首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Enzyme immobilization often achieves reusable biocatalysts with improved operational stability and solvent resistance. However, these modifications are generally associated with a decrease in activity or detrimental modifications in catalytic properties. On the other hand, protein engineering aims to generate enzymes with increased performance at specific conditions by means of genetic manipulation, directed evolution and rational design. However, the achieved biocatalysts are generally generated as soluble enzymes, ?thus not reusable- and their performance under real operational conditions is uncertain.Combined protein engineering and enzyme immobilization approaches have been employed as parallel or consecutive strategies for improving an enzyme of interest. Recent reports show efforts on simultaneously improving both enzymatic and immobilization components through genetic modification of enzymes and optimizing binding chemistry for site-specific and oriented immobilization. Nonetheless, enzyme engineering and immobilization are usually performed as separate workflows to achieve improved biocatalysts.In this review, we summarize and discuss recent research aiming to integrate enzyme immobilization and protein engineering and propose strategies to further converge protein engineering and enzyme immobilization efforts into a novel “immobilized biocatalyst engineering” research field. We believe that through the integration of both enzyme engineering and enzyme immobilization strategies, novel biocatalysts can be obtained, not only as the sum of independently improved intrinsic and operational properties of enzymes, but ultimately tailored specifically for increased performance as immobilized biocatalysts, potentially paving the way for a qualitative jump in the development of efficient, stable biocatalysts with greater real-world potential in challenging bioprocess applications.  相似文献   

2.
Immobilization is a key technology for successful realization of enzyme‐based industrial processes, particularly for production of green and sustainable energy or chemicals from biomass‐derived catalytic conversion. Different methods to immobilize enzymes are critically reviewed. In principle, enzymes are immobilized via three major routes (i) binding to a support, (ii) encapsulation or entrapment, or (iii) cross‐linking (carrier free). As a result, immobilizing enzymes on certain supports can enhance storage and operational stability. In addition, recent breakthroughs in nano and hybrid technology have made various materials more affordable hosts for enzyme immobilization. This review discusses different approaches to improve enzyme stability in various materials such as nanoparticles, nanofibers, mesoporous materials, sol–gel silica, and alginate‐based microspheres. The advantages of stabilized enzyme systems are from its simple separation and ease recovery for reuse, while maintaining activity and selectivity. This review also considers the latest studies conducted on different enzymes immobilized on various support materials with immense potential for biosensor, antibiotic production, food industry, biodiesel production, and bioremediation, because stabilized enzyme systems are expected to be environmental friendly, inexpensive, and easy to use for enzyme‐based industrial applications.  相似文献   

3.
The stability of biocatalysis in systems containing organic solvents is reviewed. Among the examples presented are homogeneous mixtures of water and water-miscible organic solvents, aqueous/organic two-phase systems, solid biocatalysts suspended in organic solvents, enzymes in reverse micelles and modified enzymes soluble in water immiscible solvents. The stability of biocatalysts in organic solvents depends very much on the conditions. The hydrophobicity or the polarity of the solvent is clearly of great importance. More hydrophobic solvents (higher log P values) are less harmful to enzymes than less hydrophobic solvents. The water content of the system is a very important parameter. Some water is essential for enzymatic activity; however, the stability of enzymes decreases with increasing water content. Mechanisms of enzyme inactivation are discussed.  相似文献   

4.
Geotrichum sp. lipase with enhanced activity and operational stability was prepared for use in non-aqueous media. A combined strategy comprising bioimprinting with dual imprint molecules and a co-solvent coupled to pH tuning, KCl salt activation, lecithin coating and immobilization on macroporous resin effectively enhanced the activity and operational stability of Geotrichum sp. lipase. The modified lipase exhibited 18.4-fold enhanced esterification activity towards methyl oleate synthesis, and retained 90% activity following repeated use in 10 cycles. The combined strategy exhibited a significant synergistic effect and was suitable for lipase modification, dramatically enhancing the enzyme activity and operational stability. This approach is applicable to the preparation of other enzyme biocatalysts, since the methods are effective for upgrading crude enzyme to a refined product with high activity and stability for use in non-aqueous media.  相似文献   

