首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《FEBS letters》2014,588(23):4364-4368
O2 reduction was investigated in photosystem I (PS I) complexes isolated from cyanobacteria Synechocystis sp. PCC 6803 wild type (WT) and menB mutant strain, which is unable to synthesize phylloquinone and contains plastoquinone at the quinone-binding site A1. PS I complexes from WT and menB mutant exhibited different dependencies of O2 reduction on light intensity, namely, the values of O2 reduction rate in WT did not reach saturation at high intensities, in contrast to the values in menB mutant. The obtained results suggest the immediate phylloquinone involvement in the light-induced O2 reduction by PS I.  相似文献   

2.
A mixed fermentation strategy based on exponentially fed-batch cultures (EFBC) and nutrient pulses with sucrose and yeast extract was developed to achieve a high concentration of PHB by Azotobacter vinelandii OPNA, which carries a mutation on the regulatory systems PTSNtr and RsmA-RsmZ/Y, that negatively regulate the synthesis of PHB. Culture of the OPNA strain in shake flaks containing PY-sucrose medium significantly improved growth and PHB production with respect to the results obtained from the cultures with the parental strain (OP). When the OPNA strain was cultured in a batch fermentation keeping constant the DOT at 4%, the maximal growth rate (0.16 h−1) and PHB yield (0.30 gPHB gSuc−1) were reached. Later, in EFBC, the OPNA strain increased three fold the biomass and 2.2 fold the PHB concentration in relation to the values obtained from the batch cultures. Finally, using a strategy of exponential feeding coupled with nutrient pulses (with sucrose and yeast extract) the production of PHB increased 7-fold to reach a maximal PHB concentration of 27.3 ± 3.2 g L−1 at 60 h of fermentation. Overall, the use of the mutant of A. vinelandii OPNA, impaired in the PHB regulatory systems, in combination with a mixed fermentation strategy could be a feasible strategy to optimize the PHB production at industrial level.  相似文献   

3.
Mycosporine-like amino acids (MAAs) are a family of more than 20 compounds having absorption maxima between 310 and 362 nm. These compounds are well known for their UV-absorbing/screening role in various organisms and seem to have evolutionary significance. In the present investigation we tested four cyanobacteria, e.g., Anabaena variabilis PCC 7937, Anabaena sp. PCC 7120, Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 6301, for their ability to synthesize MAA and conducted genomic and phylogenetic analysis to identify the possible set of genes that might be involved in the biosynthesis of these compounds. Out of the four investigated species, only A. variabilis PCC 7937 was able to synthesize MAA. Genome mining identified a combination of genes, YP_324358 (predicted DHQ synthase) and YP_324357 (O-methyltransferase), which were present only in A. variabilis PCC 7937 and missing in the other studied cyanobacteria. Phylogenetic analysis revealed that these two genes are transferred from a cyanobacterial donor to dinoflagellates and finally to metazoa by a lateral gene transfer event. All other cyanobacteria, which have these two genes, also had another copy of the DHQ synthase gene. The predicted protein structure for YP_324358 also suggested that this product is different from the chemically characterized DHQ synthase of Aspergillus nidulans contrary to the YP_324879, which was predicted to be similar to the DHQ synthase. The present study provides a first insight into the genes of cyanobacteria involved in MAA biosynthesis and thus widens the field of research for molecular, bioinformatics and phylogenetic analysis of these evolutionary and industrially important compounds. Based on the results we propose that YP_324358 and YP_324357 gene products are involved in the biosynthesis of the common core (deoxygadusol) of all MAAs.  相似文献   

4.
The inhibitory effect of ammonium sulfate on a commercial mixed culture, used in biological waste-water treatment was studied under aerobic batch conditions. Several mathematical models of enzyme and growth kinetics including a death factor were analyzed through nonlinear regression to find the best fit to corresponding data of inhibition. The best fit model was found to be the generalized Monod type with a death factor having the biokinetic parameters; μmax 0.681 h−1, Ks 0.224 g dm−3, Ki 56240 g dm−3, K 0.055 g dm−3 and kd 0.052 h−1 to represent the experimental data accurately. The low saturation coefficient value along with high maximum specific growth rate and inhibition coefficient denotes the competitive characteristics of commercial mixed cultures in the biological treatment of high ammonium polluted waste waters.  相似文献   

