首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Flavobacterium ATCC 27551 was used as a model system for the preparation of magnetic biocatalysts. The magnetic modification was carried out by covalently binding carboxylate- and amino-modified magnetic nanoparticles onto cells. Magnetic Fe3O4 nanoparticles were also used for ionic adsorption on the cell surface. Magnetically modified cells were concentrated using a magnet and exhibited organophosphate hydrolyzing activity. The Taguchi method was used to optimize the binding of the magnetic nanoparticles on the cell surface. SEM image analyses demonstrated good linkage of the magnetic nanoparticles over the Flavobacterium ATCC 27551 cell surface. Under optimal conditions, the magnetic cells displayed specific activity ratios of 93%, 89% and 95%, compared with untreated cells, after the covalent coupling with carboxylate- and amino-modified magnetic nanoparticles and the ionic adsorption of magnetic Fe3O4 nanoparticles, respectively.  相似文献   

2.
A strategy has been applied to chloramphenicol (CAP) detection with chemiluminescence immunoassays (CLIA) based on cheap functionalized Fe3O4@SiO2 magnetic nanoparticles (Fe–MNPs). The strategy that bovine serum albumin (BSA) was immobilized on cheap functionalized Fe–MNPs and that the CAP molecules were then immobilized on BSA, avoided the long process of dialysis for preparation of the BSA‐CAP conjugates. The samples were detected for both methods that utilized two different kinds of functionalized Fe–MNPs (amine‐functionalized Fe3O4@SiO2 and carboxylic acid‐functionalized Fe3O4@SiO2). The sensitivities and limits of detection (LODs) of the two methods were obtained and compared based on inhibition curves. The 50% inhibition concentrations (IC50) values of the two methods were about 0.024 ng ml?1 and 0.046 ng ml?1 respectively and LODs were approximately 0.0002 ng ml?1 and 0.001 ng ml?1 respectively. These methods were much more sensitive than that of any traditional enzyme‐linked immunosorbent assay (ELISA) previously reported. Therefore, such chemiluminescence methods could be easily adapted for small molecule detection in a variety of foods using Fe–MNPs.  相似文献   

3.
In this work, the composites of magnetic Fe3O4@SiO2@poly (styrene‐co‐4‐vinylbenzene‐boronic acid) microspheres with well‐defined core–shell–shell structure were facilely synthesized and applied to selectively enrich glycopeptides. Due to the relatively large amount of vinyl groups introduced by 3‐methacryloxy‐propyl‐trimethoxysilane on the core‐shell surface, the poly(styrene‐co‐4‐vinylbenzeneboronic acid) (PSV) was coated with high efficiency, resulting in a large amount of boronic acid on the outermost polymer shell of the Fe3O4@SiO2@PSV microspheres, which is of great importance to improve the enrichment efficiency for glycopeptides. The obtained Fe3O4@SiO2@PSV microspheres were successfully applied to the enrichment of glycopeptides with strong specificity and high selectivity, evaluated by capturing glycopeptides from tryptic digestion of model glycoprotein HRP diluted to 0.05 ng/μL (1.25 × 10?13 mol, 100 μL), tryptic digest of HRP and nonglycosylated BSA up to the ratio of 1:120 w/w and the real complex sample human serum with 103 unique N‐glycosylation peptides of 46 different glycoproteins enriched.  相似文献   

4.
The scope of this study is to achieve carrier-bound immobilization of catalase onto magnetic particles (Fe3O4 and Fe2O3NiO2 · H2O) to specify the optimum conditions of immobilization. Removal of H2O2 and the properties of immobilized sets were also investigated. To that end, adsorption and then cross-linking methods onto magnetic particles were performed. The optimum immobilization conditions were found for catalase: immobilization time (15 min for Fe3O4; 10 min for Fe2O3NiO2 · H2O), the initial enzyme concentration (1 mg/mL), amount of magnetic particles (25 mg), and glutaraldehyde concentration (3%). The activity reaction conditions (optimum temperature, optimum pH, pH stability, thermal stability, operational stability, and reusability) were characterized. Also kinetic parameters were calculated by Lineweaver–Burk plots. The optimum pH values were found to be 7.0, 7.0, and 8.0 for free enzyme, Fe3O4-immobilized catalases, and Fe2O3NiO2 · H2O-immobilized catalases, respectively. All immobilized catalase systems displayed the optimum temperature between 25 and 35°C. Reusability studies showed that Fe3O4-immobilized catalase can be used 11 times with 50% loss in original activity, while Fe2O3NiO2 · H2O-immobilized catalase lost 67% of activity after the same number of uses. Furthermore, immobilized catalase systems exhibited improved thermal and pH stability. The results transparently indicate that it is possible to have binding between enzyme and magnetic nanoparticles.  相似文献   

