首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hoyer  Mark V.  Canfield  Daniel E. 《Hydrobiologia》1994,279(1):107-119
Data from 46 Florida lakes were used to examine relationships between bird abundance (numbers and biomass) and species richness, and lake trophic status, lake morphology and aquatic macrophyte abundance. Average annual bird numbers ranged from 7 to 800 birds km–2 and bird biomass ranged from 1 to 465 kg km–2. Total species richness ranged from 1 to 30 species per lake. Annual average bird numbers and biomass were positively correlated to lake trophic status as assessed by total phosphorus (r = 0.61), total nitrogen (r = 0.60) and chlorophyll a (r = 0.56) concentrations. Species richness was positively correlated to lake area (r = 0.86) and trophic status (r = 0.64 for total phosphorus concentrations). The percentage of the total annual phosphorus load contributed to 14 Florida lakes by bird populations was low averaging 2.4%. Bird populations using Florida lakes, therefore, do not significantly impact the trophic status of the lakes under natural situations, but lake trophic status is a major factor influencing bird abundance and species richness on lakes. Bird abundance and species richness were not significantly correlated to other lake morphology or aquatic macrophyte parameters after the effects of lake area and trophic status were accounted for using stepwise multiple regression. The lack of significant relations between annual average bird abundance and species richness and macrophyte abundance seems to be related to changes in bird species composition. Bird abundance and species richness remain relatively stable as macrophyte abundance increases, but birds that use open-water habitats (e.g., double-crested cormorant, Phalacrocorax auritus) are replaced by species that use macrophyte communities (e.g., ring-necked duck, Aythya collaris).  相似文献   

2.
Understanding of the forces driving the structure of biotic communities has long been an important focus for ecology, with implications for applied and conservation science. To elucidate the factors driving phytoplankton genus richness in the Danish landscape, we analyzed data derived from late-summer samplings in 195 Danish lakes and ponds in a spatially-explicit framework. To account for the uneven sampling of lakes in the monitoring data, we performed 1,000 permutations. A random set of 131 lakes was assembled and a single sample was selected randomly for each lake at each draw and all the analyses were performed on permuted data 1,000 times. The local environment was described by lake water chemistry, lake morphology, land-use in lake catchments, and climate. Analysis of the effects of four groups of environmental factors on the richness of the main groups of phytoplankton revealed contrasting patterns. Lake water chemistry was the strongest predictor of phytoplankton richness for all groups, while lake morphology also had a strong influence on Bacillariophyceae, Cyanobacteria, Dinophyceae, and Euglenophyceae richness. Climate and land-use in catchments contributed only little to the explained variation in phytoplankton richness, although both factors had a significant effect on Bacillariophyceae richness. Notably, total nitrogen played a more important role for phytoplankton richness than total phosphorus. Overall, models accounted for ca. 30% of the variation in genus richness for all phytoplankton combined as well as the main groups separately. Local spatial structure (<30 km) in phytoplankton richness suggested that connectivity among lakes and catchment-scale processes might also influence phytoplankton richness in Danish lakes.  相似文献   

3.
In this study, we analyse the distribution and species richness of epibenthic and planktonic Cladocera (Crustacea: Branchiopoda) in 62 Uganda crater lakes, spread across the climatic gradient between the sub-humid shoulder and semi-arid floor of the East African Rift Valley. Together, these lakes cover large environmental gradients in salinity, trophic conditions and depth. In total, 36 species of Cladocera were encountered in the freshwater lakes (<1,500 μS/cm), whereas only a single species was found in the true saline lakes (>10,000 μS/cm). Cladoceran species richness in individual lakes was found to be determined primarily by the presence of a well-developed littoral belt of submerged and emergent aquatic macrophytes, pH and salinity. The highest species richness occurred in fresh but eutrophic shallow waters, with relatively low pH (6.5–7) and dense aquatic macrophyte growth. As identified by multivariate statistical analysis, the distribution of Cladocera species among the Uganda lakes was most strongly determined by nutrient availability (measured as total phosphorus), the presence and diversity of aquatic macrophyte habitat, pH, mean annual temperature and the fraction of the crater catchment that is currently under agriculture. Since Cladocera play an important role in aquatic food webs, and as such contribute to the ecological integrity of aquatic ecosystems, an increased understanding of the environmental controls underlying their distribution provides valuable information on aquatic ecosystem functioning needed for management and conservation. The significant turnover of cladoceran species composition along the sampled environmental gradients demonstrates their potential as biological indicators for water quality and ecosystem health in East African lakes. Our results suggest that changes in land use are the greatest threat to natural ecosystem functioning in these African lakes, and particularly so in the shallower lakes.  相似文献   

