首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The biological role of cyanobacteria secondary metabolites is relatively unknown although several possible hypotheses have been discussed. In the following study the effect of cylindrospermopsin (CYN) and metabolites of non-CYN producing Cylindrospermopsis raciborskii strain on growth, alkaline phosphatase (ALP) activity and microcystin-LR (MC-LR) production in Microcystis aeruginosa was evaluated. Higher concentrations of CYN (10 and 50 μg L−1) induced toxicity effects demonstrated by significant growth inhibition and M. aeruginosa cell necrosis. Lower concentrations of CYN (1 and 5 μg L−1) slightly decreased growth rates but significantly up-regulated ALP activity. Moreover, under all studied CYN concentrations MC-LR production strongly decreased. Spent C. raciborskii medium mimicked the CYN action by inducing strong inhibition of M. aeruginosa growth and MC-LR production and through up-regulation of ALP activity. On the other hand, spent M. aeruginosa medium did not affect C. raciborskii growth and no alterations in ALP activity were observed. Co-culturing of these two species resulted in an increase of C. raciborskii contribution at the expense of M. aeruginosa. From the results we conclude that CYN can be involved in interspecific competition in cyanobacteria and that non-CYN producing C. raciborskii strains may produce a hitherto unknown bioactive compound(s) which can mimic CYN action.  相似文献   

2.
A sensitive liquid chromatography–mass spectrometric method was validated for the quantification of RU38486 (mifepristone) in human and murine plasma. The analyte and internal standard (alfaxolone) were extracted by liquid–liquid extraction with diethyl ether, resolved on a C18 column using gradient elution with methanol and ammonium acetate and detected after positive electrospray ionization (m/z 430  372; m/z 333  297, respectively). Quantification was linear over the range 0.5–500 ng (r2 > 0.997), precise and accurate (intra-assay RSD  7.2%, RME  8.2%; inter-assay RSD  15.7% RME  10.2%). The limit of quantification (LOQ) was 50 pg injected on column, permitting reproducible analysis of RU38486 in small volumes of plasma.  相似文献   

3.
Blooms of the toxin-producing cyanobacterium Cylindrospermopsis raciborskii occur in tropical and subtropical lakes during spring-summer but the mechanisms behind bloom formation are unclear. This study tests the hypothesis that C. raciborskii accumulations in freshwater systems are facilitated by selective copepod grazing. Prey selection was examined in a series of experiments with C. raciborskii and the green alga, Chlamydomonas reinhardtii, as well as within natural phytoplankton assemblages. Clearance rates of the copepod Boeckella sp. on a C. raciborskii diet were 2–4 times lower than that of a common cladoceran Ceriodaphnia sp. when both grazers had prey choice. More C. raciborskii was cleared by Boeckella sp. when in mixed natural phytoplankton assemblages, but the clearance rate declined when nutrient replete C. reinhardtii was added, demonstrating that when alternate “high quality” algae were present, so did C. raciborskii consumption. The clearance rates of Boeckella sp. on two toxic C. raciborskii strains were significantly lower than on a non-toxic strain, and on C. raciborskii with low cellular P content. When we tested the grazing preference of a copepod dominated mixed zooplankton community on C. raciborskii during the early bloom period, clearance rates were relatively low (0.05–0.20 ml individual−1 h−1), and decreased significantly as the proportion of C. raciborskii increased above 5%. These results suggest that C. raciborskii persistence could be promoted by copepods preferentially grazing on other algae, with significant loss of top-down control as C. raciborskii abundance increases.  相似文献   

4.
Global rivers connect three large carbon reservoirs in the world: soil, atmosphere, and ocean. The amount and spatial pattern of riverine carbon flux are essential for the global carbon budget but are still not well understood. Therefore, three linear regression models for riverine DOC (dissolved organic carbon), POC (particulate organic carbon), and DIC (dissolved inorganic carbon) fluxes were established with related generating and transfer factors based on an updated global database. The three models then were applied to simulate the spatial distribution of riverine DOC, POC, and DIC fluxes and to estimate the total global riverine carbon flux. The major conclusions of this study are as follows: the correlation analysis showed that riverine DOC flux is significantly related to discharge (r2 = 0.93, n = 109) and soil organic carbon amount (r2 = 0.60), POC flux increases with discharge (r2 = 0.55, n = 98) and amount of soil erosion (r2 = 0.48), and DIC flux is strongly linked to CO2 consumption by rock weathering (r2 = 0.66, n = 111) and discharge (r2 = 0.63). In addition, Asia exports more DOC and POC than other continents and North America exports more DIC. The Atlantic Ocean accepts the major portion of riverine DOC, POC, and DIC fluxes of all the oceans. The highest riverine DOC flux occurs in the 0–30°S zone, and the highest riverine POC and DIC fluxes appear in the 30–60°N zone. Furthermore, re-estimation revealed that global rivers export approximately 1.06 Pg C to oceans every year, including 0.24 Pg DOC, 0.24 Pg POC, 0.41 Pg DIC, and 0.17 Pg PIC.  相似文献   