5.
d-Mannitol (hereafter denoted mannitol) is used in the medical and food industry and is currently produced commercially by chemical hydrogenation of fructose or by extraction from seaweed. Here, the marine cyanobacterium Synechococcus sp. PCC 7002 was genetically modified to photosynthetically produce mannitol from CO2 as the sole carbon source. Two codon-optimized genes, mannitol-1-phosphate dehydrogenase (mtlD) from Escherichia coli and mannitol-1-phosphatase (mlp) from the protozoan chicken parasite Eimeria tenella, in combination encoding a biosynthetic pathway from fructose-6-phosphate to mannitol, were expressed in the cyanobacterium resulting in accumulation of mannitol in the cells and in the culture medium. The mannitol biosynthetic genes were expressed from a single synthetic operon inserted into the cyanobacterial chromosome by homologous recombination. The mannitol biosynthesis operon was constructed using a novel uracil-specific excision reagent (USER)-based polycistronic expression system characterized by ligase-independent, directional cloning of the protein-encoding genes such that the insertion site was regenerated after each cloning step. Genetic inactivation of glycogen biosynthesis increased the yield of mannitol presumably by redirecting the metabolic flux to mannitol under conditions where glycogen normally accumulates. A total mannitol yield equivalent to 10% of cell dry weight was obtained in cell cultures synthesizing glycogen while the yield increased to 32% of cell dry weight in cell cultures deficient in glycogen synthesis; in both cases about 75% of the mannitol was released from the cells into the culture medium by an unknown mechanism. The highest productivity was obtained in a glycogen synthase deficient culture that after 12 days showed a mannitol concentration of 1.1 g mannitol L−1 and a production rate of 0.15 g mannitol L−1 day−1. This system may be useful for biosynthesis of valuable sugars and sugar derivatives from CO2 in cyanobacteria.  相似文献   

6.
Synechocystis PCC 6803 is a model unicellular cyanobacterium used in e.g. photosynthesis and CO2 assimilation research. In the present study we examined the effects of overexpressing Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), sedoheptulose 1,7-biphosphatase (SBPase), fructose-bisphosphate aldolase (FBA) and transketolase (TK), confirmed carbon flux control enzymes of the Calvin-Bassham-Benson (CBB) cycle in higher plants, in Synechocystis PCC 6803. Overexpressing RuBisCO, SBPase and FBA resulted in increased in vivo oxygen evolution (maximal 115%), growth rate and biomass accumulation (maximal 52%) under 100 μmol photons m−2 s−1 light condition. Cells overexpressing TK showed a chlorotic phenotype but increased biomass by approximately 42% under 100 μmol photons m−2 s−1 light condition. Under 15 μmol photons m−2 s−1 light condition, cells overexpressing TK showed enhanced in vivo oxygen evolution. This study demonstrates increased growth and biomass accumulation when overexpressing selected enzymes of the CBB cycle. RuBisCO, SBPase, FBA and TK are identified as four potential targets to improve growth and subsequently also yield of valuable products from Synechocystis PCC 6803.  相似文献   

