrient pulses released from benthic sediments into the water column when moose Alces alces feed on aquatic plants. We also determined if we could experimentally mimic the benthic disturbance and the expected nutrient pulse created when moose feed aquatically. When moose foraged aquatically, significant releases of both total and dissolved phosphorus (P) and nitrogen (N) resulted in the waters that were disturbed in foraging areas compared to adjacent undisturbed waters. Nutrient concentrations for total P and N ranged from 42.5 × and 2.7 × greater in disturbed than undisturbed, respectively. Dissolved P and N were 26.8 × and 1.5 × greater, respectively, in disturbed versus undisturbed waters. Our experimental mimic created increases of total and dissolved P and N that were equivalent to pulses created by moose. This indicates that it is possible to experimentally test by proxy the potential impact of moose bioturbation on other ecosystem processes. This study is the first quantification of moose foraging as a consumer mechanism that influences the release of limiting nutrients in aquatic systems, thereby emphasizing the potential cascading importance for nutrient uptake and productivity of plants and microbes.  相似文献   

8.
Gulis V  Suberkropp K 《Mycologia》2004,96(1):57-65
The concentrations and relative abundances of aquatic hyphomycete conidia in water were followed during a three-year study in two headwater streams at Coweeta Hydrologic Laboratory, North Carolina, using the membrane-filtration technique. After a one-year pretreatment period, one of the streams was enriched continuously with inorganic nutrients (N+P) for two years while the other stream served as the reference. This ecosystem-level nutrient manipulation resulted in concentrations of aquatic hyphomycete conidia in the water of the treated stream that were 4.5-6.9 times higher than the concentrations observed during the pretreatment period and in the reference stream. Nutrient enrichment led to an increase in the number of fungal species detected on each sampling date. Changes in dominance patterns and relative abundances of individual species also were detected after treatment. Nutrient addition stimulates the reproductive activity of aquatic hyphomycetes, their colonization success and fungal-mediated leaf-litter decomposition. Such changes in the activity of the fungal community might affect higher trophic levels in lotic ecosystems.  相似文献   

9.
The Netherlands has to cope with large losses of N and P to groundwater and surface water. Agriculture is the dominant source of these nutrients, particularly with reference to nutrient excretion due to intensive animal husbandry in combination with fertilizer use. The Dutch government has recently launched a stricter eutrophication abatement policy to comply with the EC nitrate directive. The Dutch consensus model for N and P emission to groundwater and surface water (STONE) has been developed to evaluate the environmental benefits of abatement plans. Due to the possibly severe socioeconomic consequences of eutrophication abatement plans, it is of utmost importance that the model is thoroughly validated. Because STONE is applied on a nationwide scale, the model validation has also been carried out on this scale. For this purpose the model outputs were compared with lumped results from monitoring networks in the upper groundwater and in surface waters. About 13,000 recent point source observations of nitrate in the upper groundwater were available, along with several hundreds of observations showing N and P in local surface water systems. Comparison of observations from the different spatial scales available showed the issue of scale to be important. Scale issues will be addressed in the next stages of the validation study.  相似文献   

10.
Eutrophication caused by anthropogenic nutrient inputs is one of the greatest threats to the integrity of freshwater wetlands. The resultant changes in organic carbon cycling and nutrient mineralization may be expressed through increased decomposition rates, which are ultimately dependent on the metabolism of the resident microbial community. Specifically, microbial nutrient acquisition is controlled through the activity of enzymes, which are in turn influenced by local biogeochemical conditions. This study examines enzyme activities along distinct North-South P gradients within four distinct hydrologic units of the Florida Everglades. The results indicate that nutrient enriched sites exhibit lower N and P limitations on microbially constrained C mineralization, in addition to enhanced cellulose decomposition rates. Nutrient loading resulted in decreased microbial mobilization of resources for P mineralization, resulting in greater energetic allocation for C mineralization. Additionally, N appears to become less limiting to C mineralization in the enriched sites within Everglades National Park, the least P enriched area within the Everglades. A simple two component model, incorporating total P and the relationship between the enzymes involved in C and P mineralization accounted for between 46 and 92% of the variability in measured cellulose decomposition rates and thus demonstrates the significant influence that P loading plays in these systems. These results also suggest there is an environmental threshold TP concentration below which changes in enzyme-based resource allocation will not occur.  相似文献   