5.
Subterranean termites excavate complex underground tunnels for foraging. Most tunnels comprise primary and secondary tunnels. Tunnels originating from the nest are called primary and those branching from the primary tunnels are named secondary tunnels; tertiary and quaternary tunnels are rarely observed. During foraging, termites may thus encounter a considerable number of tunnel-branching nodes. Directional selection at such a node is likely correlated to tunnel-growth activity because tunnels containing more termites have a higher probability of growth. In this study, we investigated how termites select the direction of movement at an artificially-designed branching node, by making chemical trails on filter paper, drawing lines using a ballpoint pen which contained the chemical substance that induces the termite to follow trails. The trails consisted of two lines: straight and branching. The branching line was drawn from the center of the straight line at an angle θ (10°, 20°,…, 90°). We then calculated the ratio of the directional selection as r = Ns/Nb, where Ns and Nb represent the number of straight and branching tunnels selected, respectively. The values of r were statistically classified into three groups based on the angle of the branching trail, as follows: 10°  θ  20°, 30°  θ  60°, and 70°  θ  90°. Our paper briefly discusses the underlying mechanisms of the experimental results.  相似文献   

6.
The 13C/12C ratios of leaves of the conifer morphotype Frenelopsis were measured to decipher the influences of water and salt stress on stomatal density (SD), epidermal cell density (ECD) and stomatal index (SI). Three morphospecies were analyzed: F. ugnaensis from freshwater fluvio-lacustrine deposits (Upper Barremian), F. turolensis and alata from coastal deposits (Lower-Middle Albian and Upper Albian respectively). The cuticle δ13C values show a large variation from ? 28‰ to ? 21‰. Comparison with previously published marine carbonate δ13C records indicate that the difference in cuticle δ13C between the different deposits are mainly due to difference in CO2-plant isotope fractionation rather than to change in isotopic composition of inorganic carbon in the atmosphere and ocean. The less negative δ13C and wide range in δ13C of F. turolensis and alata (? 27.5 to ? 21‰), compared to F. ugnaensis, (? 28 to ? 25‰) are interpreted as a result of salt and/or water stress. The data as a whole yield a good relationship between the 13C/12C ratio and SD (r = 0.67, n = 42, p < 0.001), SI (r = 0.53, n = 41, p < 0.001), hence suggesting that the differences in SD and SI between the three morphospecies are related to freshwater/saline environment. Looking at single morphospecies, the SD of F. ugnaensis decreases with increasing δ13C value (r = ? 0.57, n = 15, p = 0.026) as well as a decrease of SI (r = ? 0.62, n = 15, p = 0.013), possibly reflecting warmer and drier conditions. Average SI of F. alata does not significantly change with δ13C and inferred soil salinity in contrast to SD (p < 0.01).  相似文献   

7.
Classification of phenotypic variability in forest dwelling arthropods, especially in applied bioindication, remains difficult due to the complex and synergic ecological interactions. Ecologically, it corresponds with the concept of alternative ontogenies in order to maintain high population fitness. The research on the geobiont Haplothrips subtilissimus (Thysanoptera: Phlaeothripidae) morphometric plasticity alongside selected ecological gradients (temperature, humidity, food availability) and the environmental impact in the xerothermous hilly oak wood (Martinský les, SW Slovakia), have revealed that (MAN(C)OVA and Kruskal–Wallis test) the head width (p < 0.001) and anterior pronotum width (p  0.002) as the only statistically significant variables. The Kruskal–Wallis test (non parametric ANOVA) revealed significant variation (more noticeable in males) in ecologically more diverse ecotone stands. A significant correlation (p < 0.001) could be shown between the morphometric parameter pairs “head width” and “anterior pronotum width” for both sexes (0.729 for females and 0.822 for males) and between anterior and posterior pronotum width only for males (0.859). Pillai's statistics revealed an interaction of soil humidity and soil temperature which confirms female body parameters depend on habitat conditions (p = 0.011). Females responded mainly to soil temperature (p = 0.018) and food availability (p = 0.030). Soil humidity interacts with the male's morphology (soil humidity p = 0.040), while the relationship to food availability (Acarina) was not statistically significant (p = 0.350). No body parameter has been significantly affected by environmental stress.  相似文献   

