首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3-Methyladenine (3MeA) DNA glycosylases initiate base excision repair by removing 3MeA. These glycosylases also remove a broad spectrum of spontaneous and environmentally induced base lesions in vitro. Mouse cells lacking the Aag 3MeA DNA glycosylase (also known as the Mpg, APNG or ANPG DNA glycosylase) are susceptible to 3MeA-induced S phase arrest, chromosome aberrations and apoptosis, but it is not known if Aag is solely responsible for repair of 3MeA in vivo. Here we show that in Aag–/– cells, 3MeA lesions disappear from the genome slightly faster than would be expected by spontaneous depurination alone, suggesting that there may be residual repair of 3MeA. However, repair of 3MeA is at least 10 times slower in Aag–/– cells than in Aag+/+ cells. Consequently, 24 h after exposure to [3H]MNU, 30% of the original 3MeA burden is intact in Aag–/– cells, while 3MeA is undetectable in Aag+/+ cells. Thus, Aag is the major DNA glycosylase for 3MeA repair. We also investigated the in vivo repair kinetics of another Aag substrate, 7-methylguanine. Surprisingly, 7-methylguanine is removed equally efficiently in Aag+/+ and Aag–/– cells, suggesting that another DNA glycosylase acts on lesions previously thought to be repaired by Aag.  相似文献   

2.
XRCC1 plays a key role in the repair of DNA base damage and single-strand breaks. Although it has no known enzymatic activity, XRCC1 interacts with multiple DNA repair proteins and is a subunit of distinct DNA repair protein complexes. Here we used the yeast two-hybrid genetic assay to identify mutant versions of XRCC1 that are selectively defective in interacting with a single protein partner. One XRCC1 mutant, A482T, that was defective in binding to polynucleotide kinase phosphatase (PNKP) not only retained the ability to interact with partner proteins that bind to different regions of XRCC1 but also with aprataxin and aprataxin-like factor whose binding sites overlap with that of PNKP. Disruption of the interaction between PNKP and XRCC1 did not impact their initial recruitment to localized DNA damage sites but dramatically reduced their retention there. Furthermore, the interaction between PNKP and the DNA ligase IIIα-XRCC1 complex significantly increased the efficiency of reconstituted repair reactions and was required for complementation of the DNA damage sensitivity to DNA alkylation agents of xrcc1 mutant cells. Together our results reveal novel roles for the interaction between PNKP and XRCC1 in the retention of XRCC1 at DNA damage sites and in DNA alkylation damage repair.  相似文献   

3.
4.
Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag −/− mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.  相似文献   

5.
Sanada M  Takagi Y  Ito R  Sekiguchi M 《DNA Repair》2004,3(4):413-420
Among various types of drugs designed for use in cancer chemotherapy, some have the potential for alkylation. After metabolic activation, these chemicals attack DNA and alkylate their bases, thereby preventing multiplication of rapidly growing tumor cells. Some of alkylated bases cause mutations, leading to untoward induction of tumors. To search for the rationale to separate lethal and mutagenic effects of alkylation drugs, we investigated actions of dacarbazine, a monofunctional triazene, on mouse and human cell lines defective in the Mgmt and/or the Mlh1 gene, the former encoding a DNA repair methyltransferase and the latter a protein involved in mismatch repair and induction of apoptosis. Mgmt-deficient cells are hypersensitive to the killing action of dacarbazine. On the other hand, cells defective in both Mgmt and Mlh1 genes are as resistant to the drug as are wild-type cells, in terms of survival, but do have many mutations after dacarbazine treatment. Thus, the killing and mutagenic actions of dacabazine can be dissociated by manipulating actions of these gene products.  相似文献   

6.
ATM‐mediated phosphorylation of KAP‐1 triggers chromatin remodeling and facilitates the loading and retention of repair proteins at DNA lesions. Mouse embryonic fibroblasts (MEFs) derived from Zmpste24?/? mice undergo early senescence, attributable to delayed recruitment of DNA repair proteins. Here, we show that ATM‐Kap‐1 signaling is compromised in Zmpste24?/? MEFs, leading to defective DNA damage‐induced chromatin remodeling. Knocking down Kap‐1 rescues impaired chromatin remodeling, defective DNA repair and early senescence in Zmpste24?/? MEFs. Thus, ATM‐Kap‐1‐mediated chromatin remodeling plays a critical role in premature aging, carrying significant implications for progeria therapy.  相似文献   

