首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Uracil‐DNA glycosylases (UDGs) are evolutionarily conserved DNA repair enzymes that initiate the base excision repair pathway and remove uracil from DNA. The UDG superfamily is classified into six families based on their substrate specificity. This review focuses on the family I enzymes since these are the most extensively studied members of the superfamily. The structural basis for substrate specificity and base recognition as well as for DNA binding, nucleotide flipping and catalytic mechanism is discussed in detail. Other topics include the mechanism of lesion search and molecular mimicry through interaction with uracil‐DNA glycosylase inhibitors. The latest studies and findings detailing structure and function in the UDG superfamily are presented.  相似文献   

2.
DNA glycosylases play a major role in the repair of deaminated DNA damage. Previous investigations identified five families within the uracil-DNA glycosylase (UDG) superfamily. All enzymes within the superfamily studied thus far exhibit uracil-DNA glycosylase activity. Here we identify a new class of DNA glycosylases in the UDG superfamily that lacks UDG activity. Instead, these enzymes act as hypoxanthine-DNA glycosylases in vitro and in vivo. Molecular modeling and structure-guided mutational analysis allowed us to identify a unique catalytic center in this class of DNA glycosylases. Based on unprecedented biochemical properties and phylogenetic analysis, we propose this new class of DNA repair glycosylases that exists in bacteria, archaea, and eukaryotes as family 6 and designate it as the hypoxanthine-DNA glycosylase family. This study demonstrates the structural evolvability that underlies substrate specificity and catalytic flexibility in the evolution of enzymatic function.  相似文献   

3.
The repair of T:G mismatches in DNA is key for maintaining bacterial restriction/modification systems and gene silencing in higher eukaryotes. T:G mismatch repair can be initiated by a specific mismatch glycosylase (MIG) that is homologous to the helix-hairpin-helix (HhH) DNA repair enzymes. Here, we present a 2.0 A resolution crystal structure and complementary mutagenesis results for this thermophilic HhH MIG enzyme. The results suggest that MIG distorts the target thymine nucleotide by twisting the thymine base approximately 90 degrees away from its normal anti position within DNA. We propose that functionally significant differences exist in DNA repair enzyme extrahelical nucleotide binding and catalysis that are characteristic of whether the target base is damaged or is a normal base within a mispair. These results explain why pure HhH DNA glycosylases and combined glycosylase/AP lyases cannot be interconverted by simply altering their functional group chemistry, and how broad-specificity DNA glycosylase enzymes may weaken the glycosylic linkage to allow a variety of damaged DNA bases to be excised.  相似文献   

4.
Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) and human 8-oxoguanine-DNA glycosylase (hOGG1) are base excision repair enzymes involved in the 8-oxoguanine (oxoG) repair pathway. Specific contacts between these enzymes and DNA phosphate groups play a significant role in DNA-protein interactions. To reveal the phosphates crucial for lesion excision by Fpg and hOGG1, modified DNA duplexes containing pyrophosphate and OEt-substituted pyrophosphate internucleotide (SPI) groups near the oxoG were tested as substrate analogues for both proteins. We have shown that Fpg and hOGG1 recognize and specifically bind the DNA duplexes tested. We have found that both enzymes were not able to excise the oxoG residue from DNA containing modified phosphates immediately 3' to the 8-oxoguanosine (oxodG) and one nucleotide 3' away from it. In contrast, they efficiently incised DNA duplexes bearing the same phosphate modifications 5' to the oxodG and two nucleotides 3' away from the lesion. The effect of these phosphate modifications on the substrate properties of oxoG-containing DNA duplexes is discussed. Non-cleavable oxoG-containing DNA duplexes bearing pyrophosphate or SPI groups immediately 3' to the oxodG or one nucleotide 3' away from it are specific inhibitors for both 8-oxoguanine-DNA glycosylases and can be used for structural studies of complexes comprising a wild-type enzymes bound to oxoG-containing DNA.  相似文献   