8.
We present an assay which employs enzyme digestion and solid phase extraction followed by liquid chromatography–tandem mass spectrometry to simultaneously quantify 16 hydroxylated polycyclic aromatic hydrocarbons (OHPAHs) in 3-ml samples of urine. The analytes consisted of 2-, 3-, and 4-ring OHPAHs, namely, 1- and 2-hydroxynaphthalene (1- and 2-OHNAP), 2-hydroxyfluorine (2-OHFLU), 1-, 2-, 3-, 4-, and 9-hydroxyphenanthrene (1-, 2-, 3-, 4-, and 9-OHPHE), 1-hydroxypyrene (1-OHPYR), 1- and 2-hydroxybenzo(a)anthracene (1- and 2-OHBAA), 3- and 6-hydroxychrysene (3- and 6-OHCHR) and 3-, 7-, and 9-hydroxybenzo(a)pyrene (3-, 7-, and 9-OHBAP). The method was validated using urine samples from steel workers and control subjects. The coefficients of variation of the method for the particular analytes were between 7% and 27% and the limits of quantitation were between 0.002 and 0.010 μg/l urine. The 2- and 3-ring OHPAHs were easily quantified in all subjects. However, 1-OHPYR was the only representative of the 4- and 5-ring metabolites that could be quantified. Pairwise correlations showed that all OHPAHs were highly correlated with each other (0.553  r  0.910) and with 1-OHPYR (0.614  r  0.910), the metabolite most widely accepted as a short-term biomarker of exposure to PAHs. The analyte, 2-OHNAP exhibited the lowest pairwise correlations with the other OHPAHs (0.542  r  0.628), presumably due to confounding by smoking. Metabolites of phenanthrene, an abundant PAH and the smallest to possess a bay region, are promising OHPAHs for characterizing both exposures to PAHs and the various metabolic pathways.  相似文献   

9.
JNKs (c-Jun N-terminal kinases) have the potential to serve as a therapeutic target for various inflammatory, vascular, neurodegenerative, metabolic and oncological diseases. In particular, ATP-competitive JNK3 inhibitors act as neuroprotective agents. Here we introduce 1,2-diaryl-1H-benzimidazole derivatives as selective JNK3 inhibitors from among our in-house compounds and describe our elucidation of their SAR using 3D-QSAR models. A predictive CoMFA model (q2 = 0.795, r2 = 0.931) and a CoMSIA model (q2 = 0.700, r2 = 0.937) were used to describe the non-linearly combined affinity of each functional group in the inhibitors.  相似文献   

10.
The rpoB gene encoding for β subunit of RNA polymerase is a target of mutations leading to rifampicin resistant (Rifr) phenotype of bacteria. Here we have characterized rpoB/Rifr system in Pseudomonas aeruginosa and Pseudomonas putida as a test system for studying mutational processes. We found that in addition to the appearance of large colonies which were clearly visible on Rif selective plates already after 24 h of plating, small colonies grew up on these plates for 48 h. The time-dependent appearance of the mutant colonies onto selective plates was caused by different levels of Rif resistance of the mutants. The Rifr clusters of the rpoB gene were sequenced and analyzed for 360 mutants of P. aeruginosa and for 167 mutants of P. putida. The spectrum of Rifr mutations characterized for P. aeruginosa grown at 37 °C and that characterized for P. putida grown at 30 °C were dissimilar but the differences almost disappeared when the mutants of both strain were isolated at the same temperature, at 30 °C. The strong Rifr phenotype of P. aeruginosa and P. putida was accompanied only with substitutions of these residues which belong to the putative Rif-binding pocket. Approximately 70% of P. aeruginosa mutants, which were isolated at 37 °C and expressed weak Rifr phenotype, contained base substitutions in the N-terminal cluster of the rpoB gene. The differences in the spectra of mutations at 30 °C and 37 °C can be explained by temperature-sensitive growth of several mutants in the presence of rifampicin. Thus, our results imply that both the temperature for the growth of bacteria and the time for isolation of Rifr mutants from selective plates are critical when the rpoB/Rifr test system is employed for comparative studies of mutagenic processes in Pseudomonas species which are conventionally cultivated at different temperatures.  相似文献   