7.
XPC is one of the key DNA damage recognition proteins in the global genome repair route of the nucleotide excision repair (NER) pathway. Previously, we demonstrated that NER-deficient mouse models Xpa?/? and Xpc?/? exhibit a divergent spontaneous tumor spectrum and proposed that XPC might be functionally involved in the defense against oxidative DNA damage. Others have mechanistically dissected several functionalities of XPC to oxidative DNA damage sensitivity using in vitro studies. XPC has been linked to regulation of base excision repair (BER) activity, redox homeostasis and recruitment of ATM and ATR to damage sites, thereby possibly regulating cell cycle checkpoints and apoptosis. XPC has additionally been implicated in recognition of bulky (e.g. cyclopurines) and non-bulky DNA damage (8-oxodG). However, the ultimate contribution of the XPC functionality in vivo in the oxidative DNA damage response and subsequent mutagenesis process remains unclear. Our study indicates that Xpc?/? mice, in contrary to Xpa?/? and wild type mice, have an increased mutational load upon induction of oxidative stress and that mutations arise in a slowly accumulative fashion. The effect of non-functional XPC in vivo upon oxidative stress exposure appears to have implications in mutagenesis, which can contribute to the carcinogenesis process. The levels and rate of mutagenesis upon oxidative stress correlate with previous findings that lung tumors in Xpc?/? mice overall arise late in the lifespan and that the incidence of internal tumors in XP-C patients is relatively low in comparison to skin cancer incidence.  相似文献   

8.
Escherichia coli RecN is an SMC (structural maintenance of chromosomes) family protein that is required for DNA double-strand break (DSB) repair. Previous studies show that GFP-RecN forms nucleoid-associated foci in response to DNA damage, but the mechanism by which RecN is recruited to the nucleoid is unknown. Here, we show that the assembly of GFP-RecN foci on the nucleoid in response to DNA damage involves a functional interaction between RecN and RecA. A novel RecA allele identified in this work, recAQ300R, is proficient in SOS induction and repair of UV-induced DNA damage, but is deficient in repair of mitomycin C (MMC)-induced DNA damage. Cells carrying recAQ300R fail to recruit RecN to DSBs and accumulate fragmented chromosomes after exposure to MMC. The ATPase-deficient RecNK35A binds and forms foci at MMC-induced DSBs, but is not released from the MMC-induced DNA lesions, resulting in a defect in homologous recombination-dependent DSB repair. These data suggest that RecN plays a crucial role in homologous recombination-dependent DSB repair and that it is required upstream of RecA-mediated strand exchange.  相似文献   

9.
Deamination of DNA bases can occur spontaneously, generating highly mutagenic lesions such as uracil and hypoxanthine. In Escherichia coli two enzymes initiate repair at hypoxanthine residues in DNA. The alkylbase DNA glycosylase, AlkA, initiates repair by removal of the damaged base, whereas endonuclease V, Endo V, hydrolyses the second phosphodiester bond 3′ to the lesion. We have identified and characterised a mouse cDNA with striking homology to the E.coli nfi gene, which also has significant similarities to motifs required for catalytic activity of the UvrC endonuclease. The 37-kDa mouse enzyme (mEndo V) incises the DNA strand at the second phosphodiester bond 3′ to hypoxanthine- and uracil-containing nucleotides. The activity of mEndo V is elevated on single-stranded DNA substrate in vitro. Expression of the mouse protein in a DNA repair-deficient E.coli alkA nfi strain suppresses its spontaneous mutator phenotype. We suggest that mEndo V initiates an alternative excision repair pathway for hypoxanthine removal. It thus appears that mEndo V has properties overlapping the function of alkylbase DNA glycosylase (Aag) in repair of deaminated adenine, which to some extent could explain the absence of phenotypic abnormalities associated with Aag knockout in mice.  相似文献   