5.
Herpes simplex virus-1 (HSV-1) is a large dsDNA virus that encodes its own DNA replication machinery and other enzymes involved in DNA transactions. We recently reported that the HSV-1 DNA polymerase catalytic subunit (UL30) exhibits apurinic/apyrimidinic and 5′-deoxyribose phosphate lyase activities. Moreover, UL30, in conjunction with the viral uracil DNA glycosylase (UL2), cellular apurinic/apyrimidinic endonuclease, and DNA ligase IIIα-XRCC1, performs uracil-initiated base excision repair. Base excision repair is required to maintain genome stability as a means to counter the accumulation of unusual bases and to protect from the loss of DNA bases. Here we show that the HSV-1 UL2 associates with the viral replisome. We identified UL2 as a protein that co-purifies with the DNA polymerase through numerous chromatographic steps, an interaction that was verified by co-immunoprecipitation and direct binding studies. The interaction between UL2 and the DNA polymerase is mediated through the UL30 subunit. Moreover, UL2 co-localizes with UL30 to nuclear viral prereplicative sites. The functional consequence of this interaction is that replication of uracil-containing templates stalls at positions −1 and −2 relative to the template uracil because of the fact that these are converted into non-instructional abasic sites. These findings support the existence of a viral repair complex that may be capable of replication-coupled base excision repair and further highlight the role of DNA repair in the maintenance of the HSV-1 genome.  相似文献   

6.
Helicobacter pylori is a common human pathogen and its infection is believed to contribute to gastric cancer. Impaired DNA repair may fuel up cancer transformation by the accumulation of mutation and increased susceptibility to exogenous carcinogens. To evaluate the role of infection of H. pylori in DNA damage and repair we determined: (1) the level of endogenous basal, oxidative and alkylative DNA damage, and (2) the efficacy of removal of DNA damage induced by hydrogen peroxide and the antibiotic amoxicillin in the H. pylori-infected and non-infected GMCs. DNA damage and the efficacy of DNA repair were evaluated by the alkaline single cell gel electrophoresis (comet assay). Specific damage to the DNA bases were assayed with the DNA repair enzymes formamidopyrimidine-DNA glycosylase (Fpg) recognizing oxidized DNA bases and 3-methyladenine-DNA glycosylase II (AlkA) recognizing alkylated bases. The level of basal and oxidative DNA in the infected GMCs was higher than non-infected cells. H. pylori-infected GMCs displayed enhanced susceptibility to hydrogen peroxide than control cells. There was no difference between the efficacy of DNA repair in the infected and non-infected cells after treatment with hydrogen peroxide and amoxicillin. Our results indicate that H. pylori infection may be correlated with oxidative DNA damage in GMCs. Therefore, these features can be considered as a risk marker for gastric cancer associated with H. pylori infection and the comet assay may be applied to evaluate this marker.  相似文献   

7.
Base excision repair is the major pathway for the repair of oxidative DNA damage in human cells that is initiated by a damage-specific DNA glycosylase. In human cells, the major DNA glycosylases for the excision of oxidative base damage are OGG1 and NTH1 that excise 8-oxoguanine and oxidative pyrimidines, respectively. We find that both enzymes have limited activity on DNA lesions located in the vicinity of the 3′ end of a DNA single-strand break, suggesting that other enzymes are involved in the processing of such lesions. In this study, we identify and characterize NEIL1 as a major DNA glycosylase that excises oxidative base damage located in close proximity to the 3′ end of a DNA single-strand break.  相似文献   

8.
Mismatch uracil DNA glycosylase (Mug) from Escherichia coli is an initiating enzyme in the base-excision repair pathway. As with other DNA glycosylases, the abasic product is potentially more harmful than the initial lesion. Since Mug is known to bind its product tightly, inhibiting enzyme turnover, understanding how Mug binds DNA is of significance when considering how Mug interacts with downstream enzymes in the base-excision repair pathway. We have demonstrated differential binding modes of Mug between its substrate and abasic DNA product using both band shift and fluorescence anisotropy assays. Mug binds its product cooperatively, and a stoichiometric analysis of DNA binding, catalytic activity and salt-dependence indicates that dimer formation is of functional significance in both catalytic activity and product binding. This is the first report of cooperativity in the uracil DNA glycosylase superfamily of enzymes, and forms the basis of product inhibition in Mug. It therefore provides a new perspective on abasic site protection and the findings are discussed in the context of downstream lesion processing and enzyme communication in the base excision repair pathway.  相似文献   

9.
Endonuclease III (EndoIII) is a bifunctional DNA glycosylase that removes oxidized pyrimidines from DNA. The genome of Deinococcus radiodurans encodes for an unusually high number of DNA glycosylases, including three EndoIII enzymes (drEndoIII1-3). Here, we compare the properties of these enzymes to those of their well-studied homologues from E. coli and human. Our biochemical and mutational data, reinforced by MD simulations of EndoIII-DNA complexes, reveal that drEndoIII2 exhibits a broad substrate specificity and a catalytic efficiency surpassing that of its counterparts. In contrast, drEndoIII1 has much weaker and uncoupled DNA glycosylase and AP-lyase activities, a characteristic feature of eukaryotic DNA glycosylases, and was found to present a relatively robust activity on single-stranded DNA substrates. To our knowledge, this is the first report of such an activity for an EndoIII. In the case of drEndoIII3, no catalytic activity could be detected, but its ability to specifically recognize lesion-containing DNA using a largely rearranged substrate binding pocket suggests that it may play an alternative role in genome maintenance. Overall, these findings reveal that D. radiodurans possesses a unique set of DNA repair enzymes, including three non-redundant EndoIII variants with distinct properties and complementary activities, which together contribute to genome maintenance in this bacterium.  相似文献   