7.
Cyanobacteria are the major producers of geosmin in natural waters. To identify a gene involved in geosmin biosynthesis in cyanobacteria, the polymerase chain reaction (PCR) was used to amplify a 2298-bp open reading frame (ORF) from the geosmin-producing cyanobacterium Lyngbya kuetzingii UTEX 1547. This ORF encoded a protein of 765 amino acids. Alignment of the deduced amino acid sequence demonstrated that geoL had high similarity to the corresponding genes of Oscillatoria sp. PCC 6506 (100% identity), Calothrix sp. PCC 7507 (89%), Anabaena ucrainica CHAB 1432 (88%), A. ucrainica CHAB 2155 (87%), Nostoc punctiforme PCC 73102 (87%), Phormidium sp. P2r (84%) and Cylindrospermum stagnale PCC 7417 (83%), and modest similarity to myxobacteria (61–73%). It also indicated geoL with low similarity to the corresponding genes of actinomycetes (<60%). The encoded protein GEOL was estimated to have two geosmin synthase domains, and each contained two strictly conserved Mg2+-binding motifs (aspartate-rich motif and NSE triad). The geoL gene was shown to be responsible for geosmin biosynthesis in L. kuetzingii UTEX 1547. Then, geoL had been cloned into pET21a(+) vector and expressed in Escherichia coli BL21(DE3) with the isopropyl-β-d-thiogalactoside (IPTG) induction. The recombinant GEOL protein was purified and exhibited a single band (MW  90 kDa) on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), which was consistent with the predicted molecular weight (MW) of 87,046 Da. In conclusion, this study has confirmed that geosmin synthase gene and its expression product can be identified and characterized from cyanobacteria, which will help understand the fundamental biological mechanism of geosmin biosynthesis in cyanobacteria.  相似文献   

8.
Ping Yu  Min Xu 《Process Biochemistry》2012,47(7):1089-1094
Endochitinase has an important application in the biological treatment of chitin, the second most abundant and renewable resource in nature. In order to enhance its activity, a double mutant strain MECH-Y185/S226 was obtained by the directed evolution using the error-prone PCR with the mature endochitinase cDNA from Trichoderma viride as the template. Compared to those of the primitive strain MECH, endochitinase activities of the mutant one were 1.8-fold higher towards 4-nitrophenyl-N-acetyl-β-d-glucosaminide and 3.5-fold higher towards the colloidal chitin. Sequence alignments indicated that 9 nucleotides and 2 amino acids (Y185F and S226P) were mutant. The SDS–PAGE analysis showed that a single band with an estimated molecular weight of 46 kDa was obtained when the Ech42-Y185/S226 was purified sequentially by ammonium sulfate precipitation, DE52 anion-exchanging column chromatography and Sephadex G-100 column chromatography. Kinetic parameters Km and Vmax of the Ech42-Y185/S226 were 0.25 ± 0.02 mmol/l and 4.59 ± 0.32 μmol/l min, respectively. The analysis of enzymatic properties showed that the Ech42-Y185/S226 had a higher thermal stability at higher temperatures and a higher pH stability within a wider pH range than the Ech42. Observed activities of the Ech42-Y185/S226 are the highest in the presence of Mg2+ and the lowest in the presence of Zn2+.  相似文献   

9.
Isolation of Bacillus thuringiensis (Bt) strain or its cry gene encoding insecticidal crystal protein (ICP) with specific toxicity is of great importance to biological control of insect pests. In this study, by screening 66 strains of Bt isolated from soil samples collected in Shandong Province, China, a new cry8-type gene from Bt strain B-JJX was identified via PCR-RFLP method. This novel gene, cry8Ab1, was cloned from the Bt strain B-JJX and expressed in an acrystalliferous mutant strain HD-73?. The open reading frame of the cry8Ab1 gene consists of 3543 bp with a G + C content of 37.99% and encodes a protein of 1180 amino acids with a putative MW of 133.3 kDa which was confirmed by SDS-PAGE analysis. The Cry8Ab1 protein was expressed and released as spherical parasporal crystals from Bt acrystalliferous mutant strain HD-73? along with the presence of spores. In bioassays, this protein was toxic to 3-day-old larvae of the scarabaeid pests, Holotrichia oblita and H. parallela, with an LC50 of 5.72 and 2.00 μg toxin g?1 soil, respectively. The results are in accordance with the insecticidal activities of the original Bt strain B-JJX, which had an LC50 of 1.72 and 0.96 μg toxin g?1 soil against H. oblita and H. parallela, respectively.  相似文献   