10.
DNA damage that escapes repair and blocks replicative DNA polymerases is tolerated by bypass mechanisms that fall into two general categories: error-free template switching and error-prone translesion synthesis. Prior studies of DNA damage responses in Saccharomyces cerevisiae have demonstrated that repair mechanisms are critical for survival when a single, high dose of DNA damage is delivered, while bypass/tolerance mechanisms are more important for survival when the damage level is low and continuous (acute and chronic damage, respectively). In the current study, epistatic interactions between DNA-damage tolerance genes were examined and compared when haploid yeast cells were exposed to either chronic ultraviolet light or chronic methyl methanesulfonate. Results demonstrate that genes assigned to error-free and error-prone bypass pathways similarly promote survival in the presence of each type of chronic damage. In addition to using defined sources of chronic damage, rates of spontaneous mutations generated by the Pol ζ translesion synthesis DNA polymerase (complex insertions in a frameshift-reversion assay) were used to infer epistatic interactions between the same genes. Similar epistatic interactions were observed in analyses of spontaneous mutation rates, suggesting that chronic DNA-damage responses accurately reflect those used to tolerate spontaneous lesions. These results have important implications when considering what constitutes a safe and acceptable level of exogenous DNA damage.  相似文献   

11.
Cellular supply of dNTPs is essential in the DNA replication and repair processes. Here we investigated the regulation of thymidine kinase 1 (TK1) in response to DNA damage and found that genotoxic insults in tumor cells cause up-regulation and nuclear localization of TK1. During recovery from DNA damage, TK1 accumulates in p53-null cells due to a lack of mitotic proteolysis as these cells are arrested in the G2 phase by checkpoint activation. We show that in p53-proficient cells, p21 expression in response to DNA damage prohibits G1/S progression, resulting in a smaller G2 fraction and less TK1 accumulation. Thus, the p53 status of tumor cells affects the level of TK1 after DNA damage through differential cell cycle control. Furthermore, it was shown that in HCT-116 p53−/− cells, TK1 is dispensable for cell proliferation but crucial for dTTP supply during recovery from DNA damage, leading to better survival. Depletion of TK1 decreases the efficiency of DNA repair during recovery from DNA damage and generates more cell death. Altogether, our data suggest that more dTTP synthesis via TK1 take place after genotoxic insults in tumor cells, improving DNA repair during G2 arrest.  相似文献   

12.
DNA double strand breaks (DSBs) are the most critical types of DNA damage that can leads to chromosomal aberrations, genomic instability and cancer. Several genetic disorders such as Xeroderma pigmentosum are linked with defects in DNA repair. Human Rint1, a TIP1 domain containing protein is involved in membrane trafficking but its role in DNA damage response is elusive. In this study we characterized the role of Drp1 (damage responsive protein 1), a Rint1 family protein during DNA damage response in fission yeast. We identified that Drp1 is an essential protein and indispensable for survival and growth. Using in vitro random mutagenesis approach we isolated a temperature sensitive mutant allele of drp1 gene (drp1-654) that exhibits sensitivity to DNA damaging agents, in particular to alkylation damage and UV associated DNA damage. The drp1-654 mutant cells are also sensitive to double strand break inducing agent bleomycin. Genetic interaction studies identified that Rad50 and Drp1 act in the same pathway during DNA damage response and the physical interaction of Drp1 with Rad50 was unaffected in drp1-654 mutant at permissive as well as non permissive temperature. Furthermore Drp1 was found to be required for the recovery from MMS induced DNA damage. We also demonstrated that the Drp1 protein localized to nucleus and was required to maintain the chromosome stability.  相似文献   