10.
Frameshift mutations are particularly deleterious to protein function and play a prominent role in carcinogenesis. Most commonly these mutations involve the insertion or omission of a single nucleotide by a DNA polymerase that slips on a damaged or undamaged template. The mismatch DNA repair pathway can repair these nascent polymerase errors. However, overexpression of enzymes of the base excision repair (BER) pathway is known to increase the frequency of frameshift mutations suggesting competition between these pathways. We have examined the fate of DNA containing single nucleotide bulges in human cell extracts and discovered that several deaminated or alkylated nucleotides are efficiently removed by BER. Because single nucleotide bulges are more highly exposed we anticipate that they would be highly susceptible to spontaneous DNA damage. As a model for this, we have shown that chloroacetaldehyde reacts more than 18-fold faster with an A-bulge than with a stable A·T base pair to create alkylated DNA adducts that can be removed by alkyladenine DNA glycosylase. Reconstitution of the BER pathway using purified components establishes that bulged DNA is efficiently processed. Single nucleotide deletion is predicted to repair +1 frameshift events, but to make −1 frameshift events permanent. Therefore, these findings suggest an additional factor contributing to the bias toward deletion mutations.  相似文献   

11.
Viruses are believed to be the obligate intracellular parasites that only carry genes essential for infecting and hijacking the host cell machinery. However, a recently discovered group of viruses belonging to the phylum nucleocytovirocota, also known as the nucleo-cytoplasmic large DNA viruses (NCLDVs), possess a number of genes that code for proteins predicted to be involved in metabolism, and DNA replication, and repair. In the present study, first, using proteomics of viral particles, we show that several proteins required for the completion of the DNA base excision repair (BER) pathway are packaged within the virions of Mimivirus as well as related viruses while they are absent from the virions of Marseillevirus and Kurlavirus that are NCLDVs with smaller genomes. We have thoroughly characterized three putative base excision repair enzymes from Mimivirus, a prototype NCLDV and successfully reconstituted the BER pathway using the purified recombinant proteins. The mimiviral uracil-DNA glycosylase (mvUDG) excises uracil from both ssDNA and dsDNA, a novel finding contrary to earlier studies. The putative AP-endonuclease (mvAPE) specifically cleaves at the abasic site created by the glycosylase while also exhibiting the 3′-5′ exonuclease activity. The Mimivirus polymerase X protein (mvPolX) can bind to gapped DNA substrates and perform single nucleotide gap-filling followed by downstream strand displacement. Furthermore, we show that when reconstituted in vitro, mvUDG, mvAPE, and mvPolX function cohesively to repair a uracil-containing DNA predominantly by long patch BER and together, may participate in the BER pathway during the early phase of Mimivirus life-cycle.  相似文献   

12.
The accumulation of DNA damage is thought to contribute to the physiological decay associated with the aging process. Here, we report the results of a large-scale study examining longevity in various mouse models defective in the repair of DNA alkylation damage, or defective in the DNA damage response. We find that the repair of spontaneous DNA damage by alkyladenine DNA glycosylase (Aag/Mpg)-initiated base excision repair and O6-methylguanine DNA methyltransferase (Mgmt)-mediated direct reversal contributes to maximum life span in the laboratory mouse. We also uncovered important genetic interactions between Aag, which excises a wide variety of damaged DNA bases, and the DNA damage sensor and signaling protein, Atm. We show that Atm plays a role in mediating survival in the face of both spontaneous and induced DNA damage, and that Aag deficiency not only promotes overall survival, but also alters the tumor spectrum in Atm−/− mice. Further, the reversal of spontaneous alkylation damage by Mgmt interacts with the DNA mismatch repair pathway to modulate survival and tumor spectrum. Since these aging studies were performed without treatment with DNA damaging agents, our results indicate that the DNA damage that is generated endogenously accumulates with age, and that DNA alkylation repair proteins play a role in influencing longevity.  相似文献   