11.
1. Nutrient concentrations (particularly N and P) determine the extent to which water bodies are or may become eutrophic. Direct determination of nutrient content on a wide scale is labour intensive but the main sources of N and P are well known. This paper describes and tests an export coefficient model for prediction of total N and total P from: (i) land use, stock headage and human population; (ii) the export rates of N and P from these sources; and (iii) the river discharge. Such a model might be used to forecast the effects of changes in land use in the future and to hindcast past water quality to establish comparative or baseline states for the monitoring of change. 2. The model has been calibrated against observed data for 1988 and validated against sets of observed data for a sequence of earlier years in ten British catchments varying from uplands through rolling, fertile lowlands to the flat topography of East Anglia. 3. The model predicted total N and total P concentrations with high precision (> 95% of the variance in observed data explained). It has been used in two forms: the first on a specific catchment basis; the second for a larger natural region which contains the catchment with the assumption that all catchments within that region will be similar. Both models gave similar results with little loss of precision in the latter case. This implies that it will be possible to describe the overall pattern of nutrient export in the UK with only a fraction of the effort needed to carry out the calculations for each individual water body. 4. Comparison between land use, stock headage, population numbers and nutrient export for the ten catchments in the pre-war year of 1931, and for 1970 and 1988 show that there has been a substantial loss of rough grazing to fertilized temporary and permanent grasslands, an increase in the hectarage devoted to arable, consistent increases in the stocking of cattle and sheep and a marked movement of humans to these rural catchments. 5. All of these trends have increased the flows of nutrients with more than a doubling of both total N and total P loads during the period. On average in these rural catchments, stock wastes have been the greatest contributors to both N and P exports, with cultivation the next most important source of N and people of P. Ratios of N to P were high in 1931 and remain little changed so that, in these catchments, phosphorus continues to be the nutrient most likely to control algal crops in standing waters supplied by the rivers studied.  相似文献   

12.
Eutrophication of urban surface waters from excess nitrogen (N) and phosphorus (P) inputs remains a major issue in water quality management. Although much research has focused on understanding loading of nutrients from storm events, there has been little research to understand the contribution of baseflow, the water moving through storm drains between rainfall events. We investigated the relative contributions of baseflow versus stormflow for loading of water and nutrients (various forms of N and P) by the storm drain network in six urban sub-watersheds in St. Paul, MN, USA. Across sites, baseflow made substantial contributions to warm season (May–October) water yields (27–66 % across sites), total N yields (31–68 %), and total P yields (7–32 %). These results show that while P was predominantly delivered by stormflow, N loading was similar between baseflow and stormflow. We found that baseflow was dominated by groundwater inputs, likely caused by interception of shallow groundwater by storm drains, but also that variability in N and P among sites was related in part to the connectivity of the storm drains to upstream lakes and wetlands in some watersheds. The substantial loading by groundwater-dominated baseflow, especially for N, implies that N management may require a broader focus on N source reduction, perhaps through improved land management, in order to prevent contamination of shallow groundwater via infiltration.  相似文献   

13.
Vegetation and soil indicators of nutrient condition were evaluated in 30 wetlands, 10 each in 3 Nutrient Ecoregions (NE) (VI-Corn Belt and Northern Great Plains, VII-Mostly Glaciated Dairy Region, IX-Temperate Forested Plains and Hills) of the Midwestern United States (U.S.) to identify robust indicators for assessment of wetland nutrient enrichment and eutrophication. Nutrient condition was characterized by surface water inorganic N (NH4-N, NO3-N) and P (PO4-P) concentrations measured seasonally for 1 year, plant available and total soil N and P, and aboveground biomass, leaf N and P and species composition of emergent vegetation measured at the end of the growing season. Aboveground biomass, nutrient uptake and species composition were positively related to surface water NH4-N (N) but not to PO4-P or NO3-N. Aboveground biomass and biomass of aggressive species, Typha spp. plus Phalaris arundinacea, increased asymptotically with surface water N whereas leaf P, senesced leaf N and senesced leaf P increased linearly with N. And, species richness declined with surface water N. Soil total P was positively related to surface water PO4-P but it was the only soil indicator related to wetland nutrient condition. Individual regressions for each NE generally were superior to a single regression for all NEs. In NE VI (Corn Belt), few indicators were related to surface water N because of the high degree of anthropogenic disturbance (85% of the landscape is cleared) as compared to NEs VII and IX (24–53% cleared). Of the indicators evaluated, stem height (r2 = 0.42 for all NEs, r2 = 0.56 for NE VII + IX) and percent biomass of aggressive species, Typha spp. plus Phalaris, (r2 = 0.46 for all NEs, r2 = 0.54 for NE VII + IX), were the best predictors of wetland nutrient enrichment. Vegetation-based indicators are a promising tool for assessment of wetland nutrient condition but they may not be effective in NEs where landscape disturbance is intense and widespread.  相似文献   