4.
Aim  To assess the relative impacts of spatial, local environmental and habitat connectivity on the structure of aquatic macrophyte communities in lakes designated for their conservation value. Location  Selected lakes of conservation importance all over Scotland, representing a wide variety of lake habitat types and associated macrophyte communities. Methods  Local environmental variables and species occurrence were measured in the field. Spatial variables were generated using principal coordinates of neighbour matrices (PCNM) analysis. Connectivity between each lake and its neighbours was defined as either (i) all lakes within a radius of 5, 10, 25, 50, 75 or 100 km; (ii) all lakes in same river system; or (iii) all lakes in the same catchment and upstream of the lake. Using variance partitioning within canonical correspondence analysis, the relative impact of E = local environment, S = space and C = lake connectivity was compared on submerged (n = 119 lakes) and emergent (n = 96 lakes) macrophyte assemblages. Results  Local environmental conditions, such as total phosphorus, alkalinity/conductivity and the presence of invasive species, as well as spatial gradients were key drivers of observed variation in macrophyte communities; e.g., for submerged macrophytes, a combination of local to moderate factors relating to water chemistry and broad‐scale gradients reflecting elevation and climate are important. Spatially structured environmental variables explained a large portion of observed variation. Main conclusions  Our findings confirmed the need to manage local environmental pressures such as eutrophication, but suggested that the traditional catchment approach was insufficient. The spatial aggregation of environmental and connectivity factors indicated that a landscape scale approach should be used in lake management to augment the risk assessment to conservation species from the deterioration of suitable lake sites over broad biogeographic areas.  相似文献   

5.
6.
This study tested the hypothesis that lake augmentation with well water impacts the distribution and abundance of aquatic plants in lakes. Water chemistry was measured from 14 wells, 14 augmented lakes, and 14 lakes without augmentation. Nine in-lake aquatic macrophyte abundance and species distribution metrics were measured in all lakes. Net photosynthetic rate (NPR) of nine submersed species was also measured in well and lake water. Augmentation increased alkalinity in receiving lakes, but total phosphorus was significantly lower, which resulted in lower chlorophyll and greater Secchi depths. Although measured NPR was higher for all plants incubated in well water, only one (emergent species richness) in-lake aquatic macrophyte metric was different in lakes with and without augmentation. Lake augmentation significantly changed water chemistry of receiving waters, but effects on aquatic macrophytes were minimal, suggesting that other environmental factors are limiting the distribution and abundance of macrophytes in the study lakes. The lower phosphorus levels in augmented lakes were unexpected because phosphorus concentrations in well water were significantly greater than in lakes with or without augmentation. Precipitation of calcium phosphate likely accounts for the reduced phosphorus levels in augmented lakes.  相似文献   