13.
I completed my medical studies at the Karolinska Institute in Stockholm but have always been devoted to basic research. My longstanding interest is to understand fundamental DNA repair mechanisms in the fields of cancer therapy, inherited human genetic disorders and ancient DNA. I initially measured DNA decay, including rates of base loss and cytosine deamination. I have discovered several important DNA repair proteins and determined their mechanisms of action. The discovery of uracil-DNA glycosylase defined a new category of repair enzymes with each specialized for different types of DNA damage. The base excision repair pathway was first reconstituted with human proteins in my group. Cell-free analysis for mammalian nucleotide excision repair of DNA was also developed in my laboratory. I found multiple distinct DNA ligases in mammalian cells, and led the first genetic and biochemical work on DNA ligases Ⅰ, and Ⅳ. I discovered the mammalian exonucleases DNase Ⅲ (TREX1) and IV (FEN1). Interestingly, expression of TREX1 was altered in some human autoimmune diseases. I also showed that the mutagenic DNA adduct O6-methylguanine (O6 mG) is repaired without removing the guanine from DNA, identifying a surprising mechanism by which the methyl group is transferred to a residue in the repair protein itself. A further novel process of DNA repair discovered by my research group is the action of AlkB as an iron-dependent enzyme carrying out oxidative demethylation.  相似文献   

14.
Preventing transcriptional gene silencing by active DNA demethylation   总被引:6,自引:0,他引:6  
Kapoor A  Agius F  Zhu JK 《FEBS letters》2005,579(26):5889-5898
  相似文献   

15.
Streptozotocin (STZ) is an antibiotic which can be used to induce diabetes in experimental animals in order to have an insight into pathogenesis of this disease. To use STZ as a diabetogenic substance, its molecular mode of action should be elucidated. Using the alkaline comet assay, we showed that STZ at concentrations in the range 0.01-100 micromol/L induced DNA damage in normal human lymphocytes and HeLa cancer cells in a dose-dependent manner. Lymphocytes were able to remove damage to their DNA within a 30-min repair incubation, whereas HeLa cells completed the repair in 60 min. Vitamins C and E at 10 and 50 micromol/L diminished the extent of DNA damage induced by 50 micromol/L STZ. Pretreatment of the lymphocytes with the nitrone spin trap, alpha-(4-pyridil-1-oxide)-N-tert-butylnitrone (POBN) or ebselen, which mimics glutathione peroxidase, or pyrrolidine dithiocarbamate (PDTC) reduced the extent of DNA damage evoked by STZ. The cells exposed to STZ and treated with endonuclease III (Endo III), formamidopyrimidine-DNA glycosylase (Fpg) and 3-methyladenine-DNA glycosylase II (AlkA), the enzymes recognizing oxidized and alkylated bases, displayed greater extent of DNA damage than those not treated with these enzymes. These results suggest that free radicals may be involved in the formation of DNA lesions induced by streptozotocin. The drug can also alkylate DNA bases. This broad range of DNA damage induced by STZ indicates that the drug may seriously affect genomic stability in normal and pathological cells.  相似文献   

16.
MUTYH is a base-excision repair glycosylase that removes adenine opposite 8-oxoguanine (OG). Variants of MUTYH defective in functional activity lead to MUTYH-associated polyposis (MAP), which progresses to cancer with very high penetrance. Whole genome and whole exome sequencing studies have found MUTYH deficiencies in an increasing number of cancer types. While the canonical OG:A repair activity of MUTYH is well characterized and similar to bacterial MutY, here we review more recent evidence that MUTYH has activities independent of OG:A repair and appear centered on the interdomain connector (IDC) region of MUTYH. We summarize evidence that MUTYH is involved in rapid DNA damage response (DDR) signaling, including PARP activation, 9-1-1 and ATR signaling, and SIRT6 activity. MUTYH alters survival and DDR to a wide variety of DNA damaging agents in a time course that is not consistent with the formation of OG:A mispairs. Studies that suggest MUTYH inhibits the repair of alkyl-DNA damage and cyclopyrimidine dimers (CPDs) is reviewed, and evidence of a synthetic lethal interaction with mismatch repair (MMR) is summarized. Based on these studies we suggest that MUTYH has evolved from an OG:A mispair glycosylase to a multifunctional scaffold for DNA damage response signaling.  相似文献   