13.
Although the linkage of Chk1 and Chk2 to important cancer signalling suggests that these kinases have functions as tumour suppressors, neither Chk1+/− nor Chk2−/− mice show a predisposition to cancer under unperturbed conditions. We show here that Chk1+/−Chk2−/− and Chk1+/−Chk2+/− mice have a progressive cancer-prone phenotype. Deletion of a single Chk1 allele compromises G2/M checkpoint function that is not further affected by Chk2 depletion, whereas Chk1 and Chk2 cooperatively affect G1/S and intra-S phase checkpoints. Either or both of the kinases are required for DNA repair depending on the type of DNA damage. Mouse embryonic fibroblasts from the double-mutant mice showed a higher level of p53 with spontaneous DNA damage under unperturbed conditions, but failed to phosphorylate p53 at S23 and further induce p53 expression upon additional DNA damage. Neither Chk1 nor Chk2 is apparently essential for p53- or Rb-dependent oncogene-induced senescence. Our results suggest that the double Chk mutation leads to a high level of spontaneous DNA damage, but fails to eliminate cells with damaged DNA, which may ultimately increase cancer susceptibility independently of senescence.  相似文献   

14.
We demonstrated recently that dominant negative mutants of rat DNA polymerase β (Pol β) interfere with repair of alkylation damage in Saccharomyces cerevisiae. To identify the alkylation repair pathway that is disrupted by the Pol β dominant negative mutants, we studied the epistatic relationship of the dominant negative Pol β mutants to genes known to be involved in repair of DNA alkylation damage in S. cerevisiae. We demonstrate that the rat Pol β mutants interfere with the base excision repair pathway in S. cerevisiae. In addition, expression of one of the Pol β dominant negative mutants, Pol β-14, increases the spontaneous mutation rate of S. cerevisiae whereas expression of another Pol β dominant negative mutant, Pol β-TR, does not. Expression of the Pol β-14 mutant in cells lacking APN1 activity does not result in an increase in the spontaneous mutation rate. These results suggest that gaps are required for mutagenesis to occur in the presence of Pol β-14 but that it is not merely the presence of a gap that results in mutagenesis. Our results suggest that mutagenesis can occur during the gap-filling step of base excision repair in vivo.  相似文献   

15.
DNA repair mechanisms are essential for the maintenance of genomic stability, proper cellular function and survival for all organisms. Plants, with their intrinsic immobility, are vastly exposed to a wide range of environmental agents and also endogenous processes which frequently cause damage to DNA and impose genotoxic stress. Therefore, in order to survive under frequent and extreme environmental stress conditions, plants have developed a vast array of efficient and powerful DNA damage repair mechanisms to ensure rapid and precise repair of genetic material for maintaining genome stability and faithful transfer of genetic information over generations.1 Recently, we have defined the role of DNA polymerase λ in repair of UV-B-induced photoproducts in Arabidopsis thaliana via nucleotide excision repair pathway.2 Here, we have further discussed potential function of DNA polymerase λ in various DNA repair pathways in higher plant genome in response to environmental and genotoxic stress factors.  相似文献   

16.
The corneal endothelium (CE) is a single layer of cells lining the posterior face of the cornea providing metabolic functions essential for maintenance of corneal transparency. Adult CE cells lack regenerative potential, and the number of CE cells decreases throughout life. To determine whether endogenous DNA damage contributes to the age‐related spontaneous loss of CE, we characterized CE in Ercc1?/Δ mice, which have impaired capacity to repair DNA damage and age prematurely. Eyes from 4.5‐ to 6‐month‐old Ercc1?/Δ mice, age‐matched wild‐type (WT) littermates, and old WT mice (24‐ to 34‐month‐old) were compared by spectral domain optical coherence tomography and corneal confocal microscopy. Histopathological changes in CE were further identified in paraffin tissue sections, whole‐mount immunostaining, and scanning electron and transmission electron microscopy. The CE of old WT mice displayed polymorphism and polymegathism, polyploidy, decreased cell density, increased cell size, increases in Descemet's thickness, and the presence of posterior projections originating from the CE toward the anterior chamber, similar to changes documented for aging human corneas. Similar changes were observed in young adult Ercc1?/Δ mice CE, demonstrating spontaneous premature aging of the CE of these DNA repair–deficient mice. CD45+ immune cells were associated with the posterior surface of CE from Ercc1?/Δ mice and the tissue expressed increased IL‐1α, Cxcl2, and TNFα, pro‐inflammatory proteins associated with senescence‐associated secretory phenotype. These data provide strong experimental evidence that DNA damage can promote aging of the CE and that Ercc1?/Δ mice offer a rapid and accurate model to study CE pathogenesis and therapy.  相似文献   