11.
Enzymatic hydrolysis of phosphorus (P) in bed sediments is an important process that maintains bioavailable P in the river systems. The P bioavailability is the criterion for assessing the eutrophication potential in rivers and streams. The objective of this research was to determine potential bioavailability of organic P (OP) in the Bronx River bed sediments using native phosphatases (NPase) and phosphodiesterase (PDEase) hydrolysis. The bed sediments collected in summer 2006 and 2007 were incubated at 37 °C for 6 h at pH 7.5 with NPase. The results showed that NPase hydrolyzed a substantial amount of OP (up to 76%) under favorable temperature and pH, indicating OP could be hydrolyzed under increased temperature, and in turn increase in P availability in the river. Similarly, the resulting form sediments incubated with PDEase at 37 °C and pH 8.8 showed that up to 82% of OP could be hydrolyzed. Strong correlations between percentage of OP hydrolyzed by PDEase and organic matter (OM) were observed for sediments collected in 2006 (r = 0.745; p  0.01) and 2007 (r = 0.724; p  0.01), indicating PDEase hydrolysable P is mainly associated with OM. It is indicative that local hydro-climatic changes such as temperature increase and pH variations could hydrolyze a substantial amount of OP and increase bioavailable P in the water column, resulting in a potential threat to the river ecosystems.  相似文献   

12.
《Journal of Asia》2014,17(1):83-91
The developmental time and survival of the immature stages of Cnaphalocrocis medinalis Guenée were studied at nine constant temperatures (15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, and 35 °C), 40 ± 10% relative humidity, and a 16:8 h light:dark cycle. The total developmental time decreased with increasing temperature between 15 (115.6 days) and 32.5 °C (20.9 days), but increased above 32.5 °C. The relationship between the developmental rate and temperature was fitted by a linear model and three nonlinear developmental rate models (Logan 6, Briere 1, and Shi et al.). The nonlinear shape of temperature-dependent development was best described by the Briere 1 model (r2 = 0.99), and this was supported by statistical information criteria. The total mortality of immature C. medinalis was lowest at 25 °C (67.2%) and highest at 35 °C (98.1%). The distribution of the developmental times of each stage was described by the two-parameter Weibull distribution equation (r2 = 0.84–0.96). The predicted date for the cumulative 50% moth emergence was within a variation of one day using the Briere 1 model. The temperature-dependent developmental models for C. medinalis could be applied to determine an optimal management strategy for C. medinalis in paddy fields, and will be helpful in developing a full-cycle phenology model for C. medinalis.  相似文献   

13.
Twenty-six winter wheat forages (cultivars Slepjner, Hussar and Cadenza) harvested at three stages of maturity in each of two years, were conserved with or without Maxgrass additive or with urea (20 or 40 g kg−1 dry matter; DM) in 200 l barrels. The forages were analysed for in vivo digestibility in wethers, chemical composition, in vitro rumen fluid-pepsin digestibility, in vitro neutral detergent-cellulase plus gamannase digestibility (NCGD), in vitro fermentation gas production and in situ rumen degradability. Forages were also scanned using near-infrared reflectance spectroscopy (NIRS) and calibration equations developed for predicting in vivo digestibility. In vivo digestible organic matter content (DOMD) was poorly predicted by cell wall content (r2≤0.19), NCGD (r2≤0.41), rumen fluid DOMD (r2≤0.41), rumen degradability (r2≤0.44) and in vitro gas production (r2≤0.26). Although crude protein content was a better predictor (r2≤0.48), the relationship differed (P<0.05) with the year of harvest of the forages. In contrast, NIRS was a more accurate and consistent predictor of DOMD in vivo (r2=0. 87). This study indicates that traditional laboratory-based feed evaluation techniques are unsuitable for predicting the DOMD of WCW, but that NIRS holds promise. However, as only 26 forages were used to derive the calibration equation, further research is required using large (150) data sets to validate the promise shown by NIRS and enable its adoption by the advisory services.  相似文献   

14.
Development of immature Thrips palmi Karny was investigated at 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, and 35 °C, 20–40% RH and a photoperiod of 14:10 (L:D) h. Developmental time decreased with increasing temperature up to 32.5 °C in all stages. The total developmental time was longest at 12.5 °C (64.2 days) and shortest at 32.5 °C (9.2 days). The lower developmental threshold was 10.6, 10.6, 9.1, and 10.7 °C for egg, larva, prepupa, and pupa, respectively. The thermal constant required to complete the respective stage was 71.7, 59.2, 18.1, and 36.8DD. The lower threshold temperature and thermal constant were 10.6 °C and 183.3DD, respectively, for total immature development. The nonlinear relationship between developmental rate and temperature was well described by the modified Sharpe and DeMichele biophysical model (r2 = 0.905–0.998). The distribution of developmental completion of each stage was described by the 3-parameter Weibull function (r2 = 0.855–0.927). The temperature-dependent developmental models of T. palmi developed in this study could be used to predict its seasonal phenology in field and greenhouse vegetable crops.  相似文献   