14.
15.
1. We compared the extracellular enzyme activity (EEA) of sediment microbial assemblages with sediment and water chemistry, gradients in agricultural nutrient loading (derived from principal component analyses), atmospheric deposition and hydrological turnover time in coastal wetlands of the Laurentian Great Lakes. 2. There were distinct increases in nutrient concentrations in the water and in atmospheric N deposition along the gradient from Lake Superior to Lake Ontario, but few differences between lakes in sediment carbon (C), nitrogen (N) or phosphorus (P). Wetland water and sediment chemistry were correlated with the agricultural stress gradient, hydrological turnover time and atmospheric deposition. 3. The N : P ratio of wetland waters and sediments indicated that these coastal wetlands were N‐limited. Nutrient stoichiometry was correlated with the agricultural stress gradient, hydrological turnover time and atmospheric deposition. 4. Extracellular enzyme activity was correlated with wetland sediment and water chemistry and stoichiometry, atmospheric N deposition, the agricultural stress gradient and the hydrological turnover time. The ratios of glycosidases to peptidases and phosphatases yielded estimates of nutrient limitation that agreed with those based solely on nutrient chemistry. 5. This study, the first to link microbial enzyme activities to regional‐scale anthropogenic stressors, suggests that quantities and ratios of microbial enzymes are directly related to the concentrations and ratios of limiting nutrients, and may be sensitive indicators of nutrient dynamics in wetland ecosystems, but further work is needed to elucidate these relationships.  相似文献   

16.
Eutrophication of the nature is one of the most relevant problems for the human society today. In comparison to terrestrial and limnological ecosystems, however, the marine environment is affected with some exceptions of coastal waters in a minor degree. On the basis of data from 1976–1988 trend analysis for chlorophyll, primary production, zooplankton biomass and water transparency have been carried out for the Mecklenburg Bight and different areas of the Baltic proper. As expected from the longterm increase in the nutrient levels, also for some pelagic biological variables increasing trends could be observed. At least for chlorophyll they are significant in the 95% probability level for all investigated areas. Primary production shows also an increase, however, not significant for each subarea. For zooplankton nearly no changes could be observed. All data reflect a high interannual variability, which can partly be explained by meteorological and oceanological conditions. The results are discussed from an ecological point of view. The increase in phytoplankton variables is considered to be at least partly related to the eutrophication of the Baltic.  相似文献   

17.
As nutrient diffusing substrates age, the availability of nutrients to periphyton may decline with time either because of diffusion or dilution of nutrients into the water column or because of the effects of grazing by herbivores. Typically, large amounts of nutrients are added to nutrient diffusing substrates (NDS) to insure continuous enrichment throughout experimental periods of 2 to 8 weeks. This study examined the release of phosphates and nitrates from NDS exposed to three different current velocities (0.07 m s–1, 0.11 m s–1, 0.20 m s–1) in recirculating laboratory flumes. Replicated agar samples from four treatments (control, nitrate (N), phosphate (P), and N+P) were sampled throughout 32 days (day 1, 2, 3, 6, 12, 18, 24, 32). Increasing concentrations of agar were required to solidify the P and N+P treatments.Nutrient release rates from NDS were independent of agar concentrations (with the exception of [PO4] in the medium velocity flume). Nutrient concentrations in the agar of spiked samples declined substantially within a week when exposed to flowing water. Nitrates were retained in agar to a greater extent than phosphates particularly when NDS were exposed to low or medium flows. Although floods physically remove or abrade periphyton in natural streams, findings from this laboratory study suggest that ambient flows deplete the availability of nutrient concentrations to potential periphyton colonizers within the first week of incubation. Because of the rapid decline of nutrients from NDS, short incubation periods in natural running waters seem warranted.  相似文献   