5.
A novel and efficient immobilization of β-d-galactosidase from Aspergillus oryzae has been developed by using magnetic Fe3O4–chitosan (Fe3O4–CS) nanoparticles as support. The magnetic Fe3O4–CS nanoparticles were prepared by electrostatic adsorption of chitosan onto the surface of Fe3O4 nanoparticles made through co-precipitation of Fe2+ and Fe3+. The resultant material was characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry and thermogravimetric analysis. β-d-Galactosidase was covalently immobilized onto the nanocomposites using glutaraldehyde as activating agent. The immobilization process was optimized by examining immobilized time, cross-linking time, enzyme concentration, glutaraldehyde concentration, the initial pH values of glutaraldehyde and the enzyme solution. As a result, the immobilized enzyme presented a higher storage, pH and thermal stability than the soluble enzyme. Galactooligosaccharide was formed with lactose as substrate by using the immobilized enzyme as biocatalyst, and a maximum yield of 15.5% (w/v) was achieved when about 50% lactose was hydrolyzed. Hence, the magnetic Fe3O4–chitosan nanoparticles are proved to be an effective support for the immobilization of β-d-galactosidase.  相似文献   

6.
In recent decades, magnetic nanoparticles modified with biocompatible polymers have been recognized as a suitable tool for treating breast cancer. The aim of this research was to evaluate the function of chitosan/agarose-functionalized Fe2O3 nanoparticles on the MCF-7 breast cancer cell line and the expression of BCL2 and BAX genes. Free Fe2O3 nanoparticles were prepared by hydrothermal method. FTIR, XRD, SEM, DLS, VSM, and zeta potential analyses determined the size and morphological characteristics of the synthesized nanoparticles. The effect of Fe2O3 free nanoparticles and formulated Fe2O3 nanoparticles on induction of apoptosis was studied by double-dye Annexin V-FITC and PI. Also, the gene expression results using the PCR method displayed that Fe2O3 formulated nanoparticles induced BAX apoptosis by increasing the anti-apoptotic gene expression and decreasing the expression of pro-apoptotic gene BCL2, so the cell progresses to planned cell death. In addition, the results showed that the BAX/BCL2 ratio decreased significantly after treatment of MCF-7 cells with free Fe2O3 nanoparticles, and the BAX/BCL2 ratio for Fe2O3 formulated nanoparticles increased significantly. Also, to evaluate cell migration, the scratch test was performed, which showed a decrease in motility of MCF-7 cancer cells treated with Fe2O3 nanoparticles formulated with chitosan/agarose at concentrations of 10, 50, 100, and 200 μg/ml.  相似文献   

7.
A sensitive electrochemiluminescence (ECL) biosensor for cholesterol detection based on multifunctional core–shell structured microspheres (Fe3O4@SiO2–Au@mpSiO2) is reported. This microsphere consisted of a core of silica-coated magnetite nanoparticle, an active transition layer of gold nanoparticles and a mesoporous silica shell. Scanning electron microscopy was employed to observe the morphology of the nanomaterials and transmission electron microscopy was used to further confirm the subtle structure of Fe3O4@SiO2–Au@mpSiO2. The microspheres possessed a large surface area that increased enzyme loading, and an active transition layer gold nanoparticles enhanced the ECL signal. They were used to immobilize cholesterol oxidase for cholesterol detection with a high sensitivity, low detection limit and wide linear range. The linear range was from 0.83 to 2.62 mM with a detection limit of 0.28 µM (S/N = 3). Moreover, the reproducibility, stability and selectivity of the biosensor were established.  相似文献   

8.
Xu L  Guo C  Wang F  Zheng S  Liu CZ 《Bioresource technology》2011,102(21):10047-10051
A simple and rapid harvesting method by in situ magnetic separation with naked Fe3O4 nanoparticles has been developed for the microalgal recovery of Botryococcus braunii and Chlorella ellipsoidea. After adding the magnetic particles to the microalgal culture broth, the microalgal cells were adsorbed and then separated by an external magnetic field. The maximal recovery efficiency reached more than 98% for both microalgae at a stirring speed of 120 r/min within 1 min, and the maximal adsorption capacity of these Fe3O4 nanoparticles reached 55.9 mg-dry biomass/mg-particles for B. braunii and 5.83 mg-dry biomass/mg-particles for C. ellipsoidea. Appropriate pH value and high nanoparticle dose were favorable to the microalgae recovery, and the adsorption mechanism between the naked Fe3O4 nanoparticles and the microalgal cells was mainly due to the electrostatic attraction. The developed in situ magnetic separation technology provides a great potential for saving time and energy associated with improving microalgal harvesting.  相似文献   