7.
8.
Defining the overall ecological status of lakes according to the Water Framework Directive (WFD) is to be partially based on the species composition of the aquatic macrophyte community. We tested three assessment methods to define the ecological status of the macrophyte community in response to a eutrophication pressure as reflected by total phosphorus concentrations in lake water. An absolute species richness, a trophic index (TI) and a lake trophic ranking (LTR) method were tested at Europe-wide, regional and national scales as well as by alkalinity category, using data from 1,147 lakes from 12 European states. Total phosphorus data were used to represent the trophic status of individual samples and were plotted against the calculated TI and LTR values. Additionally, the LTR method was tested in some individual lakes with a relatively long time series of monitoring data. The TI correlated well with total P in the Northern European lake types, whereas the relationship in the Central European lake types was less clear. The relationship between total P and light extinction is often very good in the Northern European lake types compared to the Central European lake types. This can be one of the reasons for a better agreement between the indices and eutrophication pressure in the Northern European lake types. The response of individual lakes to changes in the abiotic environment was sometimes represented incorrectly by the indices used, which is a cause of concern for the use of single indices in status assessments in practice.  相似文献   

9.
1. To correctly interpret chironomid faunas for palaeoenvironmental reconstruction, it is essential that we improve our understanding of the relative influence of ecosystem variables, biotic as well as physicochemical, on chironomid larvae. To address this, we analysed the surface sediments from 39 shallow lakes (29 Norfolk, U.K., 10 Denmark) for chironomid head capsules, and 70 chironomid taxa (including Chaoborus) were identified. 2. The shallow lakes were selected over large environmental gradients of aquatic macrophytes, total phosphorus (TP) and fish communities. Redundancy analysis (RDA) identified two significant variables that explained chironomid distribution: macrophyte species richness (P < 0.001) and TP (P < 0.005). Generalised linear models (GLM) identified specific taxa that had significant relationships with both these variables. Macrophyte percentage volume infested (PVI) and species richness were significant in classifying the lake types based on chironomid communities under twinspan analysis, although other factors, notably nutrient concentrations and fish communities, were also important, illustrating the complexities of classifying shallow lake ecosystems. Lakes with plant species richness >10 all had relatively diverse (Hill’s N2) chironomid assemblages, and lakes with Hill’s N2 >10 all had TP <250 μg L−1 and total fish densities <2 fish per m2. 3. Plant density (PVI), and perhaps more importantly species richness, were primary controls on the distribution of chironomid communities within these lakes. This clearly has implications for palaeoenvironmental reconstructions using zoobenthos remains (i.e. chironomids) and suggests that they could be used to track changes in benthic/pelagic production and could be used as indicators of changing macrophyte habitat. 4. Measuring key biological gradients, in addition to physicochemical gradients, allowed the major controls on chironomid distribution to be assessed more directly, in terms of plant substrate, food availability, competition and predation pressure, rather than implying indirect mechanisms through relationships with nutrients. Many of these variables, notably macrophyte abundance and species richness, are not routinely measured in such studies, despite their importance in determining zoobenthos in temperate shallow lakes. 5. When physical, chemical and ecological gradients are considered, as is often the case with palaeo‐reconstructions rather than training sets chosen to maximise one gradient, complex relationships exist, and attempting to reconstruct a single trophic variable quantitatively may not be appropriate or reliable.  相似文献   

10.
Climate change and invasive species are two stressors that should have large impacts on native species in aquatic and terrestrial ecosystems. We quantify and integrate the effects of climate change and the establishment of an invasive species (smallmouth bass Micropterus dolomieu ) on native lake trout Salvelinus namaycush populations. We assembled a dataset of almost 22 000 Canadian lakes that contained information on fish communities, lake morphologies, and geography. We examined the pelagic-benthic and littoral forage fish community available to lake trout populations across three lake size classes in these aquatic ecosystems. Due to the decreased presence of alternate prey resources, lake trout populations residing in smaller lakes are more vulnerable to the effects of smallmouth bass establishment. A detailed spatially and temporally explicit approach to assess smallmouth bass invasion risk in Ontario lakes suggests that the number of Ontario lakes with vulnerable lake trout populations could increase from 118 (~1%) to 1612 (~20%) by 2050 following projected climate warming. In addition, we identified nearly 9700 lake trout populations in Canada threatened by 2100, by the potential range expansion of smallmouth bass. Our study provides an integration of two major stressors of ecosystems, namely climate change and invasive species, by considering climate-change scenarios, dispersal rates of invasive species, and inter-specific biotic interactions.  相似文献   