18.
Animals transform and translocate nutrients at ecologically relevant rates, contributing to eutrophication in aquatic ecosystems by mobilizing otherwise unavailable nutrients. Yet we know little about how animal-mediated nutrient cycling compares with external abiotic nutrient sources over long periods (years–decades) and at multiple timescales. To address this, we conducted a 19-year study in a eutrophic reservoir examining nitrogen (N) and phosphorus (P) inputs from watershed streams versus excretion by an abundant fish (gizzard shad, Dorosoma cepedianum) at weekly, monthly and seasonal timescales. Over the entire time period, watershed N and P loading was 33- and 3-fold greater than fish N and P excretion, respectively. However, fish N excretion exceeded watershed nutrient loading in 36% of weeks and 43% of months, and fish P excretion in 68% of weeks and 58% of months during the growing season. Fish excretion had lower temporal variability in both supply rate and N:P ratio than watershed loading. Fish excretion also supplied nutrients at a much lower molar N:P ratio than the watershed (mean of daily N:P supply ratios were 15 and 723, respectively). In eutrophic lakes with high fish biomass, fish excretion can strongly influence algal biomass and community composition. Eutrophication management efforts should consider removal of benthivorous fish, like gizzard shad, in addition to other watershed management practices to improve water quality. Future climate change will modulate the interplay between fish- and watershed-mediated nutrient dynamics by altering the geographic distribution of detritivorous fish and the frequency and severity of storm and drought events.  相似文献   

19.
Rivers export nutrients to coastal waters. Excess nutrient export may result in harmful algal blooms and hypoxia, affecting biodiversity, fisheries, and recreation. The purpose of this study is to quantify for European rivers (1) the extent to which N and P loads exceed levels that minimize the risk of harmful algal blooms and (2) the relative shares of sources of N and P in rivers. This may help to identify effective management strategies to reduce coastal eutrophication. We focus on 48 rivers in 27 countries of the European Union (EU27). We used the Global Nutrient Export from Watersheds (NEWS) model to analyze nutrient export by rivers and the associated potentials for coastal eutrophication as reflected by Indicator for Coastal Eutrophication Potential (ICEP). In 2000, 38 of the 48 EU rivers indicated in our study had an ICEP > 0, indicating a relatively high potential for harmful algal blooms. These 38 rivers cover 60% of EU27 land area. Between 2000 and 2050 nutrient export by European rivers is projected to decrease. However, by 2050 still 34 EU rivers, covering 48% of the land area, have an ICEP > 0. This indicates that in these scenarios little progress is made in terms of environmental improvement. About one-third of the rivers with ICEP > 0 are N limited, and about two-thirds P limited. In N-limited rivers reducing N loads is a more effective way to reduce the risk for coastal eutrophication than reducing P, and vice versa. For N-limited rivers agriculture or sewage are the dominant sources of nutrients in river water. In P-limited rivers, sewage is found to be the dominant source of P, except for rivers draining into the Atlantic Ocean, where agriculture can also be dominant. A basin-specific approach is needed to effectively reduce N and P loads.  相似文献   

20.
Understanding nutrient uptake and retention in streams remains an important challenge for lotic scientists. In this study a series of pulse and continuous releases of dissolved nutrients were made to shaded and unshaded (reference) reaches of a small lowland stream to determine whether suppression of macrophyte growth by riparian shade impaired nutrient retention. The nutrients were dissolved reactive phosphorus (DRP), total ammoniacal nitrogen (NH4–N) and nitrate nitrogen (NO3–N). Nutrient reductions ranged from 100% of DRP when stream water was anoxic, to 5–10% for NH4–N and NO3–N in the reference reach. Nutrient removals were affected by travel times in each reach. Percentage removals of NH4–N (46 ± 10) and NO3–N (52 ± 14) were higher in the shaded reach than in the swifter moving reference reach (15 ± 8 and 16 ± 10, respectively). DRP (%) removals were 75± 7 and 57 ± 12 for the shaded and reference reaches, respectively. The presence of emergent marginal macrophytes (Persicaria hydropiper) increased stream velocity in the reference reach by reducing the effective channel cross-section area. Shading reduced plant biomass, increased the channel cross-section and lowered velocity in the experimental reach, effecting dramatic reductions in nutrient concentrations over short distances. The opposite effect is more typical for larger, swifter streams having dense stands of submerged macrophytes, where lowering channel plant biomass will cause increased velocities and lower relative nutrient losses. Riparian shade does not necessarily impair nutrient uptake from small streams. Where invasive marginal species such as P. hydropiper dominate headwater streams shade may be beneficial to the protection of downstream waters from eutrophication. Where reduction of nutrient fluxes from small streams is a key objective for protection of downstream waters, active management of streams should seek to increase travel times, allowing greater potential for nutrient uptake. This will need to be weighed against the need for effective drainage in pastoral areas where reduced travel times are usually sought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号