9.
Microbial cells of Pseudomonas delafieldii were coated with magnetic Fe3O4 nanoparticles and then immobilized by external application of a magnetic field. Magnetic Fe3O4 nanoparticles were synthesized by a coprecipitation method followed by modification with ammonium oleate. The surface-modified Fe3O4 nanoparticles were monodispersed in an aqueous solution and did not precipitate in over 18 months. Using transmission electron microscopy (TEM), the average size of the magnetic particles was found to be in the range from 10 to 15 nm. TEM cross section analysis of the cells showed further that the Fe3O4 nanoparticles were for the most part strongly absorbed by the surfaces of the cells and coated the cells. The coated cells had distinct superparamagnetic properties. The magnetization (δs) was 8.39 emu · g−1. The coated cells not only had the same desulfurizing activity as free cells but could also be reused more than five times. Compared to cells immobilized on Celite, the cells coated with Fe3O4 nanoparticles had greater desulfurizing activity and operational stability.  相似文献   

10.
A new and simple method has been proposed to prepare magnetic Fe3O4-chitosan (CS) nanoparticles by cross-linking with sodium tripolyphosphate (TPP), precipitation with NaOH and oxidation with O2 in hydrochloric acid aqueous phase containing CS and Fe(OH)2, and these magnetic CS nanoparticles were used to immobilize lipase. The effects on the sequence of adding NaOH and TPP, the reaction temperature, and the ratio of CS/Fe(OH)2 were studied. TEM showed that the diameter of composite nanoparticles was about 80 nm, and that the magnetic Fe3O4 nanoparticles with a diameter of 20 nm were evenly dispersed in the CS materials. Magnetic measurement revealed that the saturated magnetisation of the Fe3O4-CS nanoparticles could reach 35.54 emu/g. The adsorption capacity of lipase onto nanoparticles could reach 129 mg/g; and the maximal enzyme activity was 20.02 μmol min−1 mg−1 (protein), and activity retention was as high as 55.6% at a certain loading amount.  相似文献   

11.
Magnetic nanoparticles (Fe3O4) were synthesized by thermal co-precipitation of ferric and ferrous chlorides. The sizes and structure of the particles were characterized using transmission electron microscopy (TEM). The size of the particles was in the range between 9.7 and 56.4 nm. Cholesterol oxidase (CHO) was successfully bound to the particles via carbodiimide activation. FTIR spectroscopy was used to confirm the binding of CHO to the particles. The binding efficiency was between 98 and 100% irrespective of the amount of particles used. Kinetic studies of the free and bound CHO revealed that the stability and activity of the enzyme were significantly improved upon binding to the nanoparticles. Furthermore, the bound enzyme exhibited a better tolerance to pH, temperature and substrate concentration. The activation energy for free and bound CHO was 13.6 and 9.3 kJ/mol, respectively. This indicated that the energy barrier of CHO activity was reduced upon binding onto Fe3O4 nanoparticles. The improvements observed in activity, stability, and functionality of CHO resulted from structural and conformational changes of the bound enzyme. The study indicates that the stability and activity of CHO could be enhanced via attachment to magnetic nanoparticles and subsequently will contribute to better uses of this enzyme in various biological and clinical applications.  相似文献   

12.
Chen H  Liu S  Li Y  Deng C  Zhang X  Yang P 《Proteomics》2011,11(5):890-897
The oleic acid‐functionalized magnetite nanoparticles (OA‐Fe3O4) with mean diameter of about 15 nm were synthesized through a low‐cost, one‐pot method and were designed as hydrophobic probes to realize the convenient, efficient and fast concentration of low‐concentration peptides followed by MALDI‐TOF‐MS analysis. The capability of OA‐Fe3O4 nanoparticles in concentration of low‐abundance peptides from simple and complex solutions were evaluated by comparing them with a sort of C8‐modified magnetic microspheres. Samples of standard peptide solution, protein digest solution and human serum were introduced in the evaluating process, and the OA‐Fe3O4 nanoparticles exhibited good surface affinity toward low‐concentration peptides  相似文献   