10.
《Aquatic Botany》2005,82(4):284-296
The allelopathic potential of exudates from the aquatic macrophyte Stratiotes aloides on the growth of phytoplankton was investigated. A selection of phytoplankton species, occurring in habitats similar to that of Stratiotes, was used: two cyanobacterial strains (toxic and non-toxic Microcystis aeruginosa), one green alga (Scenedesmus obliquus) and one eustigmatophyte (Nannochloropsis limnetica). The results indicate allelopathic effects of Stratiotes on phytoplankton in six of the eight cases, expressed in an extended duration of the initial biovolume doubling time. The overall inhibitory effect (8–51%) was strain-specific for the two cyanobacteria. We also studied the effect of irradiance on the allelopathic potential of exudates from Stratiotes. Irradiance influenced the response of Scenedesmus only. The inhibitory effect of Stratiotes exudates on the growth of this green alga was stronger at 35 μmol m−2 s−1 than at 105 μmol m−2 s−1. We conclude that Stratiotes has allelopathic effects on phytoplankton, and that irradiance can, but does not always determine the extent of the allelopathic inhibition. In our experiments, the sensitivity of cyanobacteria to Stratiotes exudates was not higher than for other phytoplankton strains, but within cyanobacteria, the toxic strain was more sensitive than the non-toxic one.  相似文献   

11.
《Process Biochemistry》2007,42(4):686-692
Pseudomonas putida 33 wild strain, subjected to gamma ray mutagenesis and designated as P. putida 300-B mutant was used as microbial rhamnolipid-producer by using distant carbon sources (viz. hydrocarbons, waste frying oils ‘WFOs’, vegetable oil refinery wastes and molasses) in the minimal media under shake flask conditions. The behavior of glucose as co-substrate and growth initiator was examined. The 300-B mutant strain showed its ability to grow on all the substrates tested and produced rhamnolipid surfactants to different extents however; soybean and corn WFOs were observed to be preferred carbon sources followed by kerosene and paraffin oils, respectively. The best cell biomass (3.5 g l−1) and rhamnolipids yield (4.1 g l−1) were obtained with soybean WFO as carbon source and glucose as growth initiator under fed-batch cultivation showing an optimum specific growth rate (μ) of 0.272 h−1, specific product yield (qp) of 0.318 g g−1 h and volumetric productivity (PV) of 0.024 g l−1 h. The critical micelle concentration of its culture supernatant was observed to be 91 mg rhamnolipids l−1 and surface tension as 31.2 mN m−1.  相似文献   

12.
Polyphosphate (polyP), synthesized by polyP kinase (PPK) using the terminal phosphate of ATP as substrate, performs important functions in every living cell. The present work reports on the relationship between polyP metabolism and bioinsecticide production in Bacillus thuringiensis subsp. israelensis (Bti). The ppk gene of Bti was cloned into vector pHT315 and the effect of its overexpression on endotoxin production was determined. Endotoxin production by the recombinant strain was found to be consistently higher than that by the wild type strain and the strain that carried the empty plasmid. The toxicity of the recombinant mutant strain (LC50 5.8 ± 0.6 ng ml?1) against late 2nd instar Culex quinquefasciatus was about 7.7 times higher than that of Bti (LC50 44.9 ± 7 ng ml?1). To our knowledge this is the first reported study which relates polyP metabolism with bioinsecticide biosynthesis.  相似文献   