11.
We investigated how land use at multiple scales affects functional macrophytes groups and ecological status index in the boreal region. We employed a variance partitioning analysis to quantify the relative role of lake characteristics, multiple-scaled land use (catchment, buffer zones of 100, 300 and 500 m), and space in explaining the composition and richness of functional macrophyte groups (emergent and submerged macrophytes and hydrophytes) and ecological status of macrophytes in 110 Finnish lakes. Partial redundancy analysis (community composition) and partial linear regression (richness and status index) revealed that macrophyte community composition, richness, and status index were mostly explained by the pure effect of lake characteristics, which dominated over space for most macrophyte variables. Land use adjacent to shoreline had a higher effect on emergent macrophytes and status index compared to the land use of the whole catchment. Our findings suggest that emergent macrophytes can indicate changes in water quality and hydro-morphology originated from the close vicinity of the littoral zone. Ecological quality assessment based on emergent macrophytes only is probably not sufficient, but including emergent species in the assessments is recommended, especially in the species-poor boreal region.  相似文献   

12.
Although both patch area and shape are key factors driving biodiversity in fragmented terrestrial landscapes, researchers have had limited and mixed success in documenting the effects of these two factors on aquatic ecosystems. Here we examined the effects of lake area and shape on macrophyte species richness in a lowland floodplain by considering the differences in lake types (i.e. marsh, oxbow, man-made lakes). We surveyed species richness of native macrophytes in 35 lakes including 11 marshes, 11 oxbows and 13 man-made lakes with various complex shapes covering from 0.25 to 46.3 ha. Model selection clearly supported the existence of interaction between area and shape effects: large-circular and small-complex lakes supported a higher macrophyte species richness, while it was lower in large-complex and small-circular lakes. Among the three lake types, marsh lakes were more circular and man-made lakes had more complex shapes, while oxbow lakes were intermediate between these two. Also, marsh lakes had positive species–area relationships, while man-made lakes had negative relationships. Our results suggest the opposing shape complexity and species–area relationships of these two contrasting lake types are the result of the interactions between lake area and shape. These results indicate that different lake types result in variations in their conservation value for preserving macrophyte diversity. We suggest that small complex-shaped patches (especially oxbow lakes), which are often given the lowest conservation priority in terrestrial ecosystems, cannot be disregarded when conserving macrophyte biodiversity in aquatic ecosystems.  相似文献   

13.
以浮游植物评价达赉湖水质污染及营养水平   总被引:11,自引:0,他引:11  
1987—1988年在30个样点,四季采样,对达赉湖的浮游植物进行了种类组成,生物量、种群数量、优势种、污染指示种、硅藻指数、综合指数等群落生态学的初步研究,应用后五项参数对达赉湖水质污染及营养水平进行了评价。达赉湖浮游植物年均值达54.7×106个/L(细胞数,或个体数为2.3×106个/L),硅藻指数为149.3,综合指数为5.6。群落组成中污染指示种占65%,春季以绿藻的十字藻、卵囊藻为优势种,其它3个季节均以蓝藻中的微囊藻、鱼腥藻、腔球藻占优势,表明达赉湖已受到中等程度污染,属于蓝、绿藻型富营养湖。    相似文献   