13.
Superparamagnetic Fe3O4 nanoparticles (NPs) based nanomaterials have been exploited in various biotechnology fields including biomolecule separation. However, slow accumulation of Fe3O4 NPs by magnets may limit broad applications of Fe3O4 NP-based nanomaterials. In this study, we report fabrication of Fe3O4 NPs double-layered silica nanoparticles (DL MNPs) with a silica core and highly packed Fe3O4 NPs layers. The DL MNPs had a superparamagnetic property and efficient accumulation kinetics under an external magnetic field. Moreover, the magnetic field-exposed DL MNPs show quantitative accumulation, whereas Fe3O4 NPs single-layered silica nanoparticles (SL MNPs) and silica-coated Fe3O4 NPs produced a saturated plateau under full recovery of the NPs. DL MNPs are promising nanomaterials with great potential to separate and analyze biomolecules.  相似文献   

14.
Magnetic core/shell Fe3O4/Au nanoparticles were used in the determination of drug binding to bovine serum albumin (BSA) using a fluorescence spectroscopic method. The binding constants and number of binding sites for protein with drugs were calculated using the Scatchard equation. Because of their superparamagnetic and biocompatible characteristics, magnetic core/shell Fe3O4/Au nanoparticles served as carrier proteins for fixing proteins. After binding of the protein to a drug, the magnetic core/shell Fe3O4/Au nanoparticles–protein–drug complex was separated from the free drug using an applied magnetic field. The free drug concentration was obtained directly by fluorescence spectrometry and the proteins did not influence the drug determination. So, the achieved number of binding sites should be reliable. The binding constant and site number for ciprofloxacin (CPFX) binding to BSA were 2.055 × 105 L/mol and 31.7, and the corresponding values for norfloxacin (NOR) binding to BSA were 1.383 × 105 L/mol and 38.8. Based on the achieved results, a suitable method was proposed for the determination of binding constants and the site number for molecular interactions. The method was especially suitable for studies on the interactions of serum albumin with the active ingredients of Chinese medicine. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
We developed a new magnetic nanovector to improve the efficiency and targeting of transgene therapy for oral squamous cell carcinoma (OSCC). Positively charged polymer PEI-modified Fe3O4 magnetic nanoparticles were tested as gene transfer vectors in the presence of a magnetic field. The Fe3O4 nanoparticles were prepared by a co-precipitation method and had good dispersibility in water. These nanoparticles modified by PEI were combined with negatively charged pACTERT-EGFP via electrostatic interaction. The transfection efficiency of the magnetic nano-gene vector with the magnetic field was determined by a fluorescence-inverted microscope and flow cytometry. The results showed significant improvement compared with the control group (p < 0.05). The magnetic complexes also exhibited up to 6-times higher transfection efficiency compared with commonly used PEI or lipofectin. On the basis of these results, the antitumor effect with suicide gene therapy using pACTERT-TRAIL in vitro and vivo was evaluated. In vitro apoptosis was determined with the Annexin V-FITC Apoptosis Detection Kit. The results suggested that PEI-modified Fe3O4 nanoparticles could mediate the killing of Tca83 cells. Furthermore, treatment with pACTERT-TRAIL delivered by magnetic nanoparticles showed a significant cytostatic effect through the induction of apoptosis in a xenograft model. This indicates that magnetic nano-gene vectors could improve the transgene efficiency for Tca83 cells and could exhibit antitumor functions with the plasmid pACTERT-TRAIL. This may be a new way to treat OSCC.  相似文献   

16.
Lipases have found a number of commercial applications. However, thermostable lipase immobilized on nanoparticle is not extensively characterized. In this study, a recombinant thermostable lipase (designated as TtL) from Thermus thermophilus WL was expressed in Escherichia coli and immobilized onto 3-APTES-modified Fe3O4@SiO2 supermagnetic nanoparticles. Based on analyses with tricine–sodium dodecyl sulfate–polyacrylamide gel electrophoresis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer observation, the diameter of immobilized lipase nanoparticle was 18.4 (±2.4)?nm, and its saturation magnetization value was 52.3 emu/g. The immobilized lipase could be separated from the reaction medium rapidly and easily in a magnetic field. The biochemical characterizations revealed that, comparing with the free one, the immobilized lipase exhibited better resistance to temperature, pH, metal ions, enzyme inhibitors, and detergents. The K m value for the immobilized TtL (2.56 mg/mL) was found to be lower than that of the free one (3.74 mg/mL), showing that the immobilization improved the affinity of lipase for its substrate. In addition, the immobilized TtL exhibited good reusability. It retained more than 79.5 % of its initial activity after reusing for 10 cycles. Therefore, our study presented that the possibility of the efficient reuse of the thermostable lipase immobilized on supermagnetic nanoparticles made it attractive from the viewpoint of practical application.  相似文献   