5.
Industrial use of Novozym 435 in synthesis of structured lipids and biodiesel via alcoholysis is limited by mass transfer effects of the glycerides through immobilized enzymes and its low operational stability under operation conditions. To better understand this, differently modified Novozym 435 preparations, differing in their surface nature and in their interactions with reactants, have been compared in the alcoholysis of Camelina sativa oil. The three modifications performed have been carried out under conditions where all exposed groups of the enzyme have been modified. These modifications were: 2,4,6-trinitrobenzensulfonic acid (Novo-TNBS), ethylendiamine (Novo-EDA) and polyethylenimine (Novo-PEI). Changes in their operational performance are analyzed in terms of changes detected by scan electron microscopy in the support morphology.The hydrophobic nature of the TNBS accelerates the reaction rate; t-ButOH co-solvent swells the macroporous acrylic particles of Lewatit VP OC 1600 in all biocatalysts, except in the case of Novo-PEI. This co-solvent only increases the maximal conversions obtained at 24 h using the modified biocatalysts. t-ButOH reduces enzyme inactivation by alcohol and water. In a co-solvent system, these four biocatalysts remain fully active after 14 consecutive reaction cycles of 24 h, but only Novo-TNBS yields maximal conversion before cycle 5. Some deposits on biocatalyst particles could be appreciated during reuses, and TNBS derivatization diminishes the accumulation of product deposits on the catalyst surface. Most particles of commercial Novozym® 435 are broken after operation for 14 reaction cycles. The broken particles are fully active, but they cause problems of blockage in filtration operations and column reactors. The three derivatizations studied make the matrix particles more resistant to rupture.  相似文献   

6.
酶分子的生物学功能很大程度上是由其三维空间结构和所处溶剂环境共同决定的。因此,优化酶分子的结构性质以及探索其性质最优的溶剂环境是改善酶分子功能以及进行理性设计的一个可行途径。从实际应用的角度来看,分子设计方法可以为酶工程提供一种有效的解决方案。目前,酶分子设计有两个重要的研究方向,包括提高酶分子的催化活力和优化其稳定性。同时,对酶分子设计方法的研究也有助于对蛋白质生物学机理的探索。在近些年的学术界酶分子设计案例中,生物信息学方法得到广泛的应用。本文系统地总结基于生物信息学的酶分子设计方法的背景、策略和一些经典案例。  相似文献   

7.
Lipases (triacylglycerol ester hydrolases, EC 3.1.1.3) are ubiquitous enzymes that catalyze the breakdown of fats and oils with subsequent release of free fatty acids, diacylglycerols, monoglycerols and glycerol. Besides this, they are also efficient in various reactions such as esterification, transesterification and aminolysis in organic solvents. Therefore, those enzymes are nowadays extensively studied for their potential industrial applications. Examples in the literature are numerous concerning their use in different fields such as resolution of racemic mixtures, synthesis of new surfactants and pharmaceuticals, oils and fats bioconversion and detergency applications. However, the drawbacks of the extensive use of lipases (and biocatalysts in general) compared to classical chemical catalysts can be found in the relatively low stability of enzyme in their native state as well as their prohibitive cost. Consequently, there is a great interest in methods trying to develop competitive biocatalysts for industrial applications by improvement of their catalytic properties such as activity, stability (pH or temperature range) or recycling capacity. Such improvement can be carried out by chemical, physical or genetical modifications of the native enzyme. The present review will survey the different procedures that have been developed to enhance the properties of lipases. It will first focus on the physical modifications of the biocatalysts by adsorption on a carrier material, entrapment or microencapsulation. Chemical modifications and methods such as modification of amino acids residues, covalent coupling to a water-insoluble material, or formation of cross-linked lipase matrix, will also be reviewed. Finally, new and promising methods of lipases modifications by genetic engineering will be discussed.  相似文献   

8.
Carbohydrate processing enzymes are of biocatalytic interest. Glycoside hydrolases and the recently discovered lytic polysaccharide monooxygenase for their use in biomass degradation to obtain biofuels or valued chemical entities. Glycosyltransferases or engineered glycosidases and phosphorylases for the synthesis of carbohydrates and glycosylated products. Quantum mechanics-molecular mechanics (QM/MM) methods are highly contributing to establish their different chemical reaction mechanisms. Other computational methods are also used to study enzyme conformational changes, ligand pathways, and processivity, e.g. for processive glycosidases like cellobiohydrolases. There is still a long road to travel to fully understand the role of conformational dynamics in enzyme activity and also to disclose the variety of reaction mechanisms these enzymes employ. Additionally, computational tools for enzyme engineering are beginning to be applied to evaluate substrate specificity or aid in the design of new biocatalysts with increased thermostability or tailored activity, a growing field where molecular modeling is finding its way.  相似文献   