15.
The aim of this study was to determine the effects of catchment and riparian stream buffer-wide urban and non-urban land cover/land use (LC/LU) on total nitrogen (TN) and total phosphorus (TP) runoff to the Chesapeake Bay. The effects of the composition and configuration of LC/LU patches were explored in particular. A hybrid-statistical-process model, the SPAtially Referenced Regression On Watershed attributes (SPARROW), was calibrated with year 1997 watershed-wide, average annual TN and TP discharges to Chesapeake Bay. Two variables were predicted: (1) yield per unit watershed area and (2) mass delivered to the upper estuary. The 166,534 km2 watershed was divided into 2339 catchments averaging 71 km2. LC/LU was described using 16 classes applied to both the catchments and also to riparian stream buffers alone. Seven distinct landscape metrics were evaluated. In all, 167 (TN) and 168 (TP) LC/LU class metric combinations were tested in each model calibration run. Runs were made with LC/LU in six fixed riparian buffer widths (31, 62, 125, 250, 500, and 1000 meters (m)) and entire catchments. The significance of the non-point source type (land cover, manure and fertilizer application, and atmospheric deposition) and factors affecting land-to-water delivery (physiographic province and natural or artificial land surfaces) was assessed. The model with a 31 m riparian stream buffer width accounted for the highest variance of mean annual TN (r2 = 0.9366) and TP (r2 = 0.7503) yield (mass for a specified time normalized by drainage area). TN and TP loadings (mass for a specified time) entering the Chesapeake Bay were estimated to be 1.449 × 108 and 5.367 × 106 kg/yr, respectively. Five of the 167 TN and three of the 168 TP landscape metrics were shown to be significant (p-value  0.05) either for non-point sources or land-to-water delivery variables. This is the first demonstration of the significance of riparian LC/LU and landscape metrics on water quality simulation in a watershed as large as the Chesapeake Bay. Land cover metrics can therefore be expected to improve the precision of estimated TN and TP annual loadings to the Chesapeake Bay and may also suggest changes in land management that may be beneficial in control of nutrient runoff to the Chesapeake Bay and similar watersheds elsewhere.  相似文献   

16.
Accurate monitoring and quantification of the structure and function of semiarid ecosystems is necessary to improve carbon and water flux models that help describe how these systems will respond in the future. The leaf area index (LAI, m2 m−2) is an important indicator of energy, water, and carbon exchange between vegetation and the atmosphere. Remote sensing techniques are frequently used to estimate LAI, and can provide users with scalable measurements of vegetation structure and function. We tested terrestrial laser scanning (TLS) techniques to estimate LAI using structural variables such as height, canopy cover, and volume for 42 Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis Beetle & Young) shrubs across three study sites in the Snake River Plain, Idaho, USA. The TLS-derived variables were regressed against sagebrush LAI estimates calculated using specific leaf area measurements, and compared with point-intercept sampling, a field method of estimating LAI. Canopy cover estimated with the TLS data proved to be a good predictor of LAI (r2 = 0.73). Similarly, a convex hull approach to estimate volume of the shrubs from the TLS data also strongly predicted LAI (r2 = 0.76), and compared favorably to point-intercept sampling (r2 = 0.78), a field-based method used in rangelands. These results, coupled with the relative ease-of-use of TLS, suggest that TLS is a promising tool for measuring LAI at the shrub-level. Further work should examine the structural measures in other similar shrublands that are relevant for upscaling LAI to the plot-level (i.e., hectare) using data from TLS and/or airborne laser scanning and to regional levels using satellite-based remote sensing.  相似文献   