14.
We assessed the relative roles of natural covariates, human disturbance (water quality and catchment land use) together with geography in driving variation in aquatic macrophyte community composition, richness and status among 101 lakes in southern and central Finland. In addition to all species together, we studied different growth forms (i.e. emergent and submerged macrophytes and aquatic bryophytes) separately. Partial redundancy analysis (taxonomic composition) and partial least-squares regression (species richness and status index) were employed to display the share of variability in macrophyte assemblages that was attributable to the environmental factors (both natural and human-affected) and the spatial filters generated through principal coordinates of neighbor matrices (PCNM).Macrophyte community composition, richness and status were explained by natural covariates, together with joint effects of human disturbance variables and space. The contributions of pure fractions of human disturbance and space were mostly modest, albeit variable among macrophyte groups and status indices. Alkalinity, historical distributions, colour, dynamic ratio and lake area were most important natural covariates for macrophytes. Of those variables influenced by human, macrophytes were mostly explained by conductivity, total phosphorus, turbidity and chlorophyll-a.Our results demonstrate, as expected, that macrophytes are dominantly affected by local environmental variables, whereas dispersal-related processes seem not to be important at regional extent. Response of macrophyte growth forms to environment and space, however, varied significantly. Community composition and richness of emergent macrophytes showed congruent response to natural covariates and human disturbance. Aquatic bryophytes, which are rarely studied along lake macrophytes, responded stronger than other growth forms to human disturbance. Contrary to our expectations, ecological indices were not affected by dispersal-related processes, but were mainly explained by natural covariates. This study is the first to investigate spatial patterns in aquatic macrophytes derived bioassessment. Geographical structuring of environmental variables and regional extent negatively affected indices, suggesting that ecological status assessment needs further development.  相似文献   

15.
《Acta Oecologica》2002,23(3):155-163
Frequent dispersal events are expected to elevate local species richness in island-like habitats such as lakes. However, the importance of dispersal can be hard to evaluate if other factors cause large background variability in species composition and richness. In this paper, we review empirical studies on ecological factors known or expected to influence species richness in zooplankton communities of inland lakes. We then present summaries of two recent case studies. Our objectives are twofold: we first look for effects of biotic interactions on species richness and species composition, and then evaluate whether the expected effects of dispersal are likely to be detected on a background of large variability caused by other ecological factors and interactions. Species richness within lakes appears to be primarily controlled by factors related to lake size, lake productivity, water quality, and fish predation levels. One case study indicated a slight, but significant, positive effect of lake density and lake area in the surrounding landscape on species richness, suggesting that frequent dispersal events may enhance species richness. This local variation in species richness is superimposed on regional variation in species pools.  相似文献   

16.
Kermavnar  Janez  Kutnar  Lado  Marinšek  Aleksander 《Plant Ecology》2022,223(2):229-242

Species- and trait-environment linkages in forest plant communities continue to be a frequent topic in ecological research. We studied the dependence of floristic and functional trait composition on environmental factors, namely local soil properties, overstory characteristics, climatic parameters and other abiotic and biotic variables. The study area comprised 50 monitoring plots across Slovenia, belonging to the EU ICP Forests monitoring network. Vegetation was surveyed in accordance with harmonized protocols, and environmental variables were either measured or estimated during vegetation sampling. Significant predictors of species composition were identified by canonical correspondence analysis. Correlations between plant traits, i.e. plant growth habit, life form, flowering features and CSR signature, were examined with fourth-corner analysis and linear regressions. Our results show that variation in floristic composition was mainly explained by climatic parameters (mean annual temperature, mean annual precipitation), soil properties (pH) and tree layer-dependent light conditions. Trait composition was most closely related with tree layer characteristics, such as shade-casting ability (SCA, a proxy for light availability in the understory layer), tree species richness and tree species composition. Amongst soil properties, total nitrogen content and soil texture (proportion of clay) were most frequently correlated with different species traits or trait states. The CSR signature of herb communities was associated with tree layer SCA, soil pH and mean annual temperature. The floristic composition of the studied herb-layer vegetation depended on temperature and precipitation, which are likely to be influenced by ongoing climate change (warming and drying). Trait composition exhibited significant links to tree layer characteristics and soil conditions, which are in turn directly modified by forest management interventions.