9.
Yeast Saccharomyces cerevisiae is the most significant source of enzyme invertase. It is mainly used in the food industry as a soluble or immobilized enzyme. The greatest amount of invertase is located in the periplasmic space in yeast. In this work, it was isolated into two forms of enzyme from yeast S. cerevisiae cell, soluble and cell wall invertase (CWI). Both forms of enzyme showed same temperature optimum (60°C), similar pH optimum, and kinetic parameters. The significant difference between these biocatalysts was observed in their thermal stability, stability in urea and methanol solution. At 60°C, CWI had 1.7 times longer half-life than soluble enzyme, while at 70°C CWI showed 8.7 times longer half-life than soluble enzyme. After 2-hr of incubation in 8?M urea solution, soluble invertase and CWI retained 10 and 60% of its initial activity, respectively. During 22?hr of incubation of both enzymes in 30 and 40% methanol, soluble invertase was completely inactivated, while CWI changed its activity within the experimental error. Therefore, soluble invertase and CWI have not shown any substantial difference, but CWI showed better thermal stability and stability in some of the typical protein-denaturing agents.  相似文献   

10.
Lytic polysaccharide monooxygenases (LPMOs) are copper ion-containing enzymes that degrade crystalline polysaccharides, such as cellulose or chitin, through an oxidative mechanism. To the best of our knowledge, there are no assay methods for the direct characterization of LPMOs that degrade substrates without coupled enzymes. As such, in this study, a coupled enzyme-free assay method for LPMOs was developed, which is based on measuring the consumption of ascorbic acid used as an external electron donor for LPMOs. To establish this new assay method, a chitin-active LPMO from Bacillus atrophaeus (BatLPMO10) was cloned as a model enzyme. An expression system using B. subtilis as the host cell yielded a simple purification process without complicated periplasmic fractionation, as well as improved productivity by 3.7-fold higher than that of Escherichia coli BL21(DE3). At the optimum pH determined using a newly developed assay, BatLPMO10 showed the highest activity in terms of promoting chitin degradation by a chitinase. In addition, the assay method indicated that BatLPMO10 was inhibited by sodium ions, and BatLPMO10 and a chitinase mutually enhanced each other’s activities upon degrading chitin as the substrate. In conclusion, this hydrolase-free ascorbate assay allows quantitative analysis of BatLPMO10 without a coupled enzyme.  相似文献   

11.
Some enzymes are inactivated by their natural substrates during catalytic turnover, limiting the ultimate extent of reaction. These enzymes can be separated into three broad classes, depending on the mechanism of the inactivation process. The first type is enzymes which use molecular oxygen as a substrate. The second type is inactivated by hydrogen peroxide, which is present either as a substrate or a product, and are stabilized by high catalase activity. The oxidation of both types of enzymes shares common features with oxidation of other enzymes and proteins. The third type of enzyme is inactivated by non-oxidative processes, mainly reversible loss of cofactors or attached groups. Sub classes are defined within each broad classification based on kinetics and stoichiometry. Reaction-inactivation is in part a regulatory mechanism in vivo, because specific proteolytic systems give rapid turnover of such labelled enzymes. The methods for enhancing the stability of these enzymes under reaction conditions depends on the enzyme type. The kinetics of these inactivation reactions can be used to optimize bioreactor design and operation.  相似文献   

12.
Enzyme mutagenesis is a commonly used tool to investigate the structure and activity of enzymes. However, even minute contamination of a weakly active mutant enzyme by a considerably more active wild-type enzyme can partially or completely obscure the activity of the mutant enzyme. In this work, we propose a theoretical approach using reaction timecourses and initial velocity measurements to determine the actual contamination level of an undesired wild-type enzyme. To test this method, we applied it to a batch of the Q215A/R235A double mutant of orotidine 5′-monophosphate decarboxylase (OMPDC) from Saccharomyces cerevisiae that was inadvertently contaminated by the more active wild-type OMPDC from Escherichia coli. The enzyme preparation showed significant deviations from the expected kinetic behavior at contamination levels as low as 0.093 mol%. We then confirmed the origin of the unexpected kinetic behavior by deliberately contaminating a sample of the mutant OMPDC from yeast that was known to be pure, with 0.015% wild-type OMPDC from E. coli and reproducing the same hybrid kinetic behavior.  相似文献   