17.
In the present study, Rhus vernicifera laccase (RvLac) was immobilized through covalent methods on the magnetic nanoparticles. Fe2O3 and Fe3O4 nanoparticles activated by 3-aminopropyltriethoxysilane followed with glutaraldehyde showed maximum immobilization yields and relative activity up to 81.4 and 84.3% at optimum incubation and pH of 18 h and 5.8, respectively. The maximum RvLac loading of 156 mg/g of support was recorded on Fe2O3 nanoparticles. A higher optimum pH and temperature of 4.0 and 45 °C were noted for immobilized enzyme compared to values of 3.5 and 40 °C for free form, respectively. Immobilized RvLac exhibited better relative activity profiles at various pH and temperature ranges. The immobilized enzyme showed up to 16-fold improvement in the thermal stability, when incubated at 60 °C, and retained up to 82.9% of residual activity after ten cycles of reuses. Immobilized RvLac exhibited up to 1.9-fold higher bisphenol A degradation efficiency potential over free enzyme. Previous reports have demonstrated the immobilization of RvLac on non-magnetic supports. This study has demonstrated that immobilization of RvLac on magnetic nanoparticles is very efficient especially for achieving high loading, better pH and temperature profiles, and thermal- and solvents-stability, high reusability, and higher degradation of bisphenol A.  相似文献   

18.
A novel magnetic nano-adsorbent was prepared by covalently binding polyacrylic acid (PAA) on Fe3O4 superparamagnetic nanoparticles (13.2 nm) via carbodiimide activation. The maximum weight ratio of PAA to Fe3O4 was 0.12 (i.e., average of two PAA molecules on a magnetic nanoparticle). The magnetic nano-adsorbent possessed a high ionic exchange capacity of 1.64 meq g–1 and was efficient for the recovery of lysozyme. The lysozyme could be completely adsorbed in 0.1 M phosphate buffer at pH 3–5 and completely desorbed in NaSCN solution (>1 M) within 1 min, and retained 95% activity after adsorption/desorption. In addition, the adsorption behavior followed the Langmuir adsorption isotherm with a maximum adsorption amount of 0.224 mg mg–1 and a Langmuir adsorption equilibrium constant of 10 ml mg–1 at 25 °C. The change of enthalpy at 15–35 °C was –4.2 kJ ml mol–1 mg–1.  相似文献   

19.
The Letter describes the preparation and characterization of a conjugate of isoniazid (INH) with magnetic nanoparticles Fe3O4@SiO2 115 ± 60 nm in size. The INH molecules were attached to the surface of nanoparticles by a covalent pH-sensitive amidine bond. The conjugate was characterized by X-ray diffraction, SEM, dynamic light scattering, IR spectroscopy and microanalysis. The conjugate released isoniazid under in vitro conditions (pH = 4; 37 °C; t1/2  115 s). In addition, the cytotoxicity of the Fe3O4@SiO2–INH conjugate was evaluated in SK-BR-3 cells using the xCELLigence system.  相似文献   

20.
In situ cell separation and immobilization of bacterial cells for biodesulfurization were developed by using superparamagnetic Fe3O4 nanoparticles (NPs). The Fe3O4 NPs were synthesized by coprecipitation followed by modification with ammonium oleate. The surface-modified NPs were monodispersed and the particle size was about 13 nm with 50.8 emu/g saturation magnetization. After adding the magnetic fluids to the culture broth, Rhodococcus erythropolis LSSE8-1 cells were immobilized by adsorption and then separated with an externally magnetic field. The maximum amount of cell mass adsorbed was about 530 g dry cell weight/g particles to LSSE8-1 cells. Analysis showed that the nanoparticles were strongly absorbed to the surface and coated the cells. Compared to free cells, the coated cells not only had the same desulfurizing activity but could also be easily separated from fermentation broth by magnetic force. Based on the adsorption isotherms and Zeta potential analysis, it was believed that oleate-modified Fe3O4 NPs adsorbed bacterial cells mainly because of the nano-size effect and hydrophobic interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号