  相似文献   

17.
Submerged macrophytes as indicators of the ecological quality of lakes   总被引:1,自引:0,他引:1  
1. We analysed submerged macrophyte communities from 300 Danish lakes to determine the efficacy of different species, maximum colonisation depth (Cmax) of plants as well as coverage and plant volume inhabited (PVI) as indicators of eutrophication. 2. Most species occurred at a wide range of phosphorus and chlorophyll a (Chla) concentrations, but some species of isoetids (Lobelia, Isoëtes) and Potamogeton (Potamogeton gramineus, Potamogeton alpinus and Potamogeton filiformis) were mainly found at low nutrient concentrations and hence may be considered as indicators of nutrient poor conditions. However, species typically found in nutrient‐rich conditions, such as Elodea canadensis and Potamogeton pectinatus, were also found at total phosphorus (TP) <0.02 mg P L?1 and Chla <5 μg L?1 and therefore cannot be considered as reliable indicators of eutrophic conditions. 3. Submerged macrophyte coverage, PVI and the Cmax were negatively correlated with TP and Chla. However, variability among lakes was high and no clear thresholds were observed. At TP between 0.03 and 0.07 mg P L?1 plant coverage in shallow lakes ranged from nearly 0 to 100%, whilst at concentrations between 0.10 and 0.20 mg P L?1 only 29% of the lakes had coverage >10%. Cmax was found to be a useful indicator only in deep lakes with unvegetated areas in the deeper part, whereas the use of coverage was restricted to shallow lakes or shallow areas of deep lakes. 4. Overall, submerged macrophytes responded clearly to eutrophication, but the metrics investigated here showed no well‐defined thresholds. We developed a simple index based on species richness, presence of indicator species, coverage and Cmax, which might be used to track major changes in macrophyte communities and for lake classification.  相似文献   

18.
Uncertainty is an important factor in ecological assessment, and has important implications for the ecological classification and management of lakes. However, our knowledge of the effects of uncertainty in the assessment of different ecological indicators is limited. Here, we used data from a standardized campaign of aquatic plant surveys, in 28 lakes from 10 European countries, to assess variation in macrophyte metrics across a set of nested spatial scales: countries, lakes, sampling stations, replicate transects, and replicate samples at two depth-zones. Metrics investigated in each transect included taxa richness, maximum depth of colonisation and two indicators of trophic status: Ellenberg’s N and a metric based on phosphorus trophic status. Metrics were found to have a slightly stronger relationship to pressures when they were calculated on abundance data compared to presence/absence data. Eutrophication metrics based on helophytes were found not to be useful in assessing the effects of nutrient pressure. These metrics were also found to vary with the depth of sampling, with shallower taxa representing higher trophic status. This study demonstrates the complex spatial variability in macrophyte communities, the effect of this variability on the metrics, and the implications to water managers, especially in relation to survey design.  相似文献   

19.
Pettersson  Kurt  Grust  Karin  Weyhenmeyer  Gesa  Blenckner  Thorsten 《Hydrobiologia》2003,501(1-3):75-81
The effect of submerged macrophytes on interactions among epilimnetic phosphorus, phytoplankton, and heterotrophic bacterioplankton has been acknowledged, but remains poorly understood. Here, we test the hypotheses that the mean summer phytoplankton biomass (chlorophyll a): phosphorus ratios decrease with increased macrophyte cover in a series of nine lakes. Further, we test that both planktonic respiration and bacterioplankton production increase with respect to phytoplankton biomass along the same gradient of increasing macrophyte cover. Increased macrophyte cover was associated with a lower fraction of particulate phosphorus in epilimnia, with total particulate phosphorus declining from over 80% of total phosphorus in a macrophyte free lake to less than 50% in a macrophyte rich lake. Phytoplankton biomass (chlorophyll a) too was lower in macrophyte dominated lakes, despite relatively high levels of total dissolved phosphorus. Planktonic respiration and bacterioplankton production were higher in macrophyte rich lakes than would be expected from phytoplankton biomass alone, pointing to a subsidy of bacterioplankton metabolism by macrophyte beds at the whole lake scale. The results suggest that the classical view of pelagic interactions, which proposes phosphorus determines phytoplankton abundance, which in turn determines bacterial abundance through the production of organic carbon, becomes less relevant as macrophyte cover increases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号