17.
Multicellular organisms maintain genomic integrity and resist tumorigenesis through a tightly regulated DNA damage response (DDR) that prevents propagation of deleterious mutations either through DNA repair or programmed cell death. An impaired DDR leads to tumorigenesis that is accelerated when programmed cell death is prevented. Loss of the ATM (ataxia telangiectasia mutated)-mediated DDR in mice results in T-cell leukemia driven by accumulation of DNA damage accrued during normal T-cell development. Pro-apoptotic BH3-only Bid is a substrate of Atm, and Bid phosphorylation is required for proper cell cycle checkpoint control and regulation of hematopoietic function. In this report, we demonstrate that, surprisingly, loss of Bid increases the latency of leukemogenesis in Atm−/− mice. Bid−/−Atm−/− mice display impaired checkpoint control and increased cell death of DN3 thymocytes. Loss of Bid thus inhibits T-cell tumorigenesis by increasing clearance of damaged cells, and preventing propagation of deleterious mutations.  相似文献   

18.
Base excision repair (BER) is a primary mechanism for repair of base lesions in DNA such as those formed by exposure to the DNA methylating agent methyl methanesulfonate (MMS). Both DNA polymerase β (pol β)- and XRCC1-deficient mouse fibroblasts are hypersensitive to MMS. This is linked to a repair deficiency as measured by accumulation of strand breaks and poly(ADP-ribose) (PAR). The interaction between pol β and XRCC1 is important for recruitment of pol β to sites of DNA damage. Endogenous DNA damage can substitute for MMS-induced damage such that BER deficiency as a result of either pol β- or XRCC1-deletion is associated with sensitivity to PARP inhibitors. Pol β shRNA was used to knock down pol β in Xrcc1+/+ and Xrcc1−/− mouse fibroblasts. We determined whether pol β-mediated cellular resistance to MMS and PARP inhibitors resulted entirely from coordination with XRCC1 within the same BER sub-pathway. We find evidence for pol β-dependent cell survival independent of XRCC1 expression for both types of agents. The results suggest a role for pol β-dependent, XRCC1-independent repair. PAR immunofluorescence data are consistent with the hypothesis of a decrease in repair in both pol β knock down cell variants.  相似文献   

19.
Mitochondrial DNA (mtDNA) mutations are implicated in pathogenesis of human diseases including cancer. To prevent mutations cells have developed repair systems to counteract harmful genetic changes caused by DNA damaging agents. One such DNA repair protein is the O(6)-Methylguanine-DNA methyltransferase (MGMT) that prevents certain types of alkylation damage. Yet, the role of MGMT in preventing alkylation induced DNA damage in mtDNA is unclear. We explored the idea of increasing cell survival after alkylation damage by overexpressing MGMT in mitochondria. We show that overexpression of this repair protein in mitochondria increases cell survival after treatment with the DNA damaging agent MNNG.  相似文献   

20.
Hyun M  Lee J  Lee K  May A  Bohr VA  Ahn B 《Nucleic acids research》2008,36(4):1380-1389
DNA repair is an important mechanism by which cells maintain genomic integrity. Decline in DNA repair capacity or defects in repair factors are thought to contribute to premature aging in mammals. The nematode Caenorhabditis elegans is a good model for studying longevity and DNA repair because of key advances in understanding the genetics of aging in this organism. Long-lived C. elegans mutants have been identified and shown to be resistant to oxidizing agents and UV irradiation, suggesting a genetically determined correlation between DNA repair capacity and life span. In this report, gene-specific DNA repair is compared in wild-type C. elegans and stress-resistant C. elegans mutants for the first time. DNA repair capacity is higher in long-lived C. elegans mutants than in wild-type animals. In addition, RNAi knockdown of the nucleotide excision repair gene xpa-1 increased sensitivity to UV and reduced the life span of long-lived C. elegans mutants. These findings support that DNA repair capacity correlates with longevity in C. elegans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号