13.
We have proposed a novel assay for lipases and esterases activity determination based on potentiometry with ion-selective electrodes (ISEs). Enzyme preparations, obtained from the living cells, are complex mixtures of various proteins, short peptides, lipids, carbohydrates, and other compounds. The most commonly used quantitative methods in enzyme studies are based on spectrophotometric or spectroflourimetric protocols which has significant limitations. They are not valid for samples that are turbid or strongly colored. To overcome those drawbacks we have proposed an assay based on potentiometry with ISEs for lipases and esterases activity determination. This electrochemical methodology represents an attractive tool for enzyme analysis, because of its low detection limit, independence from sample volume and from sample turbidity. The usefulness of this assay has been proven by the determination of the activity of various raw enzymes “acetone powders” isolated from animal tissues. Moreover, activities of fractions obtained during purification of one of those raw biocatalysts were also determined that way. The reliability of determination enzyme activity with ISE assay was proven by comparison with a classical spectrophotometric method.  相似文献   

14.
The development of efficient tools is required for the eco-friendly detoxification and effective detection of neurotoxic organophosphates (OPs). Although enzymes have received significant attention as biocatalysts because of their high specific activity, the uneconomic and labor-intensive processes of enzyme production and purification make their broad use in practical applications difficult. Because whole-cell systems offer several advantages compared with free enzymes, including high stability, a reduced purification requirement, and low preparation cost, they have been suggested as promising biocatalysts for the detoxification and detection of OPs. To develop efficient whole-cell biocatalysts with enhanced activity and a broad spectrum of substrate specificity, several factors have been considered, namely the selected strains, the chosen OP-hydrolyzing enzymes, where enzymes are localized in a cell, and which enhancer will assist the expression, function, and folding of the enzyme. In this article, we review the current investigative progress in the development of engineered whole-cell biocatalysts with excellent OP-hydrolyzing activity, a broad spectrum of substrate specificity, and outstanding stability for the detoxification and detection of OPs.  相似文献   

15.
Avibactam is a non-β-lactam β-lactamase inhibitor with a spectrum of activity that includes β-lactamase enzymes of classes A, C, and selected D examples. In this work acylation and deacylation rates were measured against the clinically important enzymes CTX-M-15, KPC-2, Enterobacter cloacae AmpC, Pseudomonas aeruginosa AmpC, OXA-10, and OXA-48. The efficiency of acylation (k2/Ki) varied across the enzyme spectrum, from 1.1 × 101 m−1s−1 for OXA-10 to 1.0 × 105 for CTX-M-15. Inhibition of OXA-10 was shown to follow the covalent reversible mechanism, and the acylated OXA-10 displayed the longest residence time for deacylation, with a half-life of greater than 5 days. Across multiple enzymes, acyl enzyme stability was assessed by mass spectrometry. These inhibited enzyme forms were stable to rearrangement or hydrolysis, with the exception of KPC-2. KPC-2 displayed a slow hydrolytic route that involved fragmentation of the acyl-avibactam complex. The identity of released degradation products was investigated, and a possible mechanism for the slow deacylation from KPC-2 is proposed.  相似文献   

16.
Enzymes immobilized on carbon nanotubes   总被引:1,自引:0,他引:1  
Enzyme immobilizations on carbon nanotubes for fabrication of biosensors and biofuel cells and for preparation of biocatalysts are rapidly emerging as new research areas. Various immobilization methods have been developed, and in particular, specific attachment of enzymes on carbon nanotubes has been an important focus of attention. The method of immobilization has an effect on the preservation of the enzyme structure and retention of the native biological function of the enzyme. In this review, we focus on recent advances in methodology for enzyme immobilization on carbon nanotubes.  相似文献   