13.
《Aquatic Botany》2005,81(4):326-342
The effects of NH4+ or NO3 on growth, resource allocation and nitrogen (N) uptake kinetics of two common helophytes Phragmites australis (Cav.) Trin. ex Steudel and Glyceria maxima (Hartm.) Holmb. were studied in semi steady-state hydroponic cultures. At a steady-state nitrogen availability of 34 μM the growth rate of Phragmites was not affected by the N form (mean RGR = 35.4 mg g−1 d−1), whereas the growth rate of Glyceria was 16% higher in NH4+-N cultures than in NO3-N cultures (mean = 66.7 and 57.4 mg g−1 d−1 of NH4+ and NO3 treated plants, respectively). Phragmites and Glyceria had higher S/R ratio in NH4+ cultures than in NO3 cultures, 123.5 and 129.7%, respectively.Species differed in the nitrogen utilisation. In Glyceria, the relative tissue N content was higher than in Phragmites and was increased in NH4+ treated plants by 16%. The tissue NH4+ concentration (mean = 1.6 μmol g fresh wt−1) was not affected by N treatment, whereas NO3 contents were higher in NO3 (mean = 1.5 μmol g fresh wt−1) than in NH4+ (mean = 0.4 μmol g fresh wt−1) treated plants. In Phragmites, NH4+ (mean = 1.6 μmol g fresh wt−1) and NO3 (mean = 0.2 μmol g fresh wt−1) contents were not affected by the N regime. Species did not differ in NH4+ (mean = 56.5 μmol g−1 root dry wt h−1) and NO3 (mean = 34.5 μmol g−1 root dry wt h−1) maximum uptake rates (Vmax), and Vmax for NH4+ uptake was not affected by N treatment. The uptake rate of NO3 was low in NH4+ treated plants, and an induction phase for NO3 was observed in NH4+ treated Phragmites but not in Glyceria. Phragmites had low Km (mean = 4.5 μM) and high affinity (10.3 l g−1 root dry wt h−1) for both ions compared to Glyceria (Km = 6.3 μM, affinity = 8.0 l g−1 root dry wt h−1). The results showed different plasticity of Phragmites and Glyceria toward N source. The positive response to NH4+-N source may participates in the observed success of Glyceria at NH4+ rich sites, although other factors have to be considered. Higher plasticity of Phragmites toward low nutrient availability may favour this species at oligotrophic sites.  相似文献   

14.
《Process Biochemistry》2014,49(12):2071-2077
Lactate is an important industrial material with numerous potential applications, and its production from carbon dioxide is very attractive. d-Lactate is an essential monomer for production of thermostable polylactide. The photoautotrophic prokaryote cyanobacterium Synechocystis sp. PCC 6803 represents a promising host for biosynthesis of d-lactate from CO2 as it only contains d-lactate dehydrogenase. The production of d-lactate from CO2 by an engineered strain of Synechocystis sp. PCC 6803 with overexpressing d-lactate dehydrogenase and a soluble transhydrogenase has been reported recently. Here, we report an alternative engineering strategy to produce d-lactate from CO2. This strategy involves blocking two competitive pathways, the native poly-3-hydroxybutyrate and acetate pathways from the acetyl-CoA node, and introducing a more efficient d-lactate dehydrogenase into Synechocystis sp. PCC 6803. The engineered strain of Synechocystis sp. PCC 6803 was capable of producing 1.06 g/L of d-lactate from CO2. This alternative strategy for the production of optically pure d-lactate could also be used to produce other acetyl-CoA-derived chemicals from CO2 by using engineered cyanobacteria.  相似文献   

15.
A series of C6-rigid S-DABO analogs characterized by a substituted benzoyl group at C6 position of the pyrimidine ring has been synthesized and biological evaluation as NNRTIs against wild-type HIV-1 strain IIIB, double RT mutant (K103N + Y181C) strain RES056 as well as HIV-2 strain ROD in MT-4 cell cultures. Most of the compounds exhibited moderate antiviral activities. Among them, compound 7q displayed the highest anti-HIV-1 activity with an EC50 value of 0.26 μM and a selectivity index (SI) of 541. The preliminary structure–activity relationship (SAR) of these new S-DABOs was investigated, the target RT was confirmed and docking study was performed.  相似文献   