17.
8-Oxoguanine-DNA glycosylases play a key role in the repair of oxidatively damaged DNA. The Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) and human 8-oxoguanine-DNA glycosylase (hOGG1) are DNA base excision repair enzymes that catalyze the removal of 7,8-dihydro-8-oxoguanine (oxoG) residue, and cleave DNA strand. Specific contacts between DNA phosphate groups and amino acids from active centers of these enzymes play a significant role in DNA-protein interactions. In order to design new non-hydrolyzable substrate analogs of Fpg and hOGG1 for structural studies modified DNA duplexes containing pyrophosphate or OEt-substituted pyrophosphate internucleotide (SPI) groups near the damage were tested. We showed that enzymes recognize and specifically bind to DNA duplexes obtained. The mechanism of incision of oxoG by the Fpg and hOGG1 was determined. We revealed that both enzymes were not able to excise the oxoG residue from DNA containing modified phosphates immediately 3' to the oxoG. In contrast, Fpg and hOGG1 effectively incise DNA duplex carrying analogous phosphate modifications 5' to the oxoG. Non-cleavable oxoG-containing DNA duplexes bearing pyrophosphate or substituted pyrophosphate groups immediately 3' to the oxoG are specific inhibitors for both 8-oxoguanine-DNA glycosylases and can be used for structural studies of complexes comprising a oxoG-containing DNA bound to catalytically active wild-type enzymes as well as their pro- and eucaryotic homologs.  相似文献   

18.
A recent phylogenetic study on UDG superfamily estimated a new clade of family 3 enzymes (SMUG1-like), which shares a lower homology with canonic SMUG1 enzymes. The enzymatic properties of the newly found putative DNA glycosylase are unknown. To test the potential UDG activity and evaluate phylogenetic classification, we isolated one SMUG1-like glycosylase representative from Listeria innocua (Lin). A biochemical screening of DNA glycosylase activity in vitro indicates that Lin SMUG1-like glycosylase is a single-strand selective uracil DNA glycosylase. The UDG activity on DNA bubble structures provides clue to its physiological significance in vivo. Mutagenesis and molecular modeling analyses reveal that Lin SMUG1-like glycosylase has similar functional motifs with SMUG1 enzymes; however, it contains a distinct catalytic doublet S67-S68 in motif 1 that is not found in any families in the UDG superfamily. Experimental investigation shows that the S67M-S68N double mutant is catalytically more active than either S67M or S68N single mutant. Coupled with mutual information analysis, the results indicate a high degree of correlation in the evolution of SMUG1-like enzymes. This study underscores the functional and catalytic diversity in the evolution of enzymes in UDG superfamily.  相似文献   

19.
The recognition and removal of damaged bases in the genome is the province of a highly specialized assemblage of enzymes known as DNA glycosylases. In recent years, structural and mechanistic studies have rapidly moved forward such that in some cases, the high-resolution structures of all stable complexes along the reaction pathway are available. In parallel, advances in isotopic labeling of DNA have allowed the determination of a transition state structure of a DNA repair glycosylase using kinetic isotope effect methods. The use of stable substrate analogs and fluorescent probes have provided methods for real time measurement of the critical step of damaged base flipping. Taken together, these synergistic structural and chemical approaches have elevated our understanding of DNA repair enzymology to the level previously attained in only a select few enzymatic systems. This review summarizes recent studies of the paradigm enzyme, uracil DNA glycosylase, and discusses future areas for investigation in this field.  相似文献   

20.
Genomic uracil is a DNA lesion but also an essential key intermediate in adaptive immunity. In B cells, activation-induced cytidine deaminase deaminates cytosine to uracil (U:G mispairs) in Ig genes to initiate antibody maturation. Uracil-DNA glycosylases (UDGs) such as uracil N-glycosylase (UNG), single strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1), and thymine-DNA glycosylase remove uracil from DNA. Gene-targeted mouse models are extensively used to investigate the role of these enzymes in DNA repair and Ig diversification. However, possible species differences in uracil processing in humans and mice are yet not established. To address this, we analyzed UDG activities and quantities in human and mouse cell lines and in splenic B cells from Ung(+/+) and Ung(-/-) backcrossed mice. Interestingly, human cells displayed ~15-fold higher total uracil excision capacity due to higher levels of UNG. In contrast, SMUG1 activity was ~8-fold higher in mouse cells, constituting ~50% of the total U:G excision activity compared with less than 1% in human cells. In activated B cells, both UNG and SMUG1 activities were at levels comparable with those measured for mouse cell lines. Moreover, SMUG1 activity per cell was not down-regulated after activation. We therefore suggest that SMUG1 may work as a weak backup activity for UNG2 during class switch recombination in Ung(-/-) mice. Our results reveal significant species differences in genomic uracil processing. These findings should be taken into account when mouse models are used in studies of uracil DNA repair and adaptive immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号