17.
Lipases are the most widely used enzymes in biocatalysis, and the most utilized method for enzyme immobilization is using hydrophobic supports at low ionic strength. This method allows the one step immobilization, purification, stabilization, and hyperactivation of lipases, and that is the main cause of their popularity. This review focuses on these lipase immobilization supports. First, the advantages of these supports for lipase immobilization will be presented and the likeliest immobilization mechanism (interfacial activation on the support surface) will be revised. Then, its main shortcoming will be discussed: enzyme desorption under certain conditions (such as high temperature, presence of cosolvents or detergent molecules). Methods to overcome this problem include physical or chemical crosslinking of the immobilized enzyme molecules or using heterofunctional supports. Thus, supports containing hydrophobic acyl chain plus epoxy, glutaraldehyde, ionic, vinylsulfone or glyoxyl groups have been designed. This prevents enzyme desorption and improved enzyme stability, but it may have some limitations, that will be discussed and some additional solutions will be proposed (e.g., chemical amination of the enzyme to have a full covalent enzyme-support reaction). These immobilized lipases may be subject to unfolding and refolding strategies to reactivate inactivated enzymes. Finally, these biocatalysts have been used in new strategies for enzyme coimmobilization, where the most stable enzyme could be reutilized after desorption of the least stable one after its inactivation.  相似文献   

18.
The ionization properties of the active-site residues in enzymes are of considerable interest in the study of the catalytic mechanisms of enzymes. Knowledge of these ionization constants (pKa values) often allows the researcher to identify the proton donor and the catalytic nucleophile in the reaction mechanism of the enzyme. Estimates of protein residue pKa values can be obtained by applying pKa calculation algorithms to protein X-ray structures. We show that pKa values accurate enough for identifying the proton donor in an enzyme active site can be calculated by considering in detail only the active-site residues and their immediate electrostatic interaction partners, thus allowing for a large decrease in calculation time. More specifically we omit the calculation of site-site interaction energies, and the calculation of desolvation and background interaction energies for a large number of pairs of titratable groups. The method presented here is well suited to be applied on a genomic scale, and can be implemented in most pKa calculation algorithms to give significant reductions in calculation time with little or no impact on the accuracy of the results. The work presented here has implications for the understanding of enzymes in general and for the design of novel biocatalysts.  相似文献   

19.
Bacillus subtilis lipase A (BSLA) has been extensively studied through protein engineering; however, its immobilization and behavior as an insoluble biocatalyst have not been extensively explored. In this work, for the first time, a direct immobilization of recombinant BSLA from microbial culture supernatant was reported, using chemically modified porous with different electrostatic, hydrophobic, hydrophilic, and hydrophilic−hydrophobic enzyme-support interactions. The resulting biocatalysts were evaluated based on their immobilization kinetics, activity expression (pH 7.4), thermal stability (50 °C), solvent resistance and substrate preference. Biocatalysts obtained using glyoxyl silica support resulted in the selective immobilization of BSLA, resulting in an activity recovery of 50 % and an outstanding aqueous stabilization factor of 436, and 9.5 in isopropyl alcohol, compared to the free enzyme. This selective immobilization methodology of BSLA allows to efficiently generate immobilized biocatalysts, thus avoiding laborious purification steps from cell culture supernatant, which is usually a limiting step when large amounts of enzyme variants or candidates are assessed as immobilized biocatalysts. Direct enzyme immobilization from cell supernatant provides an interesting tool which can be used to facilitate the development and assessment of immobilized biocatalysts from engineered enzyme variants and mutant libraries, especially in harsh conditions, such as high temperatures or non-aqueous solvents, or against non-water-soluble substrates. Furthermore, selective immobilization approaches from cell culture supernatant or clarified lysates could help bridging the gap between protein engineering and enzyme immobilization, allowing for the implementation of immobilization steps in high throughput enzyme screening platforms for their potential use in directed evolution campaigns.  相似文献   

20.
Nonporous and mesoporous silica-coated magnetite cluster nanocomposites particles were fabricated with various silica structures in order to develop a desired carrier for the lipase immobilization and subsequent biodiesel production. Lipase from Pseudomonas cepacia was covalently bound to the amino-functionalized particles using glutaraldehyde as a coupling agent. The hybrid systems that were obtained exhibited high stability and easy recovery regardless of the silica structure, following the application of an external magnetic field. The immobilized lipases were then used as the recoverable biocatalyst in a transesterification reaction to convert the soybean oil to biodiesel with methanol. Enzyme immobilization led to higher stabilities and conversion values as compared to what was obtained by the free enzyme. Furthermore, the silica structure had a significant effect on stability and catalytic performance of immobilized enzymes. In examining the reusability of the biocatalysts, the immobilized lipases still retained approximately 55% of their initial conversion capability following 5 times of reuse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号