16.
The relationship between light intensity, nitrogen availability and pigmentation was investigated in mixotrophic and heterotrophic cultures of the unicellular red alga Galdieria sulphuraria 074G, a potential host for production of the blue pigment, phycocyanin (PC). During the exponential growth phase of batch cultures, G. sulphuraria 074G contained 2–4 mg phycocyanin per g dry weight. In carbon-limited and nitrogen-sufficient batch cultures grown in darkness, this value increased to 8–12 mg g−1 dry weight during the stationary phase, whereas the phycocyanin content in nitrogen-deficient cells decreased to values below 1 mg g−1 dry weight during stationary phase. Light intensities between 0 and 100 μmol photons m−2 s−1 had no influence on phycocyanin accumulation in mixotrophic cultures grown on glucose or fructose, while light stimulated phycocyanin synthesis in cultures grown on glycerol, in which the phycocyanin content in stationary phase was increased from 10 mg g−1 dry weight in darkness to 20 mg g−1 dry weight at a light intensity of 80 μmol photons m−2 s−1. At higher light intensities, less phycocyanin accumulated than at lower intensities, irrespective of the carbon substrate used. In carbon-limited continuous flow cultures grown on glucose or glycerol at a dilution rate of 0.63 day−1, corresponding to 50% of the maximum specific growth rate, the highest steady-state phycocyanin content of 15–28 mg g−1 dry weight was found at 65 μmol photons m−2 s−1. In contrast to the apparent glucose repression of light-induced PC synthesis observed in batch cultures, no glucose repression of the light stimulation was observed in continuous flow cultures because the glucose concentration in the culture supernatant always remained at limiting levels. Despite the fact that G. sulphuraria 074G contains less phycocyanin than some other microalgae and cyanobacteria, the ability of G. sulphuraria 074G to grow and synthesize phycocyanin in heterotrophic or mixotrophic cultures makes it an interesting alternative to the cyanobacterium, Spirulina platensis presently used for synthesis of phycocyanin.  相似文献   

17.
The impact of simulated solar radiation on DNA and the mitigation of DNA-damaging effects by photoreactivation was studied in a cyanobacterium Anabaena variabilis PCC 7937. Cultures were irradiated under 295, 320 and 395 nm cut-off filters as well as seven other filters such as WG 280, WG 295, WG 305, WG 320, WG 335, WG 345 and GG 400. Growth of the test organism was found to be affected mostly under UV-B radiation as compared to PAR and PAR + UV-A radiations. Amplification of 16s rDNA and RAPD profile was significantly affected following exposure of genomic DNA to UV-B radiation. The formation of T<>T CPDs was recorded only in the cultures irradiated with UV-B radiation (i.e., under 295 nm as well as under WG 280, WG 295 and WG 305 nm cut-off filters), but maximum yield was found under 280 nm cut-off filter. Furthermore, the considerable induction of thymine dimers was observed with increasing UV-irradiation times. Fluorometric analysis of DNA unwinding (FADU) assay for UV-induced DNA strand breaks exhibited the maximum loss in the percentage of dsDNA under UV-B radiation followed by UV-A and PAR in comparison to the light control samples. We observed that T<>T CPD repair is light-dependent, since these lesions were more efficiently removed upon exposure to visible light than in the darkness. Blue radiation was found to be the most effective in photoreactivation than any other wavebands of light. Furthermore, the rate of photoreactivation was measured under varying temperatures (10, 20 and 30 °C); the repair rate was found to be the maximum at 20 °C under white fluorescent light. Our results indicate that photoreactivation play an important role in survival of the organism under natural conditions in spite of being exposed to the UV-B component present in the solar drops.  相似文献   

18.
Glycine oxidase (GO) has great potential for use in biosensors, industrial catalysis and agricultural biotechnology. In this study, a novel GO (BliGO) from a marine bacteria Bacillus licheniformis was cloned and characterized. BliGO showed 62% similarity to the well-studied GO from Bacillus subtilis. The optimal activity of BliGO was observed at pH 8.5 and 40 °C. Interestingly, BliGO retained 60% of the maximum activity at 0 °C, suggesting it is a cold-adapted enzyme. The kinetic parameters on glyphosate (Km, kcat and kcat/Km) of BliGO were 11.22 mM, 0.08 s−1, and 0.01 mM−1 s−1, respectively. To improve the catalytic activity to glyphosate, the BliGO was engineered by directed evolution. With error-prone PCR and two rounds of DNA shuffling, the most evolved mutant SCF-4 was obtained from 45,000 colonies, which showed 7.1- and 8-fold increase of affinity (1.58 mM) and catalytic efficiency (0.08 mM−1 s−1) to glyphosate, respectively. In contrast, its activity to glycine (the natural substrate of GO) decreased by 113-fold. Structure modeling and site-directed mutation study indicated that Ser51 in SCF-4 involved in the binding of enzyme with glyphosate and played a crucial role in the improvement of catalytic efficiency.  相似文献   