17.
《Harmful algae》2010,9(6):864-872
The taxonomical relationship of Cylindrospermopsis raciborskii and Raphidiopsis mediterranea was studied by morphological and 16S rRNA gene diversity analyses of natural populations from Lake Kastoria, Greece. Samples were obtained during a bloom (23,830 trichomes mL−1) in August 2003. A high diversity of apical cell, trichome, heterocyte and akinete morphology, trichome fragmentation and reproduction was observed. Trichomes were grouped into three dominant morphotypes: the typical and the non-heterocytous morphotype of C. raciborskii and the typical morphotype of R. mediterranea. A morphometric comparison of the dominant morphotypes showed significant differences in mean values of cell and trichome sizes despite the high overlap in the range of the respective size values. Additionally, two new morphotypes representing developmental stages of the species are described while a new mode of reproduction involving a structurally distinct reproductive cell is described for the first time in planktic Nostocales. A putative life-cycle, common for C. raciborskii and R. mediterranea is proposed revealing that trichome reproduction of R. mediterranea gives rise both to R. mediterranea and C. raciborskii non-heterocytous morphotypes. The phylogenetic analysis of partial 16S rRNA gene (ca. 920 bp) of the co-existing Cylindrospermopsis and Raphidiopsis morphotypes revealed only one phylotype which showed 99.54% similarity to R. mediterranea HB2 (China) and 99.19% similarity to C. raciborskii form 1 (Australia). We propose that all morphotypes comprised stages of the life cycle of C. raciborkii whereas R. mediterranea from Lake Kastoria (its type locality) represents non-heterocytous stages of Cylindrospermopsis complex life cycle.  相似文献   

18.
19.
Trees are recognized as a carbon reservoir, and precise and convenient methods for forest biomass estimation are required for adequate carbon management. Airborne light detection and ranging (LiDAR) is considered to be one of the solutions for large-scale forest biomass evaluation. To clarify the relationship between mean canopy height determined by airborne LiDAR and forest timber volume and biomass of cool-temperate forests in northern Hokkaido, Japan, we conducted LiDAR observations covering the total area of the Teshio Experimental Forest (225 km2) of Hokkaido University and compared the results with ground surveys and previous studies. Timber volume and aboveground tree carbon content of the studied forest stands ranged from 101.43 to 480.40 m3 ha–1 and from 30.78 to 180.54 MgC ha–1, respectively. The LiDAR mean canopy height explained the variation among stands well (volume: r2 = 0.80, RMSE = 55.04 m3 ha–1; aboveground tree carbon content: r2 = 0.78, RMSE = 19.10 MgC ha–1) when one simple linear regression equation was used for all types (hardwood, coniferous, and mixed) of forest stands. The determination of a regression equation for each forest type did not improve the prediction power for hardwood (volume: r2 = 0.84, RMSE = 62.66 m3 ha–1; aboveground tree carbon content: r2 = 0.76, RMSE = 27.05 MgC ha–1) or coniferous forests (volume: r2 = 0.75, RMSE = 51.07 m3 ha–1; aboveground tree carbon content: r2 = 0.58, RMSE = 19.00 MgC ha–1). Thus, the combined regression equation that includes three forest types appears to be adequate for practical application to large-scale forest biomass estimation.  相似文献   

20.
N,N-dimethyldodecylamine-N-oxide (C12NO) is a surfactant that may exist either in a neutral or cationic protonated form depending on the pH of aqueous solutions. Using small angle X-ray diffraction (SAXD) we observe the rich structural polymorphism of pH responsive complexes prepared due to DNA interaction with C12NO/dioleoylphosphatidylethanolamine (DOPE) vesicles and discuss it in view of utilizing the surfactant for the gene delivery vector of a pH sensitive system. In neutral solutions, the DNA uptake is low, and a lamellar Lα phase formed by C12NO/DOPE is prevailing in the complexes at 0.2  C12NO/DOPE < 0.6 mol/mol. A maximum of ~ 30% of the total DNA volume in the sample is bound in a condensed lamellar phase LαC at C12NO/DOPE = 1 mol/mol and pH 7.2. In acidic conditions, a condensed inverted hexagonal phase HIIC was observed at C12NO/DOPE = 0.2 mol/mol. Commensurate lattice parameters, aHC  dLC, were detected at 0.3  C12NO/DOPE  0.4 mol/mol and pH = 4.9–6.4 suggesting that LαC and HIIC phases were epitaxially related. While at the same composition but pH ~ 7, the mixture forms a cubic phase (Pn3m) when the complexes were heated to 80 °C and cooled down to 20 °C. Finally, a large portion of the surfactant (C12NO/DOPE > 0.5) stabilizes the LαC phase in C12NO/DOPE/DNA complexes and the distance between DNA strands (dDNA) is modulated by the pH value. Both the composition and pH affect the DNA binding in the complexes reaching up to ~ 95% of the DNA total amount at acidic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号