19.
Glutathione (GSH)-deprived Dictyostelium discoideum accumulates methylglyoxal (MG) and reactive oxygen species (ROS) during vegetative growth. However, the reciprocal effects of the production and regulation of these metabolites on differentiation and cell motility are unclear. Based on the inhibitory effects of γ-glutamylcysteine synthetase (gcsA) disruption and GSH reductase (gsr) overexpression on aggregation and culmination, respectively, we overexpressed GSH-related genes encoding superoxide dismutase (Sod2), catalase (CatA), and Gcs, in D. discoideum. Wild-type KAx3 and gcsA-overexpressing (gcsAOE) slugs maintained GSH levels at levels of approximately 2.1-fold less than the reference GSH synthetase-overexpressing mutant; their GSH levels did not correlate with slug migration ability. Through prolonged KAx3 migration by treatment with MG and H2O2, we found that MG increased after the mound stage in this strain, with a 2.6-fold increase compared to early developmental stages; in contrast, ROS were maintained at high levels throughout development. While the migration-defective sod2- and catA-overexpressing mutant slugs (sod2OE and catAOE) decreased ROS levels by 50% and 53%, respectively, these slugs showed moderately decreased MG levels (36.2 ± 5.8 and 40.7 ± 1.6 nmol g−1 cells wet weight, P < 0.05) compared to the parental strain (54.2 ± 3.5 nmol g−1). Importantly, defects in the migration of gcsAOE slugs decreased MG considerably (13.8 ± 4.2 nmol g−1, P < 0.01) along with a slight decrease in ROS. In contrast to the increase observed in migrating sod2OE and catAOE slugs by treatment with MG and H2O2, the migration of gcsAOE slugs appeared unaffected. This behavior was caused by MG-triggered Gsr and NADPH-linked aldolase reductase activity, suggesting that GSH biosynthesis in gcsAOE slugs is specifically used for MG-scavenging activity. This is the first report showing that MG upregulates slug migration via MG-scavenging-mediated differentiation.  相似文献   

20.
The lipase secreted by Burkholderia cepacia ATCC 25416 was particularly attractive in detergent and leather industry due to its specific characteristics of high alkaline and thermal stability. The lipase gene (lipA), lipase chaperone gene (lipB), and native promoter upstream of lipA were cloned. The lipA was composed of 1095 bp, corresponding to 364 amino acid residues. The lipB located immediately downstream of lipA was composed of 1035 bp, corresponding to 344 amino acid residues. The lipase operon was inserted into broad host vector pBBRMCS1 and electroporated into original strain. The homologous expression of recombinant strain showed a significant increase in the lipase activity. LipA was purified by three-step procedure of ammonium sulfate precipitation, phenyl-sepharose FF and DEAE-sepharose FF. SDS-PAGE showed the molecular mass of the lipase was 33 kDa. The enzyme optimal temperature and pH were 60 °C and 11.0, respectively. The enzyme was stable at 30–70 °C. After incubated in 70 °C for 1 h, enzyme remained 72% of its maximal activity. The enzyme exhibited a good stability at pH 9.0–11.5. The lipase preferentially hydrolyzed medium-chain fatty acid esters. The enzyme was strongly activated by Mg2+, Ca2+, Cu2+, Zn2+, Co2+, and apparently inhibited by PMSF, EDTA and also DTT with SDS. The enzyme was compatible with various ionic and non-ionic surfactants as well as oxidant H2O2. The enzyme had good stability in the low- and non-polar solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号